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Abstract  
The aim of this paper is to develop an approach for qualitative estimation of plagiarism 

presence in programming assignment submissions. Desired algorithm should take into account 

that some parts of assignment can be discussed in class, can implement design patterns or can 

contain pieces of code provided by instructors. The distinctive feature of processed data is that 

analyzed submitted programs solve similar tasks and therefore cannot be very different. So, we 

are trying to find the most similar programs between similar ones.  

An approach to qualitative estimation of plagiarism presence among the set of programs for 

similar tasks is formulated. According to it, all the submissions should be processed 

simultaneously. To analyze a submission, a multiset formed by the numbers of n-grams 

common with other submissions is computed. The decision about submission originality, i.e., 

plagiarism absence, is based upon the density of this multiset largest elements.  

The proposed technique is simple to implement for any programming language course and is 

quite effective to help an instructor to recognize signs of borrowings in programming 

assignments. It is used by the author since 2018.  
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1. Introduction 

The problem of text document similarity estimation has large applied importance today. Due to a 

large amount of information, people need to automate the processes of distinguishing unique elements 
as well as the dual processes of finding out similarities. As a result, numerous methods of similarity 

estimation are used in the searching systems and so on. One branch of such methods is focused on the 

analysis of texts on plagiarism. Among all texts, one can mark out program texts as texts with some 

specifics. And, finally, estimation of arbitrary programs similarity is not a goal of this paper. More 
precisely, this paper is concerned about how given a set of quite similar programs, one can find out the 

most similar ones. The input data consist of all the submissions of some programming assignment. A 

key point is that this assignment can be only slightly different for different students. For each program 
from the set, the problem is to decide if a given program is original or it borrows some essential parts 

from another program that we have. 

In general, the methods of similarity estimation are well known. But among them, there are no 

universal method that would give an adequate similarity estimation in all the domains. 
A large family of methods for texts similarity evaluation is based upon n-grams (in [1] are mentioned 

as n-shingles) technique and Jaccard similarity of sets [1]. Different n-grams techniques are considered 

in [1-4]. Another group is based upon finding common subsequences, for example [5]. Methods of both 
groups can do text preprocessing. For natural languages it can be, for example, lemmatization. 

Considering the specifics of program code, methods for code analyzing transform code into a sequence 

of tokens, which are not necessary tokens of corresponding programming language, but semantically 
quite close to them [5, 6], and then analyze induced sequence. There are methods using abstract syntax 
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tree [7] and programs behavior [8-10]. Programs similarity is interconnected with different plagiarism 
attacks [11] or different ways of code cloning [12, 13]. One of the modern tendencies is applying 

methods of AI to problem of program similarities [13, 14], but these techniques use significant 

computing resources and need a lot of data for training. 

 In methods [5-8] after lexical analysis, when a sequence of programming language tokens is 
derived, one should make additional transformation, and this transformation depends on the 

programming language. For modern popular programming languages, there are tools for lexical analysis 

so that it is possible to use existing libraries to transform code into programming language token 
sequence. But additional transformation should consider syntactic as well as semantic programming 

language specifics. Thus, such transformation should depend on programming language too. In case of 

evolutive programming languages, for example Python, making frequent update of this transformation 
for a more modern language dialect can be quite inconvenient. Sometimes language changes can invoke 

minor changes in the additional transformation. But sometimes one can think of more significant 

changes which could not be easily worked out and implemented. 

It is worth of pointing out that methods which simply estimate similarity of two programs are not 
very applicable to the situation in which it is necessary to define the most identical objects among the 

moderate amount of almost identical ones. In such circumstances, one should consider that the 

similarity of submissions with no plagiarism can be quite large. 

2. Strategy of programming assignments composing and usage of proposed 
technique 

Each programming course is accompanied with series of programming assignments for 

unsupervised work. These assignments can be very simple tasks for learning certain programming 

techniques and constructions as well as more complicated programming projects for acquiring skills 

not only in coding, but in planning work, designing a project, testing and so on. 
Modern programming is built upon patterns and libraries. Following the notion of good code, 

programmers use meaningful names, which for typical programming entities are quite typical. As usual, 
the best programs for very easy assignment do not vary too much due to using well-known patterns, 
and this is normal. Overachiever students write almost identical version of, for example, matrix 
multiplication. If such assignment is given to 100 students, their programs can be grouped into some 
not very large number of clusters. Moreover, for a very simple program we often could not assert that 
it was done with collaboration with someone else even in case of 90% program text coincidence. In 
most cases such simple assignments are not supposed to be graded. For more complicated assignment, 
a student has more alternatives. He or she should decide which patterns to use and how to implement 
these patterns. Also, a student should make other decisions about the code and its structure. As a result, 
such programs can include not only implementations of standard design patterns but some original parts. 
Their code can be near about 10 kB (the author deals with first-year students). A great problem with 
such assignments is that some students tend not to program them on his or her own. Sometimes students 
understand borrowed code but sometimes not, and the last happens much more often. An instructor 
should be able to identify not written by one’s own programs because such assignments should not be 
graded positively. One can think that if we assign each student a substantially different task, then we 
can eliminate the problem of code plagiarism. From one side, this is true; but from the other side, this 
is not a solution. First, it is a problem for instructors to invent 100+ different but equivalent in 
complexity tasks each year. Then, the programming course includes some classes where the lab 
instructor and students discuss some design patterns and the instructor guides students through their 
tasks gradually. In case of very distinct assignments, there can be no common guides suitable to all 
tasks simultaneously. Finally, if tasks are very different and there are no guides, then students will begin 
to find external help with more probability. Our teaching goal is to stimulate students to do the work by 
themselves and to teach them to solve not only the simplest problems so that the above-mentioned 
approach is not suitable. An opposite approach is to give each student the same assignment. This is not 
a good idea too because provokes students to borrow code from each other.  

A possible solution is to use similar, but not the same tasks. This let instructors not only guide 
students through their tasks but let them automate testing (to be more precise, automate test generation 
because automation of testing is not a problem if we have tests). Different in details tasks make students 
deep into the samples and guides because they cannot be used literally. Unfortunately, some students 
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prefer to ask other students for code anyway. It does not mean that one student copies the whole program 
of other. He or she can copy some parts, also he or she can slightly modify borrowed code and he or 
she can have quite different set of the translation units. Borrowed parts do not always coincide literally. 
From the other side, students never write the same code after discussions in the class. Their programs 
are more different than in case of simple copy-paste method.  

Instructions, guides, requirements to code, and other like that have great influence on the design and 
code of the resulting programs making them quite similar. But these are objective facts which could not 
be eliminated for educational projects. Unfortunately, from the legal point of view, the reason that some 
program is marked as plagiarism by some plagiarism detection tool is not enough to reject it. Very often 
its “author” insists that the program is a product of his or her own and that coincidence of code parts is 
accidental or is the result of implementing design patterns. The only way to prove that the plagiarism 
detection tool was right is to demonstrate student that he or she is not aware of “own” code details. In 
such circumstances there are no sense to find out all common parts. 

It should be also noted that programs of the first-year students can be grouped easily by certain errors 
in the project and/or code structure and other irrelevances. During code borrowing, exactly these 
unsuccessful elements migrate from one student to other. And this helps instructors to prove that code 
is plagiarized. Other, and more effective, plagiarism proving method is based upon student’s ability to 
make some minor changes in own code. Its advantage is that it does not suppose an instructor be 
acquainted with minor details of the disputable submission in advance (instructor can firstly test 
modified program as “black box”). But this is not a subject of this paper.  

This paper discusses the technique which was successfully used in practice and let the author quite 
effectively figure out code with elements of plagiarism. Or, the dual problem, solved by this technique, 
is to help an instructor decide if some program is quite original to be positively graded or not and should 
its author be interviewed or not. 

3. Proposed methodology of programming assignment submissions 
processing  

3.1. Experimental data 

The main research was conducted in 2018. Its main goal was to formulate a methodology for 
qualitative estimation of programming assignment code originality or plagiarism. At time of grading, 
automation of such methodology should help instructors to find out submissions exposing signs of 
borrowing. At that moment, the author had data consisted of three programming assignments coded in 
C++ language by approximately 100 students: 

1. In a numerical sequence find the maximal subsequence that satisfies some condition. 
2. Implement certain traversal of some area of a square matrix. 
3. Build class which models some device, then build this class client code so that a user can manage 

this device interactively. 
First two tasks were more concerned about algorithms, but the third one dealt mainly with code 

organization. Individual tasks for each assignment were similar, but not identical. They could use some 
universal decisions for certain parts (for example, sequence input), and these common parts of code 
were not separated at time of submissions processing (and this approach is opposed to [6]). Also, our 
teaching staff never restricts students to using fixed IDE for code developing.  

In spring 2020, the programming course was concerned about Python. Due to specifics of distance 
learning, we should refine decision rules. As experimental data were used programming assignment 
about processing text file with some table data.  Thus, the input consists of all the submissions of some 
programming assignment. (Different programming assignments are processed separately.) Let us 
denote the input as D and suppose there are 𝐾 submissions. Without loss of generality, suppose 
𝐷 =  {𝑠1, 𝑠2, … , 𝑠𝐾}, where each submission 𝑠𝑖 is a set of text files with program code. 

3.2. Short description of the algorithm 

The final algorithm has three main logical steps. At step 1 each submission is transformed into a set 

of 𝑛-grams. To implement this, some text preprocessor, as well as 𝑛-gram length (i.e., value of 𝑛), 

should be specified. Let 𝑔𝑟𝑎𝑚𝑠(𝑠, 𝑛) denote the set of 𝑛-grams constructed for submission 𝑠.  



213 

 

Step 2 deals with all the submissions converted to sets of 𝑛-grams. Let us define the intersection 

number of submissions 𝑠′ and 𝑠′′ as the number of elements in intersection of their corresponding sets 

of 𝑛-grams and denote it as 𝑠′ ⊗ 𝑠′′. By definition,  

s′ ⊗ s′′ = |grams(s′, n) ∩ 𝑔rams(s′′, n)| (1) 

 At step 2 intersection numbers are calculated for each pair of submissions. For each submission, in 
the output of step 2 there is a multiset of its intersection numbers with the other submissions. 

At step 3 constructed multisets are tested.  The key points of these processes will be described in 

detail later. 

3.3. Step 1: transforming submissions into sets of 𝒏-grams 

Transforming submissions into sets of 𝑛-grams involves given text files preprocessing. There are 

different approaches to the problem what should be considered as a symbol while 𝑛-gram forming: a 

word (i.e., token) or literally a symbol of the text. A chosen approach and its details can be encapsulated 
in a subroutine which implements code preprocessing.  

Subroutines A and B were selected as preprocessing transformations for later analysis. 

Subroutine A eliminates comments, white symbols, and string literals (except f-strings for Python) 
from code. Disposing of literals and comments (as containing natural language elements) let us slightly 

reduce amount of main memory needed for storing all possible n-grams. But the identifiers are essential 

to our goal. Students usually do not change them in borrowed code, and, nevertheless, if they do, then 

these changes are hardly noticeable. Another reason is that those who use borrowed code without 
understanding do not feel themselves free to update identifiers properly, i.e., saving meaningful names. 

As for white symbols, atypical same spacing could help see borrowings more definitely. 

Nevertheless, analyzing spaces in code is only waste of time and memory because many modern IDEs 
format code automatically. Subroutine B converts text into a programming language token sequence. 

This transformation converts all number literals into the same token as well as all identifiers. Having 

token numbered, the resulting sequence is a sequence of corresponding token numbers. From technical 

point of view, our implementation casts these numbers to characters. 

Let 𝑋 be preprocessing transformation, then for any file 𝑓 let us denote the result of applying 

subroutine 𝑋 to 𝑓 as 𝑋(𝑓). The value of 𝑋(𝑓) is a string anyway.  

Let 𝑔𝑟𝑎𝑚𝑠(𝑤, 𝑛) denote the set of all 𝑛-grams of string 𝑤 = 𝑎1𝑎2 … 𝑎𝑚. The definition from [1] 
can be formally written in our notation in a such way  

grams(𝑤, 𝑛) = {𝑎𝑘𝑎𝑘+1 … 𝑎𝑘+𝑛−1 |  𝑘 ∈ 1, 𝑚 − 𝑛 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ } (2) 

For clearness, it should be stated that a set (not a multiset) is considered. Then, assuming 

preprocessing subroutine 𝑋 is chosen, let us form the set of n-grams of submission from all n-grams of 

its files. Formally, let submission 𝑠 contain files 𝑓1, 𝑓2, …, 𝑓𝑡 , i.e., 𝑠 =  {𝑓1, 𝑓2, … , 𝑓𝑡}, then 

𝑔𝑟𝑎𝑚𝑠(𝑠, 𝑛) = ⋃ 𝑔𝑟𝑎𝑚𝑠(𝑋(𝑓𝑖), 𝑛)

𝑡

𝑖=1

 (3) 

3.4. Adjustment of n-gram length 

During preliminary analysis, different 𝑛-gram length values were examined. Our main goal was to 

find balance between quality of plagiarism determination, optimization of the space complexity of 

analyzer and time for analyzer code development.  It was noticed that at transition from 𝑛 = 5  to 𝑛 =
6 the number of 𝑛-grams increases not so drastically as before. Therefore, it was suggested that next 

small increase of 𝑛-gram length would not change the general estimations of originality/similarity 

qualitatively. Clear, that given a large value of 𝑛, many partial borrowings could be skipped. Also, a 

small value of 𝑛 leads to large intersection numbers regardless of similarity presence.  

Finally, the decision was to use value 𝑛 = 5 for subroutine A. For subroutine B, the choice was 

𝑛 =  9 on the same considerations about increasing the number of 𝑛-grams. Let us describe one more 

reason. The if, for, while, and other statements like that can be found almost in every program and these 
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statements have specific syntax and a lot of standard usage cases. That is why small values of 𝑛 can 

result in plenty of false positive results in case of token sequences analysis by 𝑛-grams methods. The 

trigram method, described in [2], is not the best one for program code. It is obvious that two different 

almost trivial functions can produce the same sequence of programming language tokens. For similar 

programs, most corresponding short if statements produce very similar token sequences as well. One 
can state the same about other types of statements. 

3.5. Step 2: calculation of intersection numbers  

Now, for each submission from 𝐷 (the set of the submissions), we should compute its intersection 

numbers. More formally, multiset {𝑠 ⊗ 𝑠′|𝑠′ ∈ 𝐷 ∖ {𝑠}} should be obtained. For step 3 (analysis), it is 

convenient to store such multiset as a nonincreasing sequence of its elements. Let 𝑎(𝑠) denote such 

sequence for submission 𝑠. The output of step 2 consists of such sequences for the given submissions. 

3.6. Analysis of obtained data 

The main idea of determining if a given submission is original is based upon density of its largest 

intersection numbers. Before formulating the decision rule, let us see some observations. 
In Table 1 and Table 2 for the submission about which is known for certain that it is not original, 

the greatest intersection numbers, their dynamics and corresponding Jaccard similarity values are 

presented. It should be noted that the greatest intersection numbers for 5-grams and 9-grams were 

achieved on the different pairs of packages. 

Table 1 
The largest intersection numbers in case of borrowings presence for 𝑛 =  5 and preprocessing 
subroutine 𝐴  

Intersection number 
Distance to the nearest less intersection 

number 
Jaccard similarity 

680 206 0.42 
474 14 0.24 
460 6 0.24 
454 2 0.21 
452 3 0.20 
449 7 0.21 
442 13 0.22 
429 7 0.21 
422 1 0.20 
421 9 0.21 
412 1 0.21 

As it turned out, for packages with borrowings, the distance between the greatest value and next to 

it was substantially more than other distances between successive intersection numbers. Also, there 
were situations when substantial decreasing of distances, i.e., some jump, took place somewhere on the 

fifth largest value. Such situation is possible if an almost identical code is submitted not by two but by 

the greater number of students.  Tables 3 and 4 present the same data for the submission about which 
is known for certain that it is original. One can see that for original submission nearby distances between 

the largest values after preprocessing with subroutine A differ far less than for submissions with 

plagiarism. After preprocessing with subroutine B these distances can be almost stable. 

3.7. Step 3: making a decision  

In spring 2018, the decision about originality of submission 𝑠 was made after analyzing the first 

components of 𝑎(𝑠) (with 𝑋 = 𝐴 and 𝑛 = 5). 

Suppose 𝑎(𝑠) = (𝑎1, 𝑎2,  … , 𝑎𝐾−1) and 𝑠𝑖 is a submission which corresponds to intersection number 

𝑎𝑖 (i ∈ 1, 𝐾 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ). (Recall that sequence 𝑎1, 𝑎2,  … , 𝑎𝐾−1 is nonincreasing.) 
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Table 2 
The largest intersection numbers in case of borrowings presence for 𝑛 =  9 and preprocessing 
subroutine 𝐵  

Intersection number 
Distance to the nearest less intersection 

number 
Jaccard similarity 

197 12 0.29 
185 16 0.30 
169 24 0.22 
145 2 0.21 
143 5 0.18 
138 7 0.21 
131 1 0.18 
130 1 0.16 
129 2 0.17 
127 1 0.14 
126 1 0.18 

Table 3 
The largest intersection numbers in case of original submission for 𝑛 =  5 and preprocessing 
subroutine 𝐴  

Intersection number 
Distance to the nearest less intersection 

number 
Jaccard similarity 

480 19 0.24 
461 5 0.23 
456 2 0.23 
454 20 0.24 
434 17 0.21 
417 1 0.19 
416 4 0.20 
412 2 0.18 
410 1 0.19 
409 5 0.19 
404 2 0.20 

If distance between two largest intersection numbers was more than 15% of the submission greatest 

intersection number, i.e., (𝑎1 − 𝑎2)/𝑎1 > 0.15, then this submission was marked as suspicious. 

Submission 𝑠1, on which the greatest intersection value was achieved, was marked as suspicious too. 

In some cases, submission 𝑠1 did not fulfill criterion of 15%, but the value of (𝑎1 − 𝑎2)/𝑎1 was quite 

significant anyway. If this distance was less than 15% of the greatest intersection number, then, in 

addition, dynamics of the ten largest intersection numbers 𝑎1, 𝑎2,  … , 𝑎10 was considered in search of 

a jump. At average, intersection numbers for 𝑋 = 𝐵 and 𝑛 = 9 was less than the same for 𝑋 = 𝐴 and 

𝑛 = 5. Thus, the jumps of the nearby distances were not so obvious in case of tokens processing 

(subroutine B) as in case of single characters processing (subroutine A). Investigation of numerical 

series was limited to the first ten largest elements on considerations that code borrowings were not total 
among students and that among approximately 100 students from different academical groups of 

different lab instructors, hardly more than 10 students simultaneously would take the same source. 

Examination of the greatest intersection numbers obtained for X = A and n = 5 allowed effectively find 
out submissions with borrowings: suspicious submissions were analyzed by humans and their authors 

were interviewed. There were almost no false positive results (almost all suspicious submissions were 

proved to have some plagiarism). As for false negative results, it is impossible to estimate that number 

exactly due to this process should involve human comparison of all pairs of submission and interview 
with students. Also, it should be stated, that the number of proved plagiarism cases was approximately 

25% greater that it seems to be after code inspection by only humans. From the other side, an instructor 

usually remembers typical solutions found out in the students' programs. During grading internal 
program characteristics, no more submissions with plagiarism were found (all the submissions were 
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reviewed by the same instructor). So, one can suppose that the number of false positive (without 
plagiarism) results were not too much. The only goal was to determine would be the submission original 

or not, so estimations were done not quantitively but qualitatively.  

Table 4 
The largest intersection numbers in case of original submission for 𝑛 =  9 and preprocessing 
subroutine 𝐵  

Intersection number 
Distance to the nearest less intersection 

number 
Jaccard similarity 

149 1 0.21 
148 5 0.20 
143 1 0.20 
142 4 0.19 
138 4 0.17 
134 1 0.18 
133 2 0.20 
131 2 0.18 
129 1 0.14 
128 1 0.17 
127 9 0.17 

4. Decision procedure refinement 

Due to distance learning, in spring 2020 students actively communicate by the internet. As a result, 

some students coded their individual tasks in small commands. The consequence of this was that the 

distance from the greatest intersection number to the nearest one more often appears not the largest 

distance between two neighbor intersection numbers. The main decision-making algorithm should be 

modified. For submission 𝑠 and its sequence 𝑎(𝑠) = (𝑎1, 𝑎2,  … , 𝑎𝐾−1), another characteristic was used 

instead the distance between only two largest intersection numbers. The 11 largest intersection numbers 

were considered, and a jump was searched. Let 

j =  arg max{a𝑖 − 𝑎𝑖+1| 𝑖 ∈ 1,10̅̅ ̅̅ ̅̅ } (4) 

Then the value of relative accumulated jump, i.e., (𝑎1 − 𝑎𝑗+1)/𝑎1, was examined as well as relative 

jump, i.e., (𝑎𝑗 − 𝑎𝑗+1)/𝑎1,  and relative distance between the two largest intersection numbers, i.e. 

(𝑎1 − 𝑎2)/𝑎1. If  

(𝑎1 −  𝑎𝑗+1)/ 𝑎1 > 0.15, (5) 

(𝑎𝑗 −  𝑎𝑗+1)/ 𝑎1  >  0.10, (6) 

and 
(𝑎1 − 𝑎2)/𝑎1 > 0.10, (7) 

then submission 𝑠 was considered as suspicious, corresponding to values 𝑎1, 𝑎2, … , 𝑎𝑗 submissions were 

marked as suspicious too. 

If relative accumulated jump is large, but relative jump is not, then here potentially can be situation 

when some parts was discussed by some academic group in class. So, the condition (6) is designed to 
except such submissions from the set of suspicious ones. The purpose of the condition (7) is the same. 

In most cases of borrowing presence, the relative distances between the two first intersection numbers 

are sufficiently large even if the same code parts are submitted not by two but by more students. (Here 
we should mention that the last condition should be skipped if student tasks are identical.) 

The nearer to the maximal value there is a jump (if any) in the sorted sequence of intersection 

numbers, the less set of students simultaneously writes such submitted code. The greater is the 
difference between the nearby greatest values, the more code of the project is borrowed. 

Let us note that consideration the first 25% of largest intersection numbers in place of only the 

first 11 values did not change anything. In the most degree, the same threshold 15% as in 2018 is the 

result of the same teaching approach and, surely, can have other value for some other assignment. 
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5. Discussion 

It is worth to say some words about Jaccard similarity of submissions. In 2018, Jaccard similarity 

was calculated for each assignment. Dependency between presence of borrowings and the Jaccard 

similarity appeared not high. If we analyzed the Jaccard similarity only, then quite much plagiarism 
would not be found. Processing assignments about maximal subsequence and matrix traversal was 

uninformative. No valid programs with signs of borrowings were found. Using borrowed main code for 

the algorithmic assignment is almost impossible: needed on its modification time and skills are much 
more significant than development from the very beginning.  The main attention was devoted to the 

assignment about device modelling. This assignment is more complicated in the sense that it needs 

some code organization and incremental design to make the program works right. 

For device modelling programs, pairwise calculation of Jaccard similarity showed very surprisingly 
results. It appeared that means of Jaccard similarities for 5-grams after subroutine A applying and for 

9-grams after subroutine B applying were approximately 0.15 and 0.105. At the same moment, the 

greatest values of similarity were 0.67 and 0.91 accordingly. But there were unoriginal submissions 
with maximal similarity to the other packages about 0.21 as well as original ones with maximal 

similarity to the other packages about 0.24 (after preprocessing subroutine A). The same situation was 

in case subroutine B applying. It was impossible to settle any Jaccard similarity threshold for all pairs 

to separate original submissions from plagiarized ones. This phenomenon is a consequence of 
assignments similarity, discussions that took place in classes, and varying packages length. 

Also, some experiments for subroutine 𝐴 were conducted in 2020. It was interesting what influence 

increasing the value of 𝑛 from 5 to 6 would have. 21 suspicious packages were found with the threshold 

15% for a relative accumulated jump and 𝑛 = 5. After changing to 𝑛 = 6, the number of suspicious 

packages became 28. From 21 suspicious packages only one was not marked as suspicious after 

6-grams analysis. The packages marked suspicious only with 𝑛 = 6 were examined not only by 

programs. It turned out that threshold 15% for 𝑛 = 6 was not accurate, and the result was approximately 

equal to the computation with threshold 11% and 𝑛 = 5. Having threshold 11% for relative 

accumulated jump, we should compare the values of relative jump and relative distance between the 

two first intersection numbers not with 0.10 but with less values. Three discussed thresholds can depend 
not only on the nature of the problems and their parts discussed in classes but on n-gram length. The 

largest intersection numbers are slightly reducing with growth of 𝑛 so the thresholds should be changed. 

Like neural networks are learned on data, after adjusting the value of 𝑛, the thresholds can be adapted 

for each programming assignment personally. Assuming that the vast majority of students do not use 
borrowed code, one can found out thresholds which cut off only 70%–80% of programs as original. 

(The percentage should be a little less than expected percent of original programs.) Then their values 

can be gradually reduced with simultaneous code inspection of some “new” suspicious submissions and 
their matches. If such inspection discovers no code that looks as borrowed, then thresholds are found 

(the latest reducing of the thresholds should be discarded). Remember, that the final decision is made 

after interview with a student. So, too small thresholds can lead to interviewing almost all students that 

could be unacceptable due to office hours limitations. For more accuracy it is possible to build a set of 
decision rules based upon different preprocessing transformations and discussed relative values as well 

as apply their AND and OR combinations. The discussed in the paper decision rules work well if 

cheaters did not use more than one source to borrow significant amount of code. This is true in practice 
because to compile two or more programs with different structures in one is not easier than to write 

code without assistance. 

6. Conclusions 

The described methodology assumes simultaneous processing of all the submissions. The proposed 
approach is not sensible to mutual location of code parts, to distribution of code between translation 

units, and to presence of dummy code. It can be easily adapted to different programming languages and 

their dialects by using preprocessing routines appropriate to a language. Moreover, it is acceptable that 
some parts of assignment are discussed in class or contain pieces of code provided by instructors. An 

important point here is that these parts should not be identified and removed before processing. 
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Also, the described technique is quite agile in the sense that can be specialized not only with 
preprocessing subroutine and n-gram length, but with thresholds for decision-making rules. This 

methodology can be used with slightly different tasks of programming assignments as well as with 

identical ones. The better results are exposed on quite complex tasks which need thoroughly code 

organization and incremental design. 
The proposed technique only helps instructors to find out plagiarism among students but gives no 

guarantees. The same thing is true for other methods in this field. In any case there could be some 

students who successfully submit third-party code or code with elements of plagiarism. To reject 
original code is impossible due to plagiarism proving procedure moderated by instructors. 

Further research can deal with applying the proposed density analysis not to intersection numbers 

but to other pairwise similarity measures. The analogous situation with density of pairwise similarity 
series is expected. But there are strong doubts that a lot of time wasted on programming more 

sophisticated pairwise characteristics gives enhancement adequate to coding time or gives any 

enhancement at all. Highly likely, it will be pure theoretical research. Another branch of research can 

deal with code compiled from two or more sufficiently dissimilar sources. 
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