
Reasoning Support for Undefinedness and So� Typing
in Formal Mathematics
Jonas Betzendahl1

1Computer Science, FAU Erlangen-Nürnberg

Motivation

One aspect of mathematics that is only beginning to be incorporated into formal systems is
unde�nedness, the notion of terms or expressions that are syntactically well-formed but cannot
be assigned a value. This typically arises when applying a partial function (or predicate, or
operator, . . . ) to a value that lies outside of its domain. This phenomenon occurs naturally, both
in mathematical expressions (e.g. 5

0 ) as well as to natural language (e.g. “Fantasia lies east of
the equator”).
Equation (1) is an especially interesting example because it clearly demonstrates the split

opinions about how to deal with unde�nedness.

∀𝑥, 𝑦, 𝑧 : R . 𝑥 =
𝑧

𝑦
⇒ 𝑥 · 𝑦 = 𝑧 (1)

Earlier contributions in the literature reference this example, but with contradictory connota-
tions. One paper posits that (1) should be considered true, even without the restriction that 𝑦 ̸= 0;
another emphasises that such a restriction must be present. Both pieces refer to mathematical
consensus in one fashion or another to justify their respective approach. This demonstrates not
only that there is no mathematical consensus about when exactly equations like the one above
should be treated as de�ned, or that such a consensus is not as obvious as previously thought,
but that the situation is actually even worse than that. There is no consensus, yet people believe
there is.
We learn from this and other examples in the literature that there exists a multitude of

di�erent approaches to unde�nedness, each with advantages and conducive to certain situations.
Hence, our goal shall not be to �nd the next “one-to-rule-them-all” method of dealing with
unde�nedness, but to provide the possibility of easily developing and incorporating into an
ongoing formalisation project, whatever notion of unde�nedness is applicable to the task at
hand. For this, we will be using theMMT framework.
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Another trend in mathematical formalisms is that many of them make use of hard types, as
opposed to so� ones. Hard type systems dominate the current landscape of formal systems
since they lend themselves the easiest to automation (since e.g. type checking is not reduced to
undecidable theorem proving, necessitating complex and potentially hard to predict heuristics).

However, in hard and even in semi-so� type systems, the user is usually forced to make the
somewhat arti�cial choice of whether to encode a given piece of information in the type system
or the logical system (compare ∀𝑥 : N . 𝑃 (𝑥) and ∀𝑥 . 𝑥 ∈ N ⇒ 𝑃 (𝑥)). In untyped systems that
mimic types through predicates, the type system becomes a feature of the logical system.

So�er type systems are furthermore interesting because they naturally mirror the way many
mathematicians work in their everyday e�orts. Most of the time, not all information about any
given object is known from the start and it is a mathematical discovery (subject to proof) that a
certain object also �ts the de�nition of another class of objects.

Related Work

Given the plethora of di�erent approaches and opinions on unde�nedness, it is no surprise that
systems for doing mathematics re�ect a similar diversity of thought. There have been multiple
e�orts, both in theory and in implementation, to come up with reasoning systems that support
some sense of mathematical unde�nedness or another. Our own investigation started with
IMPS (which shares certain design decisions with MMT and is therefore an obvious choice).
Other notable systems are Robin Millner et al.’s LCF (Logic for Computable Functions, based
on Dana Scott’s Logic of Computable functions) and the mural System by Jones et al. which is
based on the three-valued LPF.

In the realm of formal systems for mathematics, so� type systems are not as abundant as hard
ones Mizar’s type system is of particular interest since it is maybe the most prominent example,
has been in use since before the feature of type classes was introduced in other formal systems
and also because there is a large library of Mizar formalisation in the Mizar mathematical
library. Furthermore, the Naproche-SAD system’s approach to types can also be interpreted
as a so� type system and the type system of the computer algebra system GAP also has so�
aspects that are interesting in this context.

E�ort & Evaluation

The most prominent goal of my PhD research remains to allow for native (un)de�nedness
reasoning withinMMT, ideally both on the manual and the automated reasoning level.

Currently, neither MMT nor LF have a way of dealing with unde�nedness, so a key research
question here is to �nd out at which level this feature should be introduced. Can we give MMT
a primitive, yet foundation-independent notion of unde�nedness that all logics and systems
that are implemented in MMT then could bene�t from on an opt-in basis? If so, any system
that was implemented without support for unde�nedness should be able to simply “import” a
suited notion of unde�nedness instead of having to re-implement all the machinery again, then
and there.



The other topic I hope to tackle that of a so� type system for mathematics. Like unde�ned-
ness, so� type systems have the potential to capture realities of mathematics as performed by
mathematicians o�en overlooked in formal systems. An object is shown to be an instance of
one structure but can later be proven to also meet the criteria of another structure. Both of
these angles (and any that follow) can be used in proofs and for further de�nitions.
Both prominent features are likely to introduce a signi�cant number of proof obligations

that are not necessarily hard to prove, but do need to be proved nevertheless (think “Type 𝜏 is
not empty.” or “The application of this function to this value is de�ned.”). Requiring the user to
prove them herself would place her under an undue burden of “busywork”, likely leading to
justi�ed frustration. So, ideally, these obligations would be proved by the system.

All of the examples mentioned above are of course instances of larger problems that become
intractable (or even unsolvable!) in larger contexts. Yet in many circumstances, the actual
incarnations are solvable in a reasonable timespan o�en enough.
MMT already has a simple (yet still foundation-independent) iterative theorem proving

system, yet it does not meet standards of e�cacy and e�ciency. I am therefore working on
extending theMMT reasoning system by another automated component. I am using 𝜆Prolog
(or, to be more precise, ELPI) as the programming language for the proving component. This
approach makes use of the fact that higher-order uni�cation is already reliably implemented
and can be used as a mechanism for proof search.
The pipeline looks as follows: For any given theory, MMT generates an ELPI kernel, a �le

that introduces the declarations of a theory (in the case of propositional logic, these would
include constants for truth and falsehood, the connectives, as well as types for propositional
formulae and proof certi�cates) and ELPI rules that re�ect the inference rules of the theory
(e.g. ∧𝐼 or ¬𝐸). These are supported by experts, i.e. handwritten or partially-generated ELPI
modules that apply strategies and/or apply help predicates to reduce the enormous search space
of proof terms that would otherwise be intractable. First results in testing this approach appear
promising.

Proof obligations that arise inMMT are automatically translated and handed to ELPI (running
in server mode). The fact that MMT is calling an external system for proving introduces an
issue of trust. How can it rely on the proof found in ELPI actually being correct? For this, we
are working on including proof certi�cates (on which Dale Miller also has done extensive work
during the ProofCert project), that could be generated by ELPI and communicated back toMMT
to be checked for correctness.


