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Abstract

Inferring feature importance is a well-known machine learning problem. Giving importance scores to the input data features
is particularly helpful for explaining black-box models. Existing approaches rely on either statistical or Neural Network-based
methods. Among them, Shapley Value estimates are among the mostly used scores to explain individual classification models
or ensemble methods. As a drawback, state-of-the-art neural network-based approaches neglects the uncertainty of the input
predictions while computing the confidence intervals of the feature importance scores. The paper extends a state-of-the-art
neural method for Shapley Value estimation to handle uncertain predictions made by ensemble methods and to estimate a
confidence interval for the feature importances. The results show that (1) The estimated confidence intervals are coherent
with the expectation and more reliable than baseline methods; (2) The efficiency of the Shapley value estimator is comparable
to those of traditional models; (3) The level of uncertainty of the Shapley value estimates decreases while producing ensembles

of larger numbers of predictors.

1. Introduction

Machine learning and deep learning have achieved re-
markable results in various classification tasks. However,
due to the inherent complexity end-users often treat them
as black-boxes as these models do not provide the nec-
essary insights into the reasons behind the generated
predictions [1]. Understanding feature importance is a
relevant branch of Explainable Al The main goal is to esti-
mate the predictive power of a feature for a response vari-
able [2]. To successfully cope with arbitrary predictive
models, especially the non-intepretable ones such as neu-
ral networks or ensemble methods (e.g., random forests or
Gradient Boosting [3]), a particular research interest has
been devoted to studying model-agnostic methods. They
compute the feature importance scores disentangling the
approximations from the underlying model character-
istics. Within this field, statistics-based approaches to
feature importance have two major issues [4]: (1) they
make arbitrary distributional assumptions, which are
often hard to verify in practice on real data, (2) they ne-
glect, in most cases, the uncertainty of model estimates
thus providing end-users with unreliable feature impor-
tance scores. This paper addresses the above-mentioned
issues as follows: (1) It adopts a state-of-the-art neural
network model learning the underlying data distribution
at training time; (2) It quantifies the uncertainty of the
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feature importance scores by learning the corresponding
confidence scores.

Shapley Values [5] are known concepts from cooper-
ative game theory that have become established for Al
model explanation. Specifically, they quantify the contri-
bution of a given feature to the prediction of a particular
instance. Thanks to the additive property, they can be
also used to estimate the global contribution of a feature
to an Al model [6]. Since the exact Shapley Value estimate
is computationally intractable on most real datasets dif-
ferent approximation methods have been proposed. They
can be classified as stochastic approaches (e.g., [7, 6, 8])
or model-based ones (e.g., [9, 10]). Among the latter ones,
recent approaches based on Neural Network models [10]
have shown to be particularly efficient as allow real-time
Shapley Value estimate in a single forward pass using a
learned explainer model.

The main paper contributions are outlined below.

» Conceptualization. We propose to extend ex-
isting Shapley Value approximation methods to
cope with uncertain predictors by leveraging the
concepts of Coalition Interval Game [11] and In-
terval Shapley Value [12].

+ Design and Implementation. We introduce
Interval FastSHAP, a novel and efficient method-
ology for the approximation of Shapley values,
which builds upon the existing state-of-the-art
model, FastSHAP [10]. Given an ensemble of pre-
dictors associated with the corresponding con-
fidence intervals, it returns the Shapley Values
enriched with the corresponding confidence in-
tervals.

« Comparative study. To compare Interval Fast-
SHAP with baseline methods, we also extend a
statistical approach based on Montecarlo sam-
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pling [13] and a recently proposed regression-
based model, namely Biased KernelSHAP [6], to
handle confidence intervals.

« Empirical evaluation. We report a selection
of empirical outcomes achieved on benchmark
tabular datasets [14]. The estimated intervals
have shown to be more reliable than Biased Ker-
nelSHAP; Interval FastSHAP has a complexity
that is comparable to FastSHAP (and superior
to Biased KernelSHAP); the uncertainty of the
Shapely Value approximations decreasing by in-
creasing the number of predictors.

The rest of the paper is organized as follows. Section 2
provides an overview of related works in the field of ex-
plainability and feature importance estimation. Section 3
presents some preliminary notions about Shapley Values
and FastSHAP architecture. Section 4 introduces Inter-
val FastSHAP, the proposed methodology for estimat-
ing Shapley Values with associated confidence intervals.
Section 5 presents the empirical evaluation of Interval
FastSHAP and compares it with the baseline methods. Fi-
nally, Section 6 concludes the paper and outlines possible
future works.

2. Related works

In recent years, various model-agnostic feature impor-
tance scores have already been proposed in the literature.
They can be classified as follows:

a) Feature exclusion/occlusion methods
(e.g., [15, 16]), which investigate the impact of
excluding part of the input features;

b) Feature permutation (e.g., [17, 18]), which en-
semble predictive models by combining different
feature sets;

c) Shapley value-based feature importance
(e.g., [6, 19]), which quantifies the relevance score
of a feature by approximating the per-class global
Shapley values [6].

This work belongs to category (c). Few works have fo-
cused on quantifying the reliability or uncertainty of the
feature importance based on statistical models. For exam-
ple, [16] performs leave-one-covariate-out inference, [20]
adopt MonteCarlo feature sampling, whereas [4] uses
minipatch ensembles. However, these approaches are
computationally expensive and may not scale well to
high-dimensional feature spaces. We believe that our ap-
proach provides a robust and scalable solution to the prob-
lem of quantifying feature importance and uncertainty
in high-dimensional feature spaces. Unlike [16, 4, 20] the
approach proposed in the present work relies on neural
network learning for efficient Shapley Value approxima-
tion. A regression-based approach to estimate Shapley

Value residuals has been proposed in [21]. The goal is to
warn practitioners against overestimating the extent to
which Shapley-value-based explanations give them in-
sights into a model. Unlike [21], the approach presented
in the current paper also considers the uncertainty of
black-box models consisting of predictor ensembles, fo-
cusing on quantifying the uncertainty of feature impor-
tance rather than the accuracy of Shapley values.

3. Preliminaries

Shapley Value Introduced in 1951, the Shapley Value
assigns a value ¢, to each player p in a cooperative
game based on the contribution to the total payoff of
the group [5].

Formally speaking, the Shapley Value for a player p
in a cooperative game with a set of players P and a
characteristic function is defined as follows:
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where C is player coalition, v : 2 — R is a characteris-
tic function, C' C (P \p) is the sum taken over all subsets
C of players in P excluding p, |C| is the cardinality of
set C, and | P)| is the total number of players.

The Shapley Value is computed as the sum over all
possible coalitions that do not contain coalition C. The
term v(C' U p) — v(C) is the marginal contribution of
player p to the coalition C.

The Shapley value satisfies the axioms of efficiency,
symmetry, linearity, and dummy player [5]. Efficiency in-
dicates that the sum of the Shapley values for all players is
equal to the total payoff of the game; symmetry indicates
that if two players have the same marginal contributions
to all possible coalitions, their Shapley values are equal;
linearity holds because the total payoff of the game can
be decomposed into two independent parts and the Shap-
ley value of each player can be obtained by summing
their individual Shapley values for each part; dummy
player indicates that the Shapley value of a player hav-
ing no marginal contribution to the total payoft is zero.
Notably, linearity allows us to sum the instance-level
contributions of a feature for global explanability [6].

Coalition Interval Game For every coalition C in
a cooperative game the achieved outcomes have a cer-
tain level of uncertainty. We assume that the prediction
prt of a model M on instance i has a confidence inter-
val [prie®e”, pri??°"]. The aforesaid range is bounded
from below by the pessimistic prediction obtained using
the lower value of the associated zero-sum game and
it is bounded from above by the optimistic prediction
obtained using the upper value of that game. In compli-
ance with [11], we associate with each strategic game



a coalitional interval game consisting of a pair (P, v),
where P is the set of players, and v is a correspondence
that associates with every coalition C' C P an interval
v(C) that indicates that the worth of the coalition will be
somewhere in this range.

Shapley Value with confidence interval Analo-
gously to coalition interval games, the estimate of the
Shapley Value ¢¢ of feature f can be extended to de-
fine the corresponding confidence interval on a given
instance ¢ [¢)lf’l°wer, qﬁ{’upper] [20]. The confidence in-
terval quantifies the range of uncertainty of the impor-
tance of feature f. The traditional Shapley Value ¢y is

expected to be the mean interval value [12].

FastSHAP FastSHAP [10] is a state-of-the-art model-
agnostic approach to real-time Shapley Value approxi-
mation. Unlike prior works (e.g., Biased KernelSHAP [6],
Unbiased KernelSHAP [22]) it exploits surrogate models
to simulate the original, complex, black-box model to be
explained. Surrogate models are trained on the same data
used to train the original model and aim at predicting
the outputs of the black-box model generated by taking
into consideration different subsets of features. Based
on the surrogate model outcomes, FastSHAP returns the
Shapley value approximation in a single-forward pass
by minimizing the difference between the output of the
surrogate models and the local normalized output. By us-
ing surrogate models, FastSHAP can estimate the global
Shapley values for the original model more quickly and
with a lower computational cost than if we computed the
exact Shapley values for the original model directly.

The FastSHAP explainer model is trained by minimiz-
ing an objective function inspired by the Shapley Value’s
weighted least squares characterization [6], thus enabling
efficient gradient-based optimization. It also seeks to bal-
ance the trade-off between accuracy and fairness in the
model’s explanations. More specifically, the loss function
L(-) is defined as follows:
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where x is the feature representation vector correspond-
ing to a sample, y is the response variable for a classifica-
tion problem, U (y) represents the Uniform distribution
over the classes, s represent a subset of feature to be
considered to infer the label of a data sample, vy, ($) is
the expected value of the model’s prediction when con-
sidering only features in s, v 4(0) is the expected value
of the model’s prediction when all features are absent
and ¢ ase(z,y; 0) is the learned parametric function that
should outputs exact Shapley values.

To meet the efficiency constraint, FastSHAP applies a
normalization factor to all predictions, namely the addi-
tive efficient normalization:

5L (2,930) = brast(w,y;0)+
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where v, (1) is the expected value of the model’s
prediction when all features are present in the sample,
and d is the total number of features. By incorporating
additive efficient normalization into the loss function,
the FastSHAP model ensures that the resulting feature
attributions are consistent with the Shapley value, pro-
viding a theoretically grounded and transparent method
for interpreting the model’s predictions.

4. Interval FastSHAP

Figure 1 shows a sketch of the Interval FastSHAP work-
flow. The goal is to explain a black-box prediction model
M consisting of an ensemble of N predictors My, Mo,
..., M. Without any loss of generality, hereafter we
will address the problem of explaining an ensemble of
binary classifiers predicting either the positive (+) or the
negative (—) class.

Black-box model Given a dataset D, for each instance
iin D let pr; be the prediction of model M for instance
4. Let
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be the confidence intervals of predictor M associated
to instance ¢ for positive and negative classes, respec-
tively. For instance, if M is an ensemble of decision trees
then the per-class confidence levels can be defined by
the range of variation of N trees’ predictions. Since the
per-class probabilities P (¢, —) and P (4, +) of a given in-
stance i are linearly dependent, i.e., P(i, —) =1-P(i, +),
we simplify the model output setting as target the crossed
pairs
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In details, since the variance on each class is the same,
ie. Var, = Var?' , rather than considering four vectors,
one for each bound
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Figure 1: Interval FastSHAP architecture.
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Figure 2: Example of prediction targets.

and recalling the following equivalences, as shown in
Figure 2,
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we can rewrite the original target vectors as
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and simply consider two of them:

Vi=V4= [pr;’low”,pr:““’w”]
V2 =V3= [prj—,lowe'r’pr‘—,upper]

k3

(6)

Surrogate model The surrogate model SM is de-
signed to approximate the behavior of a black-box model
M. The objective of the surrogate model is to predict the
class label pArzL/ "~ of instance ¢ as determined by the black-
box model. In order to achieve this, the surrogate model
may employ any suitable prediction algorithm that is
computationally more efficient and able to accommodate
the utilization of varying subsets of features. Regarding
the implementation, in this study, a multi-layer percep-
tron is utilized as the surrogate model, trained to predict

the outcome of the random forest approach which is
employed as the black-box model. It takes as input the
original data points and the vectors Vi and V5 as target
variables and outputs two vectors

o (.o, —slower _~ 4 upper
Vi=(pr; » P75 )

X ™

_ (.~ +,lower ~ — upper
Vo= (pri y PT; )

Combining FastSHAP explainers Two FastSHAP
explainers are trained in parallel to infer the interval
Shapley values SV;" and SV,”. Given an arbitrary in-
stance %, Interval FastSHAP aims at the Interval Shapley
Values consisting of the two vector pairs SV, =(L;,U;)
and SV,”=(L; ,U;"), where SV;*/SV,™ are the interval
Shapley values associated to instance ¢ for the positive
and negative classes, respectively. Due to the linear de-
pendency of per-class probabilities, the interval bound-
aries are predicted by the FastSHAP network in a crossed
fashion, accordingly to the previous explanation:

SV1=I[L;,U]

2
Sv2=[L U] ®

Specifically, vectors L} and L; contain the lower
bound estimates of the positive/negative confidence in-
tervals of instance i, where the f-th vector dimension
corresponds to feature with index f in the input dataset
D. The same holds for Ul and U, in the context of
upper bounds.

5. Preliminary results

Data We perform experiments on four benchmark tab-
ular datasets belonging to the UCI repository [14], i.e.,
Monks, Heart, Census, and WBC.

Models and settings To implement the Random For-
est classifier, we employed the implementation provided
by the widely used scikit-learn library [23]. For all exper-
iments, the number of trees was set to 100, except in the



‘ FastSHAP Biased KernelSHAP MonteCarlo

‘ Mean Cl Mean Cl Mean Cl

| L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1
Monks | 0.0111 0.0224 0.0059 0.0118 | 0.0239 0.0489 0.0194 0.0386 | 0.1184 0.2241 0.0151 0.0275
WBC 0.0291 0.0721 0.0186  0.0449 0.0927  0.2272 0.0783 0.1871 | 0.1102 0.2706 0.0101 0.0240
Heart 0.0479 0.1373  0.0227 0.0628 | 0.0434 0.1268 0.0376 0.1053 | 0.1334 0.3748 0.0108 0.0282
Census | 0.0308 0.0776 0.0135 0.0341 0.0445 0.1256 0.0388 0.1044 | 0.1093 0.2642 0.0112 0.0274

Table 1

L1 and Ly distances computed separately for each dataset (rows) and for each method (columns). The subcolumns Mean and
Cl indicate the distance between the interval mean point and the distance between interval widths, respectively. All distances
are computed against the ground truth and averaged over 100 random samples.

studies exploring the impact of varying the number of
trees.

As a surrogate model, we implemented a Multi-Layer
Perceptron (MLP), which is a commonly used neural net-
work architecture. The MLP consisted of three linear
layers, of hidden size = 512 and interspersed with Rec-
tified Linear Unit (ReLU) activation functions, and two
classification heads, one for each target vector. The sur-
rogate model has been trained for a maximum of 200
epochs using the Kullback-Leibler divergence loss, the
AdamW optimizer [24], learning rate = 10™*, batch size
= 8 and weight decay = 1072,

For the explainer we use the implementation provided
by the FastSHAP authors [10]. It is built as a MLP of 3
linear layers of hidden size = 128 and interspersed with
ReLU activation functions. It has been trained for a max-
imum of 200 epochs using the custom loss described in
section 3 together with the additive efficient normaliza-
tion, the AdamW optimizer [24], learning rate = 1072,
batch size = 8 and weight decay = 5 * 1072

Ground truth To generate the ground truth, we com-
pute the Shapley Values estimates using Unbiased Ker-
nelSHAP [22] (with paired sampling) as the model is
known to converge to the true Shapley Values given infi-
nite samples. The confidence interval of the true Shapley
values is computed using a modified version of Unbiased
KernelSHAP estimating both interval boundaries at the
same time.

Baselines We extend the following baseline methods
to estimate the lower and bounds of the Shapley Value
confidence intervals:

« A statistical approach based on Montecarlo sam-
pling [25], hereafter denoted by Montecarlo.

« A recently proposed regression-based model [6],
i.e., Biased KernelSHAP'.

!Biased KernelSHAP is the predecessor of Unbiased KernelSHAP,
from which we derive the true Shapley Values.

Biased
True S.V. FastSHAP KernelSHAP MonteCarlo
Monks  0.0054 0.0056 0.0099 0.0059
WBC 0.0040 0.0073 0.0241 0.0034
Heart 0.0029 0.0063 0.0100 0.0026
Census  0.0037 0.0050 0.0112 0.0040
Table 2

Confidence Interval width.

5.1. Accuracy of the explanations

We test how Interval FastSHAP estimates are close to
the ground truth Interval Shapley values. To this end,
we compute the proximity of the Interval FastSHAP es-
timates with the ground truth in terms of mean L; and
L> norms. The obtained results are reported in Table 1.
The Interval FastSHAP approach demonstrates improved
performance in terms of the distance between the in-
terval mean points on three out of four datasets, i.e.,
Monks, WBC and Census, whereas achieves particularly
close results on the Heart dataset, approaching the per-
formance of the best-performing competitor, i.e., Biased
KernelSHAP. In terms of interval width prediction, the
Montecarlo approach outperforms the other tested meth-
ods, providing reasonable interval ranges while centering
the interval away from the target mean point. FastSHAP
achieves slightly worse results, while, in contrast, Biased
KernelSHAP consistently exhibits wider interval predic-
tions.

To quantify the reliability of the mean Shapley Value
estimate we also compare the widths of the confidence in-
tervals of the estimated and true Shapley Values. Table 2
reports the confidence interval width for both the ground
truth and the tested approaches. Montecarlo produces
intervals with minimal width despite that the reliability
of the mean Shapley Value is averagely low (see Table 1).
KernelSHAP significantly overestimates the width of the
confidence interval, showing low reliability of the gener-
ated feature importance scores. Conversely, FastSHAP
achieves a good trade-off between mean accuracy and



Biased

FastSHAP KernelSHAP MonteCarlo
Monks 0.02s 2.47s 182.22s
WBC 0.01s 207.63s 224.40s
Heart 0.04s 6.30s 335.57s
Census 0.01s 6.98s 310.81s
Table 3

inference times in seconds computed for each dataset (rows)
and for each method (columns).

confidence of the estimate, with a slight overestimation
of the actual confidence interval width.

In Figure 3 we plot the Global Shapley Values [26]
as an estimate of the global measure of feature impor-
tance. They are computed as the mean of the per-instance
Shapley Value estimates. The results confirm the bias of
Montecarlo sampling-based approaches and the compara-
ble performance of FastSHAP and KernelSHAP estimates
on the majority of the input features.

5.2. Execution times

Table 3 compares the inference times per sample spent
by all analyzed approaches separately for each tested
dataset. The inference step has been performed on a 18
core Intel Xeon Gold 6140. The reported statistics show
that Interval FastSHAP is more efficient than MonteCarlo
and competitive against Biased KernelSHAP. Notably, In-
terval FastSHAP also requires a training time overhead.
However, similar to FastSHAP [10] (and unlike Monte-
Carlo and Biased KernelSHAP) it can be used for real-time
Interval Shapley Value estimation.

5.3. Effect of the number of predictors

The results of our study indicate that the uncertainty
inherent in the predictions of black-box models can have
a substantial effect on the reliability of Shapley Value es-
timates. In particular, the size of the Confidence Interval,
which provides an estimate of the degree of uncertainty
in the predictions, has shown to be dependent on the
number of predictors used in the ensemble method (see
Figures 4 and 5 for the Heart and Monks datasets). As the
number of predictors increases, the mean Shapley Value
estimate converges to a steady state and the Confidence
Interval gets smaller, indicating a decrease in uncertainty.
This underscores the importance of utilizing a sufficient
number of predictors in order to ensure reliable estimates
of the Shapley Values.

However, it is important to consider that increasing
the number of predictors may also result in overfitting,
which could lead to a decrease in the overall performance
of the model. As such, it is necessary to balance the need
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Figure 3: Visual representation of Global Shapley values




for a sufficient number of predictors with the need to
avoid overfitting.

6. Conclusions and future work

The paper presented a Shapley-based approach to learn
confidence intervals for feature importance. It is suited to
explain ensemble methods, whose predictors return un-
certain outcomes. We leverage the concept of Coalition
Interval Game and Interval Shapley Value to adapt the
real-time neural network-based approach to handle un-
certain input and produce as output confidence intervals
in conjunction with the Shapley Value estimates.
The main takeaways can be summarized as follows:

« Explanation accuracy: Interval FastSHAP turns
out to be significantly more reliable than Mon-
teCarlo in estimating the mean Shapley Value
and less susceptible to uncertainty than Biased
KernelSHAP.

» Real-time confidence interval estimation: In-
terval FastSHAP is comparable to existing ap-
proaches in terms of inference time. Although re-
quiring a computational time overhead for model
training, Interval FastSHAP leverages the capabil-
ity of the original FastSHAP to perform real-time
Shapley Value estimates. Notably, the estimation
of the confidence interval does not invalidate the
efficiency of the original model.

« Number of predictors: The results of this study
highlight the need for careful consideration of the
number of predictors used when estimating the
Shapley Values of ensemble black-box models, as
the uncertainty inherent in the predictions can
have a significant impact on the reliability of the
estimates.

As future work, we plan to explore the applicability of
the proposed approach to real application scenarios re-
lated to predictive maintenance, finance, and user profil-
ing. We also aim to explore the use of different black-box
and surrogate models.
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