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Abstract  
[Context and Motivation] Acceptance criteria are a popular textual notation, especially in 
connection with user stories. Typically, they express refined requirements and are used to 
derive test cases, sometimes automatically. [Question/Problem] While acceptance criteria are 
very useful, they are not always documented or not always documented well. [Principle 
ideas/results] In order to find indications for more acceptance criteria (semi-) automatically 
for a given set of user stories and acceptance criteria we want to use information that is 
available in user stories and acceptance criteria or public knowledge. [Contribution] This 
proposal discusses the research problem of improving the completeness of acceptance criteria. 
It then introduces potential solutions to that problem that only use available information. It also 
discusses the used research method, plan and progress so far as well as related work to the 
research. 
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1. Problem 

Acceptance criteria (AC) are a common means in agile projects to check whether a user story (US) 
is fulfilled [23]. A US is a requirements notation that often follows the template ‘As a <role>, I want 
< goal> [so that < reason>]’, which is known as Cohn’s template [5]. An example for a US with AC 
is the following: 

As an employee I want to be able to book a half day of leave in the year in which the leave day is 
available so that I can use up my half days 

- Checkbox hidden if no half leave day available. 
- Start date must be equal to end date (in the respective year) 
- Start date decides on "current" year  
AC can be used to specify more details that need to be considered during implementation and they 

can be used to derive test cases. The derivation of test cases can already be done automatically, as shown 
by Fischbach et al. [10]. However, they also found out that in the two industry projects they used, only 
31.1% and 50.1% of the US contained AC. We made similar observations in two datasets that we 
acquired from industry where only around 30% or less of the USs contained AC. The lack of AC is also 
mentioned by Hoda & Murugesan [11] as one of the challenges for agile teams because it lets software 
teams struggle to implement the correct software.  

One of the quality criteria for requirements mentioned by Fabbrini et al. [8] is completeness. 
Similarly, if some or all AC of a US are missing, we define this as an incomplete set of AC for a US. 
In the example above none of the AC covers that the half day of leave will be booked, therefore, this 
set of AC is incomplete. Our goal is to find ways to support requirements engineers by (semi-
)automatically improving the completeness of sets of AC in natural language for US. We only want to 
use information available in the US or AC or publicly available so that completeness can be judged 
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without extra knowledge of project experts. This ensures that our approach can also be used by novice 
project members. We also do not want to use information from diagrams or other project documentation 
as it may vary from project to project which documentation and diagrams are used. Given a dataset with 
US and some AC we therefore only want to use the text of the US and the text of the AC and public 
information to find more AC for US in the dataset by using natural language processing (NLP) or 
machine learning (ML), especially  deep learning (DL) algorithms (as defined in [25]).  

The remainder of the paper is structured as follows: Section 2 describes the research method used to 
find solutions for our goal. Section 3 describes our proposed solution and our available datasets in more 
detail. Section 4 describes related work. Section 5 describes the research plan and current progress. 

2. Research Method 

We use the design science research method [24]. With this method we want to achieve the following 
design goal: Design and evaluate an approach to improve the completeness of AC for US by using only 
available information. The first step of the research method is to analyze the as-is-state in research and 
practice. That is the problem investigation. Then, solution ideas are implemented based on the as-is-
state in a software prototype as treatment design. Finally, treatment validation is performed to get 
empirical evidence that the solution ideas and the prototype solve the problems. 

Our problem investigation consists of three parts.  
1. An interview study with practitioners from industry on the creation and usage of AC. 
2. The analysis of datasets from industry with US and AC. 
3. A systematic mapping study conducted by the guidelines of Kitchenham and Charters [13] to 

find suitable algorithms that could solve our problem. 
We already performed the first step with the following research question: 
RQ1: What is the state of practice regarding documentation and usage of acceptance criteria and 

are there improvement ideas? 
For the second step, we used the following research question: 
RQ2: What is the quality of acceptance criteria in practice and how are they documented?  
After the first two steps of the problem investigation we could narrow down our problem and define 

our research goal as the goal described in the first section. We also did some first searches for literature 
that describes research on how to generate more AC for US or other requirements, but only found two 
approaches described in section 4 that don’t use US as requirements notation. Therefore, we want to 
focus our systematic mapping study on possible solution ideas with the following question:  

RQ3: What is the state of the art in extracting and comparing information from user stories and 
other requirements texts with NLP, ML and DL algorithms? 

To answer this question we first will view the results of existing literature surveys [20], [25] and 
consider if they are relevant to answer the question. Then we will do forward snowballing on the 
relevant papers to see if there is more recent research that was not covered in the existing literature 
surveys. To be sure that there is nothing left out search terms can be defined from the found results and 
used in the typical search locations like ACM, IEEE, etc. A possible search term could be the following: 
(“requirement*” OR “user story” OR “user stories”) AND (“NLP” OR “natural language processing” 
OR “machine learning” OR “deep learning”) AND (“extract*” OR “compare” OR “similar*”) AND 
(“information” OR “concept”). 

The first step of treatment design is to derive solution ideas from the as-is state. For this, the results 
of the systematic mapping study will be evaluated how they could be used to solve our problem. We 
will define criteria and select the approaches to implement. They will be implemented as algorithms in 
a prototype software. In the treatment validation, the algorithms will be evaluated on data sets with 
US and AC in natural language that we acquired from industry. Those data sets are described in the 
next section. We are also looking for suitable open source data, that can be used to evaluate our solution 
as those could be shared with the research community. The solution will be evaluated in the lab based 
on metrics like precision and recall. Our goal is to reach high recall (~0.8) with reasonable precision 
(~0.5). 



The contribution of the thesis will be the interviews with practitioners on AC, coded datasets, a 
mapping study on algorithms for information extraction and comparison and the prototypical 
implementation of algorithms that can help to find more AC. 

3. Proposed Solution 

The general idea of our proposed solution is to apply NLP, ML or DL algorithms to available 
information in order to suggest indications for additional AC. The information that is available are the 
texts of the US, the texts of the AC and publicly available information (e.g. lexical databases like 
WordNet [18], pre-trained classifiers e.g. [4], [12], user forums etc.). More specifically for a US we can 
identify the role, goal and reason parts and we can use other parts of the text like single words, bigrams, 
concepts or the whole text. As AC in general do not have a structure, the available information are only 
the text or parts of the text like single words, concepts.  

We want to use the information in the following ways to find indications for additional AC 
(information like lexical databases or pre-trained classifiers might be used in all approaches): 

The first approach is to compare the information from the US with the information from its AC to 
find information in the US that is not covered by its AC. The uncovered information will be presented 
to the requirements engineer and can give hints for additional AC. In this approach the used information 
will be concepts, i.e. verbs, subjects and objects of the US and AC. For the US, we only want to use the 
concepts of the goal part as this part is the most important part for the described functionality of the 
software that should be covered in AC. The role is not important in AC, as AC focus on the software 
functionality, not the user. The reason part describes the rationale of the goal and does not give further 
insights into the needed functionality. This first approach is only able to find additional AC for 
information that is present in the US. Therefore, it can only find missing functional AC, but no AC that 
concern quality criteria or other constraints that are not mentioned in the US. 

Typically, AC contain more details than the US, as they should refine the US and answer questions 
wrt functional behavior, quality characteristics, constraints, etc. [23] (see also the example giving in the 
beginning). Thus, we want to use information from other US and AC to get indications for these details. 
Furthermore, we assume that similar US have similar AC. Datasets we acquired from industry also 
indicate that similar US have similar AC, but this still needs to be shown empirically. Therefore, the 
second approach is to find similar US for one or more given US in a given set of US and show the 
requirements engineer the similar US together with their AC. These AC could either be used directly 
or they can give ideas for new AC for the given US. The definition for similarity we use in this approach 
is the following: Two US are similar if they either refer to the same feature or workspace (that means 
group of related functions and data) or if they have a similar action. But it might be necessary to change 
this definition for similar US if our empirical analysis of the similarity of their AC indicates that. 

For the third approach, we want to explore if there are publicly available sources of information, 
other than the US or AC, that we can use to find indications for additional AC. Possible ideas are to 
utilize forums or platforms like stack overflow, but it is not yet clear, which information from these 
sources can be used for our goal and how they could be used.  

We also need to consider if it is possible and helpful to combine the first approach with the other 
approaches. E.g. if a missing concept is identified it could be used to filter the results of the other 
approaches to find a fitting AC. 

To find suitable algorithms for these approaches we will use the systematic mapping study. 
Therefore, the novelty of our solution is not necessarily in the algorithms we use but in the problem 
context that we apply them and the insights we get on the suitability of these algorithms in this context. 

To be able to evaluate our approaches we acquired two datasets from industry that contain US and 
AC. The characteristics of the datasets are described in Table 1. As can be seen, only a fraction of the 
total requirements issues contained a US with AC that we could use. The datasets originally contained 
308 issues for P1 and 2462 issues for P2. From those only 142 issues for P1 and 711 for P2 contained 
a US or AC. Of those, only 94 issues for P1 and 97 for P2 contained both AC and US. The US have 1-
15 AC in P1 with an average of 4.03 AC. In P2 the US have 1-6 AC with an average of 2.21 AC. The 
final size of the datasets is the number of requirements after removing requirements of bad quality (e.g. 
when the US was divided by a bullet list or when the user’s role mentioned in the US was another 



software). For P1 this is 86 US and 358 AC, for P2 74 US and 157 AC. Both data sets contain 
requirements in German language that we automatically translated into English, which we checked and 
corrected if needed.  

We are also looking for further data sets that are publicly available to be able to share our results 
with the research community. We did a first search in GitHub and found it difficult to identify projects 
which use US and AC in natural text, not in Gherkin notation, with the available search possibilities. 
 
Table 1.  
Characteristics of the data sets 

Dataset # original  
issues 

# issues 
containing 

US and/or AC 

# issues 
containing 
US and AC 

#AC per US Final #US, #AC 

P1 308 142 94 1-15 (mean 4.03) 86 US and 358 AC 
P2 2462 711 97 1-6 (mean 2.21) 74 US and 157 AC 

 

4. Related Work 

This section describes and discusses work related to our goal and to our solution ideas. There are 
approaches to generate AC automatically from requirements models via test models [2] or from 
controlled natural language [22] that is used to enhance the models to get more complete AC. However, 
those approaches use models which are not necessarily used in all projects. The second approach uses 
a notation for the requirements, which was developed for their approach. Both approaches generate AC 
in Gherkin language. This notation can be used for automatic tests, but is not very common in industry. 
We did not find any approaches without models which give ideas how to come up with a more complete 
set of AC.  

We conducted first searches in literature to find algorithms for experiments with our solution ideas. 
In this first literature research, we found the following algorithms for concept extraction and 
comparison. This will be complemented by the mapping study. In [9] Ferrari et al. describe an approach 
to check the completeness of requirements by extracting and comparing the concepts of requirements 
and their input documents. We adapt this idea by extracting concepts from US and AC and comparing 
them. Robeer et al. [21] is an example to extract concepts specifically from US. As AC are usually more 
detailed than US and therefore of a lower abstraction level, Kof et al. [15] is interesting for us, who 
describe how concepts of different levels of abstraction can be compared by using WordNet [18].  

In the first literature research, we found the following algorithms for similarity checks [1], [3], [6], 
[7], [14], [17], [19]. This will be complemented by the mapping study. The general idea is to transform 
the US into a format, e.g. vectors, that can be used to calculate the similarity between the US or the 
words of the US. For the calculation of the similarity a measure is needed. If the similarity was only 
calculated for the words of the US, it needs to be calculated for the whole US from these similarities. 
We looked in detail into the following two approaches. 

Barbosa et al. [3] use and evaluate different similarity measures in order to find duplicate US. They 
evaluate the following measures: the Jaccard Similarity Index, the Vector Space Model in combination 
with Term Frequency – Inverse Document Frequency and Cosine Similarity, the WordNet [18] database 
together with the similarity measures designed for it, namely the WuPalmer similarity or Lin similarity 
and Lesk-A relationship. The similarity measures for WordNet measure only the similarity between 
pairs of words. To get the similarity on sentence level, they need to be aggregated in some way. Barbosa 
et al [3] do not describe how they did it.  

Kochbati et al. [14] aim to group user stories of a complex software project according to similarity. 
In order to find similar user stories, first the word-level similarity is determined. They use word2vec, 
which is implemented as a pre-trained neural network and produces word embeddings. This means 
words are reflected by vectors. In the vector space, vectors representing similar meanings are close to 
each other. As a similarity measure of the word vectors, the cosine similarity is used. For the extension 
to requirement-level similarity, the Mihalcea scoring formula (presented by Mihalcea et al. [16]) is 



applied. The inverse document frequency is also an ingredient of this formula. The scoring formula is 
applied to all user stories and the final output is an N x N similarity matrix, where N is the number of 
user stories.  

There are different goals for the calculation of similarity, but, to the best of our knowledge, the goal 
to reuse AC has not been proposed yet.  

5. Progress & Research Plan 

Our research plan consists of the following steps  
1. Conduct interviews with practitioners from industry 
2. Analyze datasets with US and AC regarding quality criteria 
3. Come up with solution ideas based on 1. and 2. 
4. Conduct first experiments with algorithms for solution ideas 

a. Ground Truth creation 
b. Algorithm implementation 
c. Evaluation 

5. Conduct systematic mapping study on NLP, ML and DL algorithms for solution idea 
6. Choose algorithms from systematic mapping study to implement by defining and applying 

criteria 
7. Implement chosen algorithms 
8. Evaluate chosen algorithms. 
We already did steps 1-4. In the first step we conducted interviews with 7 practitioners from industry. 

Those interviews were held online and lasted about 90 minutes each. In these interviews we asked 
questions on how they use and create AC, if there are any problems and if they have improvement ideas. 
The main results were that AC are a valuable tool to get a clear understanding of the software and that 
it is problematic if they are missing. One of the improvement ideas was to suggest the AC of similar 
US to be able to reuse them. 

In the second step we analyzed the two datasets that we acquired from industry regarding quality 
criteria for US and AC. We found defects in all quality criteria, but as there are already tools that can 
find quality defects like understandability and consistency, we focused on the quality criteria 
completeness for further research. In the third step we came up with the solution ideas described in 
section 3.  

Currently we are conducting experiments with algorithms for our solution ideas. First experiments 
are already done. For the first approach we used the concept extraction capability of Stanford NLP to 
extract the concepts similar to [9] and compared the concepts of the US with the concepts of the AC by 
utilizing WordNet [18] like in [15] as the concepts in the AC are often more detailed than in the US. 
For the second approach we implemented three different algorithms. The first algorithm uses the vector 
space model and cosine similarity like in [3]. The second algorithm uses WordNet with the Wu Palmer 
similarity on word level like in [3] which is extended to US level by using the Mihalcea scoring formula 
[16]. The third algorithm uses word2vec with cosine similarity on word level which is again extended 
to US level with the Mihalcea scoring formula [16] like in [14]. 

With our available datasets and our ground truth the algorithms for the second approach either have 
high precision with low recall or high recall with low precision, which is similar to some algorithms we 
found in literature. The algorithm for the first approach has low recall with medium to high precision, 
which is mostly due to the fact, that only few concepts could be extracted with the chosen algorithm. 
Therefore, we want to explore ways how those algorithms can be improved. On the one hand, we want 
to try other algorithms that we find in literature. On the other hand, we want to improve the combination 
of algorithms. 

Our next experiment will be to utilize pre-trained models like USE [4] and BERT [12] to calculate 
the similarity between US. Additionally, we want to conduct the systematic mapping study in the next 
months to be able to refine our solution. To be able to choose fitting algorithms we already defined 
some sub questions to our research question RQ3:  

• What are the prerequisites to use those algorithms? 
• What are the steps of those algorithms? Are steps used in different algorithms? 



• Are the steps from our already implemented algorithms used? How are they used? 
• What are the goals of those algorithms? 
• How are the algorithms evaluated? Which metrics are used? Which data set sizes are used? 
After the systematic mapping study, we will refine our solution ideas and evaluate them with 

available data sets. It is planned to complete this until end 2024. 

6. Acknowledgements 

I thank my advisor Barbara Paech for her valuable feedback and support. 

7. References 

[1] M. Abbas, A. Ferrari, A. Shatnawi, E. Enoiu, M. Saadatmand, D. Sundmark: On the relationship 
between similar requirements and similar software: A case study in the railway domain. 
Requirements Engineering (2022). https://doi.org/10.1007/s00766-021-00370-4  

[2] M. Alferez, F. Pastore, M. Sabetzadeh, L. C. Briand, J. R. Riccardi: Bridging the Gap between 
Requirements Modeling and Behavior-Driven Development. In: International Conference on 
Model Driven Engineering Languages and Systems, pp. 239–249, IEEE (2019). 
https://doi.org/10.1109/MODELS.2019.00008  

[3] R. Barbosa, A. E. A. Silva, R. Moraes: Use of similarity measure to suggest the existence of 
duplicate user stories in the srum process. In: Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks Workshop (DSN-W), pp. 2-5, Toulouse, France, IEEE (2016). 
https://doi.ieeecomputersociety.org/10.1109/DSN-W.2016.27  

[4] D. Cer, Y. Yang, S. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant, M. Guajardo-Cespedes, 
S. Yuan, C. Tar, B. Strope, R. Kurzweil. Universal Sentence Encoder for English. In: Conference 
on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 169–174, 
Brussels, Belgium. ACL (2018) 

[5] M. Cohn: User stories applied: For agile software development. Addison-Wesley Educational, 
Boston, MA, USA (2004) 

[6] F. Dalpiaz, I. van der Schalk, S. Brinkkemper, F. B. Aydemir, G. Lucassen: Detecting 
terminological ambiguity in user stories: Tool and experimentation. Information & Software 
Technology 110, 3–16 (2019). https://doi.org/10.1016/j.infsof.2018.12.007 

[7] A. G. Duszkiewicz, J. G. Sørensen, N. Johansen, H. Edison, T. R. Silva: On identifying similar 
user stories to support agile estimation based on historical data. In: International Workshop on 
Agile Methods for Information Systems Engineering (Agil-ISE2022), pp. 21–26. CEUR-WS.org 
(2022).  

[8] F. Fabbrini, M. Fusani, S. Gnesi, G. Lami: An Automatic Quality Evaluation for Natural Language 
Requirements. In: International Workshop on Requirements Engineering: Foundation for Software 
Quality, pp. 150–164 (2001).  

[9] A. Ferrari, F. dell’Orletta, G. O. Spagnolo, S. Gnesi: Measuring and Improving the Completeness 
of Natural Language Requirements. In: Requirements Engineering: Foundation for Software 
Quality. REFSQ 2014. Lecture Notes in Computer Science, vol 8396. Springer, Cham (2014). 
https://doi.org/10.1007/978-3-319-05843-6_3  

[10] J. Fischbach, A. Vogelsang, D. Spies, A. Wehrle, M. Junker, D. Freudenstein: SPECMATE: 
Automated Creation of Test Cases from Acceptance Criteria. In: Int. Conf. on Software Testing, 
Validation and Verification, pp. 321–331, IEEE (2020). 
https://doi.org/10.1109/ICST46399.2020.00040  

[11] R. Hoda, L. K. Murugesan: Multi-level agile project management challenges: A self-organizing 
team perspective, Journal of Systems and Software, Volume 117, pp. 245-257, (2016). 
https://doi.org/10.1016/j.jss.2016.02.049  

[12] D. Jacob, C. Ming-Wei, L. Kenton, T. Kristina: BERT: Pre-training of deep bidirectional 
transformers for language understanding. In Conference of the North American Chapter of the 



Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and 
Short Papers), pp. 4171–4186, ACL, Minneapolis, Minnesota (2019) 

[13] B. A. Kitchenham, S. Charters: Guidelines for Performing Systematic Literature Reviews in 
Software Engineering (Version 2.3). Tech. rep. EBSE 2007-001. Keele, Staffs, UK; Durham, UK: 
Keele University and Durham University Joint Report, p. 65 

[14] T. Kochbati, S. Li, S Gérard, C. Mraidha: From user stories to models: A machine learning 
empowered automation. In: International Conference on Model-Driven Engineering and Software 
Development, pp. 28-40. SCITEPRESS - Science and Technology Publications (2021). 
https://doi.org/10.5220/0010197800280040  

[15] L. Kof, R. Gacitua, M. Rouncefield, P. Sawyer: Concept mapping as a means of requirements 
tracing. In: International Workshop on Managing Requirements Knowledge, pp. 22-31 (2010).  
https://doi.org/10.1109/MARK.2010.5623813  

[16] R. Mihalcea, C. Corley, C. Strapparava: Corpus-Based and Knowledge-Based measures of text 
semantic similarity. In: National conference on Artificial intelligence (AAAI 06), pp. 775–780, 
AAAI Press, Boston (2006). 

[17] F. A. Mihany, H. Moussa, A. Kamel, E. Ezzat, M. Ilyas: An automated system for measuring 
similarity between software requirements. In: Africa and Middle East Conference on Software 
Engineering - AMECSE ’16, pp. 46-51, ACM Press, New York (2016). 
https://doi.org/10.1145/2944165.2944173 

[18] G. A. Miller: WordNet: A lexical database for English. Communications of the ACM, 38 (11), 39–
41 (1995). https://doi.org/10.1145/219717.219748 

[19] G. Ninaus, F. Reinfrank, M. Stettinger, A. Felfernig: Content-based recommendation techniques 
for requirements engineering. In: International Workshop on Artificial Intelligence for 
Requirements Engineering (AIRE). IEEE (2014). https://doi.org/10.1109/AIRE.2014.6894853 

[20] I. K. Raharjana, D. Siahaan, C. Fatichah: User Stories and Natural Language Processing: A 
Systematic Literature Review, IEEE Access, 9, pp. 53811–53826, 2021. 
https://doi.org/10.1109/ACCESS.2021.3070606  

[21] M. Robeer, G. Lucassen, G., J. M. E. M. van der Werf, F. Dalpiaz, S. Brinkkemper: Automated 
Extraction of Conceptual Models from User Stories via NLP. In: International Requirements 
Engineering Conference (RE), pp. 196-205 (2016) https://doi.org/10.1109/RE.2016.40  

[22] A. Veizaga, M. Alferez, D. Torre, M. Sabetzadeh, L. Briand, E. Pitskhelauri: Leveraging Natural-
language Requirements for Deriving Better Acceptance Criteria from Models. In: International 
Conference on Model Driven Engineering Languages and Systems, pp. 218-228, ACM, New York 
(2020)  

[23] K. Wiegers, J Beatty: Software Requirements, 3e, Microsoft Press, 2013, pp. 347-348. 
[24] R. J. Wieringa: Design Science Methodology for Information Systems and Software Engineering. 

Springer Berlin Heidelberg, p. 332 (2014). https://doi.org/10.1007/978-3-662-43839-8  
[25] L. Zhao, W. Alhoshan, A. Ferrari, K. J. Letsholo, M. A. Ajagbe, E. Chioasca, R. T. Batista-

Navarro: Natural Language Processing for Requirements Engineering: A Systematic Mapping 
Study. ACM Comput. Surv. 54, 3, Article 55 (April 2022), 41 pages. 
https://doi.org/10.1145/3444689 


