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Abstract
[Context and Motivation] Online software feedback sources such as forums, twitter or app stores
have opened up new avenues for feedback collection. These large amounts of feedback give developers
the opportunity to improve software by addressing users’ concerns. To identify improvements from the
feedback, developers need to relate it to existing requirements. [Question/Problem] Manual analysis
of such large amounts of data is very time consuming. Automatic analysis is needed, using natural
language processing, machine learning, and deep learning algorithms. However, users and developers
have distinct languages due to their different knowledge. As a result the concepts users use in their
feedback might not fit the concepts used in the requirements, making direct relation difficult. [Principal
ideas/results] The proposed solution to the automatic classification problem utilizes a requirements
framework in order to classify the user feedback into the requirement categories addressed therein. This
is a way of pre-filtering the feedback into requirements categories before classifying which specific
requirement it addresses. This offers potential for both, better automatic classification and semi-automatic
recommendation of related requirements. [Contribution] This paper discusses the research problem
of relating feedback statements to specific requirements. It then introduces a potential solution to that
problem via a pre-filtering approach. It also discusses the used research method, related work, the
research plan and progress so far.
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1. Problem

Online user feedback sources such as user forums, tweets or app reviews have allowed developers
to collect huge amounts of natural language statements about their software. Analysing this
data is advantageous as it can offer insights into users’ experiences and requirements [1]. The
feedback data however, comes in such large quantities, that analysis is often too time intensive
to be done manually. To properly address the issues raised by feedback about existing software,
these user statements need to be brought into relation with specific requirements. Thus, there
is a need for automation of this process via classification algorithms using natural language
processing (NLP), machine learning (ML) and deep learning (DL) algorithms (as defined in [2]).
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There are numerous classification categories for feedback like user requests, NFRs and issues [3],
that are already being researched. The relation of feedback to specific requirements, however
requires a more fine grained analysis.

Directly relating feedback to requirements through the concepts within them, for example
via similarity classification, is challenging because of the very different knowledge users and
developers have [4]. The concepts users express in their feedback might not be present in the
requirements written by developers.

A feedback statement taken from the reviews of a hiking application provides an example
of this:"The App often tells me to go right in 100 meters without that actually being possible". A
human reader is able to infer that this comment addresses some form of navigation problem.
Automatic classification could struggle to properly identify the issue because of the vague
concepts expressed in the statement. It is unlikely that similar wording is used in the actual
requirements specification. For this statement to be processed automatically and then related
to a specific requirement a classifier would need to more closely categorize the actions ("the
App tells me", "to go right") expressed therein. These actions represent aspects of the software
in the form of software interactions ("the App tells me") and user activities ("to go right").
These software aspects can be traced back to requirements categories. Software interactions
for example are specified in system functions. This means that direct relation of these user
statements to requirements only needs to consider system function or user activity related
requirements that deal with outputs to the user and activities that include movement.

As sketched in the example, the relation problem can potentially be reduced by pre-filtering
the feedback before analysing the actual concepts therein. This dissertation analyses the
potential of this process via classification of feedback statements according to software aspects.
In this approach, feedback statements are assigned a requirements category according to their
discussed software aspect. Afterwards they can be related to specific requirements according to
the prior classification. Software aspects can concern specific system functionalities, interactions
with the software or UI elements.

The specific software aspect categories used for the pre-filtering can potentially be defined
by individual users themselves. As a proof of concept, in this dissertation the TORE framework
[5] is used for the software aspect classification. TORE has been used in various development
projects in the past to support requirements engineers in their communication and decision
making. TORE consists of decision points (TORE categories) that capture decisions made during
software development. For each decision point, a portion of the requirements is specified. The
decision points are grouped into three levels of abstraction (TORE level) as shown in figure 1.

2. Research Method

This dissertation’s research method follows a version of Wieringa’s Design Science Methodol-
ogy [6]. It is made up of a design goal which is achieved by following the problem investigation,
treatment design and treatment validation phases.
Design goal: "Design and evaluate a process to relate user feedback to specific requirements

using automatic TORE software aspect classification".
Problem investigation: "Identify classification algorithms in existing fine grained user feed-



Figure 1: TORE Model For User Feedback Classification

back classification approaches to evaluate their applicability to feedback-requirements relation in a
systematic mapping study". The mapping study [7] conducted during this phase, will identify
NLP, ML, and DL algorithms which have already been employed to classify user feedback into
fine grained classes.
Treatment design: "Automatic TORE software aspect classification for later feedback-

requirements relation". A selection of the found algorithms is used to develop new, adapted
algorithms for the purpose of TORE software aspect classification and feedback-requirements
relation. For the training of classifiers, data from different user feedback sources is collected
and adequately labelled to function as training and testing data during development of the
algorithms. These sources include online forums, app reviews and online surveys.

Treatment validation: "Evaluation of the algorithms with real user feedback data and existing
requirements". The data for this is gathered during the course of a healthy-ageing related project
called SmartAge [8]. It will specifically be useful, as the requirements of this project are already
specified according to the TORE framework.

3. Proposed Solution

The proposed solution to the problem described in section 1 is to develop a process for the
relation of feedback to existing requirements using pre-filtering of the feedback. Thus, this
process consists of two steps; namely (1) pre-filtering the feedback according to TORE software
aspects discussed therein and (2) relating the feedback to specific requirements relevant to those
TORE software aspects.

For the purpose of analysing feedback with the TORE framework, it is simplified from 18 to
12 categories as can be seen in figure 1. The adaptation of TORE for user feedback analysis and
the definition for individual categories is further described in [9]. Software aspects (represented
by TORE categories) will be analysed in user feedback by encoding natural language data sets.
Here, individual text segments, as opposed to whole sentences or complete feedback statements,
are assigned a corresponding TORE category as a code. If the requirements of a project have
been developed using the TORE framework, these segments can then be traced back to a specific
requirements category. This process will be realised by using either a multi-class classification
approach or a multi-level, multi-class classification approach [10]. The multi-class approach
uses one classifier to assign each text segment one specific TORE category (or no category at



all). The multi-level, multi-class approach first categorizes the feedback segments into one of
the three TORE levels (or no category at all) before a second classifier then categorizes the
statements into one of the corresponding categories of that level.

Having assigned the text segments a specific TORE category and thus a requirements category,
the second step of relating the feedback to a specific requirement will be performed by pre-
trained language models like BERT [11]. Depending on the accuracy of the algorithms, a simpler
recommender system might also be designed. Then, developers ultimately decide which specific
requirement the feedback belongs to, given a set of recommendations.

4. Related Work

In order to automate the classification of user feedback into software aspect categories, a fine
grained analysis of the statements is needed. As part of the mapping study, an analysis of the
works discussed in different literature reviews in the fields of crowd sourced requirements and
user feedback analysis (from review sources such as app stores, Twitter and online forums)
[12], [13], [14], [15], [16], and [3] is being conducted. It shows that of 341 papers cited, only
16 introduce fine grained user feedback analysis approaches. Some of these approaches will
be briefly discussed in the following paragraph. Ciurumelea et al. [17] introduce a high
and low level taxonomy for app review classification with categories such as compatibility,
usage, resources etc. They apply a Regression Tree model for the automatic classification. The
categories introduced by Guzman et al. [18] aim to classify feedback into a software evolution
taxonomy. The categories include classes such as feature strength and usage scenario. For the
classification they apply Naive Bayes, Support Vector Machine (SVM), Logistic Regression and
neural networks. Lu et al. [19] aim to classify non-functional requirement categories; namely
reliability, usability, portability and performance. For this they use an adaptation of Bag-of-Words
with a machine learning classifier. McIlroy et al. [20] introduce a complex taxonomy of 14
categories for a multi-label classification of user feedback into categories such as functional
complaint, privacy and ethical issue or user interface. They apply SVM, J48, Naive Bayes and
Random Forest for the classification problem. Khan et al. [21] extract user rationale from
feedback statements by using categories like, claim-supporting and claim-attacking. They use
Naïve Bayes multinomial, Random Forest, SVM and Logistic Regression as classifiers.

It is noteworthy that none of the 341 works specifically target which aspects of a software
users are referring to in their feedback. However, these existing approaches still offer valuable
insights into the applicability of existing NLP, ML and DL algorithms for the classification
problem.

Algorithms for the second step of the process will be identified in a separate literature review
of existing pre-trained language models approaches (e.g. BERT [11]). Insights will also be
drawn from the papers collected during the mapping study. Dabrowksi et al. [22] performed
a replication study on approaches which identify feature-related reviews. These could be of
interest for the feedback-requirements relation step. However, they found that these approaches
achieve lower effectiveness than reported originally. They also found that existing searching
tools like Lucene could be useful for similar tasks. These will also be considered going forward.



5. Research Plan & Progress

The current progress and future plans of the dissertation can be summarized into five main
milestones: (1) Adapt TORE for feedback classification, (2) Create training and evaluation data
sets, (3) Perform a mapping study of fine grained user feedback classification approaches, (4)
TORE classification algorithm development and (5) Feedback-requirements relation algorithm
development.

(1) The TORE framework chosen for the pre-filtering of user feedback was, as previously
mentioned, originally developed solely for requirements engineering. As such, adaptation and
simplification of the model was necessary in order to facilitate its use on feedback. These
adaptations are described in [9]. Overall, the number of individual categories was reduced from
18 to 12 with some closely related categories being combined. Coding rules for manual category
assignment were then developed. This milestone has largely been completed, but the developed
framework might require future adaptation.

(2) The development of milestones (4) and (5) will require sufficiently large data sets for
training and evaluation of automatic algorithms. For the purpose of milestone (4) multiple data
sets are manually labelled according to the previously mentioned rules. Currently, the largest of
these data sets is consists of 1146 sentences of both user feedback and users’ descriptions of a
hiking application called Komoot. This data was gathered from an online survey. Another data
set of 847 sentences from posts on the online forum Reddit regarding Komoot, Chrome and VLC
Video Player has also been created. Future data sets include one based on app store reviews and
one consisting of user feedback on health related software during the previously mentioned
SmartAge project [8]. The latter will present the main evaluation data set for milestones (4) and
(5). This data set creation will be continuously worked on during milestones (3)-(5).

(3) As mentioned in section 4, a mapping study is currently being conducted to gather previous
works related to automatic fine grained user feedback analysis. Existing literature reviews were
used as a starting point for the study. This was mainly done because of the inconsistent nature
of term usage across papers dealing with such fine grained classification, making a search term
based approach possibly unreliable. Of the 341 works cited in the reviews, 214 deal with user
feedback as a source, 105 of those tackle automatic classification problems. 66 of those are
related to software aspect classification of which 51 handle pre-defined classes. Only 16 of those
tackle classifications of fine granularity. From these 16 works snowballing will be performed to
find additional works. Once the mapping study is completed a selection of NLP, ML, and DL
algorithms will be chosen according to predefined criteria such as their precision and recall
during the evaluation. Completion of this milestone is planned within the next three months.

(4) With the data sets manually labelled in milestone (2) and the findings of the mapping
study, it is possible to implement and evaluate algorithms for the automation of the TORE clas-
sification process. In parallel to the mapping study, two different algorithms have already been
implemented as a first step towards investigating the potential of automatic TORE classification.
A Bi-LSTM based deep learning algorithm (LSTM) based on the work of Li et al. [23] and a
machine learning named-entity-recognition algorithm based on the work of Finkel et al. [24]
(NER). These were chosen as they offered classification of individual text segments and had
previously been used to classify user feedback. Both algorithms were first trained and tested on
the Reddit data set and showed similar results. The data set is inherently unbalanced towards



some categories as they are much more prevalent in users’ statements. For example, while the
category Interaction represents 23% of all occurrences, the category Activity only represented
3.5% of all occurrences. Categories with a high number of occurrences showed F1 scores as
high as 0.71 (LSTM) and 0.82 (NER). Less represented categories had F1 scores ranging as low
as 0.15 (LSTM) and 0.31 (NER). With the recent completion of the Komoot data set, the LSTM
classifier has been retrained and evaluated on both the Reddit and Komoot data sets (around 2000
sentences). Evaluation shows improvements for the lower F1 scores (lowest 0.33 compared to
0.15 before). However, frequently used categories show no improvement. Retraining of the NER
algorithm on the larger data set is planned for the near future. While the automatic classification
using the LSTM and NER algorithms showed promising first results, further development of
classification algorithms is necessary. Once the mapping study is completed, new algorithms
will be developed and tested on the above mentioned data sets. It is difficult to define specific
values for precision and recall that are required of these algorithms. A focus will however be put
on developing algorithms with high recall, as this provides more use in a recommender system
[25]. In addition, methods such as SMOTE [26] will be used to handle the high imbalance in the
data sets. Completion of this milestone is planned for the the first half of 2024.

(5) The last milestone concerns early exploration of the possibility of automating the relation
of user feedback, previously classified into software aspects, to specific requirements. Language
models such as BERT [11] for example will be evaluated for their capability of relating feedback
to specific requirements based on linguistic similarity. These evaluations will be performed both
with and without previous filtering through TORE classification. This serves the discovery of
possible problems with the direct relation of feedback and requirements. It also allows evaluation
of whether pre-filtering of feedback statements alleviates these problems. Completion of this
milestone is planned for beginning of 2025.

In parallel to all above mentioned milestones an open source software tool called FEED.UVL
is developed to provide functionalities for data set generation, manual coding of data sets, as
well as classification automation and evaluation. This tool serves as a support for the research
by simplifying many manual labour steps. It will also serve to possibly incorporate the relation
of feedback to specific requirements into the development process more easily, by functioning
as a prototype for an interface between feedback source and requirements documentation.
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