
Efficient and Scalable Management of Interval Data
George Christodoulou,
supervised by Nikos Mamoulis, Panagiotis Bouros
University of Ioannina, Greece

Abstract
The management of intervals has been an active research area since databases were invented. A popular
direction of research is the indexing and retrieval of intervals, finding a wide range of applications. Emerging
and widely used systems are built dependent on temporal and uncertain data. Many algorithms and indices
have been proposed, concentrated on a variety of queries. Most algorithms are either suboptimal in space
consumption or perform well only for specific query types. We need novel and efficient in-memory indices
for intervals, which can execute queries with high performance. In this PhD research, we aim to explore
partitioning approaches, which are versatile, have low space requirements and provide high query performance.

Keywords
Interval Data, Main Memory, Indexing, Query processing

1. Introduction
Intervals are representations of value ranges. Quite
often, these ranges represent periods of time de-
scribed as a tuple [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑]. In a temporal
database, an interval-based data model can times-
tamp each tuple or attribute value with a valid-
ity time interval [1, 2]. Along with valid time, an
interval-based model can timestamp transaction
time, which captures when a tuple is inserted and
deleted from the database.

In statistical and probabilistic databases [3], un-
certain values are often approximated by confidence
intervals. Real-world examples of uncertain values
include temperature values obtained from IoT de-
vices or recorded seismic waves. For such cases, it
would be more appropriate to record an observation
using an interval range [𝑥, 𝑦] rather than a single
value.

In data anonymization [4] attributes can be gen-
eralized to intervals. Stored values can be replaced
with semantically consistent but less precise alter-
natives in the form of intervals. In this way, infor-
mation from a private table, like the identity of any
individual to whom the released data refer cannot
be recognized. In XML data indexing techniques
[5], the scope of an XML element can be modeled as
an interval defined by the positions of the starting
and closing tag of the element.

Intervals are indexed by data structures in or-

Published in the Workshop Proceedings of the EDBT/ICDT
2023 Joint Conference (March 28-March 31, 2023, Ioan-
nina, Greece)
$ gchristodoulou@cse.uoi.gr (G. Christodoulou)

© 2023 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

der to efficiently evaluate different types of queries.
There are several query types over intervals, so
different data structures may be needed for their
efficient evaluation. These query types include:

Stabbing queries (or snapshot queries in the con-
text of temporal databases) ask for the intervals in
the database (or the objects associated with them),
which include a query value 𝑥. For example, interval
[6, 9] is a result for the query value 𝑥 = 7.

Interval range queries retrieve intervals in a col-
lection of intervals, which overlap (i.e., have at least
one common value) with a given query interval 𝑥.
For example, interval [6, 9] is a result for an interval
range query with 𝑥 = [3, 7].

Assuming that the intervals model time periods,
during which a tuple in a temporal database is valid,
temporal aggregation is the computation of an ag-
gregation over all the tuples which are valid during
a time window. For example: find the total funding
amount from all active projects from 1/1/2021 until
1/1/2022.

Interval Join takes as input two collections of
intervals 𝑅 and 𝑆 and the objective is to find a
subset of their cross product 𝑅 × 𝑆, such that every
pair of intervals in the result satisfy a temporal
relationship (e.g. overlaps).

The topic of this dissertation is to study the
problem of indexing and querying a large collec-
tion of records, based on an interval attribute that
characterizes each object. The collection can be
known before indexing or evolve over time, which is
common in temporal databases or streaming data.
Furthermore, the collection can be distributed at
different nodes of a DBMS. The challenge is to find
solutions which take advantage of modern hardware
such as multi-core systems and large main memories,

mailto:gchristodoulou@cse.uoi.gr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

can handle traditional and on demand indexing of
intervals, and provide high performance for a wide
variety of query types and predicates.

The rest of the report is organized as follows.
Section 2 reviews the state of the art data structures
for intervals, for different types of interval queries.
Section 3 presents our work so far on interval data
management. In Section 4, we present our plans for
our next steps.

2. Related Work
There have been numerous studies that investigate
the problem of interval data management. This
section presents the state-of-the-art on areas related
to this research, including data structures for inter-
val data, algorithms for temporal aggregation and
algorithms for interval joins.

A simple and practical data structure for intervals
is a 1D-grid, which divides the domain into pair-
wise disjoint partitions. Each interval is assigned to
all partitions that it overlaps with. Given a range
query 𝑞, the results can be obtained by accessing
each partition that overlaps with 𝑞. If the interval
of a range query 𝑞 overlaps with multiple partitions,
duplicate results may be produced. Thus, duplicate
elimination is needed. Finally, if the collection con-
tains many long intervals, the index may grow large
in size due to excessive replication.

The period index [9] is a domain-partitioning
structure, specialized for range and duration queries.
The time domain is split into coarse partitions and
each of them is divided hierarchically to levels. Each
level corresponds to a duration length and each in-
terval is assigned to the level corresponding to its
duration. During query evaluation, only the divi-
sions that overlap the query range are accessed and
only at the levels which are inside the query dura-
tion limits. The main drawback of this approach
is that the hierarchy of duration sizes helps only at
the upper levels. At the bottom level, an interval
can expand through the whole domain and thus be
stored into every partition it overlaps.

One of the most popular data structures for in-
tervals is Edelsbrunner’s interval tree [6]. The tree
divides the domain hierarchically and places inter-
vals recursively at the first node they overlap. The
intervals assigned to each node are sorted in two
lists based on their starting and ending values, re-
spectively. Interval trees are used to answer stabbing
and interval (i.e., range) queries. The main draw-
backs are the redundant comparisons needed for
the query result and the unnecessary visits of nodes
which may not contain results. A relational interval

tree for disk-resident data was proposed in [7].
Indexing intervals has regained interest with the

advent of temporal databases [2]. A number of in-
dices are proposed for secondary memory, mainly
for effective versioning and compression [11, 12].
The timeline index [8] is a general-purpose access
method for temporal (versioned) data, implemented
in SAP-HANA. The basic idea is that, periodically
at certain timestamps, checkpoints are kept with the
alive intervals. The evaluation of some query types
in the Timeline Index are suboptimal. The index
also requires a lot of extra space to store the active
sets of the checkpoints. The timeline index can be
directly used for temporal aggregation. Piatov et al.
[20] present a collection of plane-sweep algorithms
that extend the timeline index to support aggrega-
tion over fixed intervals, sliding window aggregates,
and MIN/MAX aggregates. The timeline index was
later adapted for interval overlap joins [16]. A do-
main partitioning technique for parallel processing
of interval joins was proposed in [17]. Additional
research on indexing intervals addresses operations
such as temporal aggregation [13, 14] and interval
joins [15, 16, 17, 18, 19].

3. Current Work
In this section, we show the body of work that has
been done or is currently the focus of this PhD
research. Our approach aims on limiting the space
requirements like long intervals handling and keep-
ing only necessary information for each interval.
Also, evaluating different query types with the min-
imum amount of comparisons needed in order to
minimize the computational cost.
Hierarchical Index For Selection Queries

The basic idea introduced in [21], is a hierarchi-
cal index (HINT) with binary representations of
intervals. A regular hierarchical decomposition of
the domain into partitions is defined, where at each
level ℓ from 0 to 𝑚, there are 2ℓ partitions. The
number of bits used for the interval representations
is 𝑚 and therefore 𝑚+1 levels are created. Figure 1
illustrates the hierarchical domain partitioning for
𝑚 = 4. Next, each interval 𝑠 is assigned to the
smallest set of partitions from all levels which col-
lectively define 𝑠. We assign longer interval parts in
higher levels so that we avoid extensive replication.
For example, in Figure 1, interval [5, 9] is assigned
to one partition at level ℓ = 4 and two partitions at
level ℓ = 3.

The number of bits 𝑚 is critical for the perfor-
mance of our index. We can model our data collec-
tion with 𝑚 equal to the number of bits needed for

Hierarchical partitioning of space

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

011 100

0101

Fig. 1: Hierarchical partitioning and assignment of [5, 9]

representing the biggest endpoint in the collection.
In this case, intervals are assigned to partitions
which they completely cover. When evaluating a
range query, each relevant partition contains inter-
vals which surely overlap with the query interval.
Thus, there is no need for comparisons, and without
comparisons there is also no need for storing the
endpoints of intervals. So, for each interval we keep
only an identifier. The drawback of this approach
is the space requirement for covering large domains.

We can reduce memory consumption by using a
smaller 𝑚 and rescale all the intervals using only
the prefix with the 𝑚 most significant bits of their
binary representations. The query intervals are also
rescaled using the same amount of bits. In that
way, fewer levels are created but we may need to
perform comparisons at the first partition and the
last partition of each level that the query interval
overlaps. This holds because the intervals do not
necessarily contain the whole partition that they
are assigned to, as before, because of rescaling. Al-
though, comparisons can be avoided after a certain
level. For the range query 𝑞 evaluation, we need to
find partitions that overlap with 𝑞 at each level.

The division of intervals in each partition into
groups, originals 𝑃 𝑂 and replicas 𝑃 𝑅, helps avoid-
ing the production of duplicate query results and
minimizes the number of intervals that have to be
accessed in each query. For example, in Figure 2
we can see the accessed partitions for the query in-
terval [5, 9]. The binary representations of 𝑞.𝑠𝑡 and
𝑞.𝑒𝑛𝑑 are 0101 and 1001, respectively. The relevant
partitions at each level are shown in bold (blue) and
dashed (red) lines and can be determined by the
corresponding prefixes of 0101 and 1001. At each
level, we report both originals and replicas in the
first partitions while in the subsequent partitions,
we report only the original intervals, so we avoid
duplicate results.

We evaluated our method against state-of-the-art
indices. HINT has low space complexity and mini-
mizes the number of data accesses and comparisons
during query evaluation. Our experimental analysis
shows that HINT outperforms previous work by one

Range queries

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15
0101 1001

010 100

01 10

0 1

0

Fig. 2: Accessed partitions for range query [5, 9]

order of magnitude in a wide variety of data and
query distributions.
Queries With Allen’s Predicates

Currently, we focus on the performance of our
index on more specific queries. Intervals may satisfy
more sophisticated relations, which are based on
Allen’s relationships [22](e.g., find all intervals that
are covered by the query interval). The principles of
HINT are useful for the retrieval of data intervals
based on Allen’s relationships. The hierarchical par-
titioning applies independently of the query type.
Although, multiple challenges arise by this func-
tionality extension on HINT. The main challenge is
to optimize the index for all the query predicates,
which access differently the relevant partitions. An-
other challenge emerges from the increased infor-
mation we need to keep for each interval, because
different endpoints are useful for answering different
query predicates. Our index is evaluated against the
state-of-the-art solutions with multiple real datasets.
Our first experiments show a small increase in stor-
age consumption but also a consistent lead in query
throughput.

4. Future Work
For future work, there are several directions. First,
we plan to investigate extensions of our index that
could support queries that combine temporal selec-
tions and selections on additional object attributes
(e.g., find all people employed during February 2021,
whose wages were at least $5000).
Indexing Temporal Data. Our envisioned method
will be based on HINT with an adaptation of tem-
poral data specifics. Indexing temporal data differ-
entiates from indexing a known collection of data,
mainly because data evolve. The index will handle
closed time intervals, but multiple objects may have
alive time intervals. These time intervals will be
inserted in the lowest level, but will end up in par-
titions of higher levels. Furthermore, the number
of bits/levels used for the interval representations
will be dependent of the time granularity of the

database and needs separate investigation for an
optimal setup.
Multiple Temporal Operators. Most proposed in-
dices are specialized on one temporal operator.
Keeping a different index for each type of query
is not affordable for a DBMS in terms of tuning,
maintenance and storage overhead. Different indices
will have different beneficial sortings, will possibly
cause data replication and different optimizations in
general. All the commonly used operators, temporal
aggregation, time travel and temporal join should
be supported by one index. Eventually, we want
to create a versatile index for answering different
types of queries and capable of temporal database
system integration.
Additional Attributes. Another challenge consists in
managing dimensions added from additional object
attributes. Other attributes may lead to different
query evaluation strategies, different optimization
techniques or even specific indexing/sorting that
will improve throughput and storage consumption.
Distributed Computation. Moreover, the data may
be distributed among multiple physical locations.
Splitting the data must be done efficiently, with low
storage consumption and the query algorithm will
contain multiple tasks contributing to the result.
In each single node, the tasks will be assigned to
different cores for parallel processing of the queries.
Acknowledgments
Partially supported by Greek national funds, under
the Research-Create-Innovate call (project T2EDK-
02848).

References
[1] R. T. Snodgrass, I. Ahn, Temporal databases,

Computer 19 (1986) 35–42.
[2] M. H. Böhlen, A. Dignös, J. Gamper, C. S.

Jensen, Temporal data management - an
overview, in: eBISS, 2017, pp. 51–83.

[3] N. N. Dalvi, D. Suciu, Efficient query evalu-
ation on probabilistic databases, in: VLDB,
2004, pp. 864–875.

[4] P. Samarati, L. Sweeney, Generalizing data to
provide anonymity when disclosing information
(abstract), in: ACM PODS, 1998, p. 188.

[5] J. Min, M. Park, C. Chung, XPRESS: A que-
riable compression for XML data, in: ACM
SIGMOD, 2003, pp. 122–133.

[6] H. Edelsbrunner, Dynamic Rectangle Intersec-
tion Searching, Technical Report 47, Institute
for Information Processing, Technical Univer-
sity of Graz, Austria, 1980.

[7] H. Kriegel, M. Pötke, T. Seidl, Managing inter-
vals efficiently in object-relational databases,
in: VLDB, 2000, pp. 407–418.

[8] M. Kaufmann, A. A. Manjili, P. Vagenas, P. M.
Fischer, D. Kossmann, F. Färber, N. May,
Timeline index: a unified data structure for
processing queries on temporal data in SAP
HANA, in: ACM SIGMOD, 2013, pp. 1173–
1184.

[9] A. Behrend, A. Dignös, J. Gamper,
P. Schmiegelt, H. Voigt, M. Rottmann,
K. Kahl, Period index: A learned 2d hash
index for range and duration queries, in:
SSTD, 2019, pp. 100–109.

[10] M. de Berg, O. Cheong, M. J. van Krev-
eld, M. H. Overmars, Computational geom-
etry: algorithms and applications, 3rd Edition,
Springer, 2008.

[11] B. Becker, S. Gschwind, T. Ohler, B. Seeger,
P. Widmayer, An asymptotically optimal mul-
tiversion b-tree, VLDB J. 5 (1996) 264–275.

[12] D. B. Lomet, M. Hong, R. V. Nehme, R. Zhang,
Transaction time indexing with version com-
pression, Proc. VLDB Endow. 1 (2008) 870–
881.

[13] N. Kline, R. T. Snodgrass, Computing tem-
poral aggregates, in: IEEE ICDE, 1995, pp.
222–231.

[14] B. Moon, I. F. V. López, V. Immanuel, Effi-
cient algorithms for large-scale temporal aggre-
gation, IEEE TKDE 15 (2003) 744–759.

[15] A. Dignös, M. H. Böhlen, J. Gamper, Overlap
interval partition join, in: ACM SIGMOD,
2014, pp. 1459–1470.

[16] D. Piatov, S. Helmer, A. Dignös, An interval
join optimized for modern hardware, in: IEEE
ICDE, 2016, pp. 1098–1109.

[17] P. Bouros, N. Mamoulis, A forward scan based
plane sweep algorithm for parallel interval joins,
Proc. VLDB Endow. 10 (2017) 1346–1357.

[18] D. Piatov, S. Helmer, A. Dignös, F. Persia,
Cache-efficient sweeping-based interval joins
for extended allen relation predicates, VLDB
J. 30 (2021) 379–402.

[19] F. Cafagna, M. H. Böhlen, Disjoint interval
partitioning, VLDB J. 26 (2017) 447–466.

[20] D. Piatov, S. Helmer, Sweeping-based tempo-
ral aggregation, in: SSTD, 2017, pp. 125–144.

[21] G. Christodoulou, P. Bouros, N. Mamoulis,
HINT: A hierarchical index for intervals in
main memory, in: ACM SIGMOD, 2022, p.
1257–1270.

[22] J. F. Allen, An interval-based representation
of temporal knowledge, in: IJCAI, 1981, pp.
221–226.

	1 Introduction
	2 Related Work
	3 Current Work
	4 Future Work

