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Abstract
Modern and legacy cyber-physical systems produce logs of operational behavior from sensors
to network traffic; analyzing these heterogeneous logs to consistently identify attack signals
is a difficult problem. In this work, we propose a flexible temporal non-parametric Bayesian
framework for identifying these attacks based on sticky Hierarchical Dirichlet Process Hidden
Markov Model (sHDP-HMM). The advantage of this approach is that it does not require
detailed information on the system architecture, and it works for systems with unknown
multimodal behavior, yielding interpretable inference. We demonstrate the efficacy of this
framework for accurate identification of attacks from cyber and physical attack vectors on two
different CPS: an avionics testbed and a consumer robot.
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1. Introduction
Physical attacks form an important category of attacks on a cyber-physical system (CPS),
for which the controller software manages the operations of a physical process using
sensors and actuators [1]. Examples of CPSs include critical infrastructure components
such as power plants and gas pipelines; vehicles on land, air, water, and space; building
systems such as elevators; medical devices; and robots. However, many CPSs also
utilize Internet of Things (IoT) devices, introducing additional vulnerabilities as well.
Actors, from fraudsters to nation state actors, are conducting cyber attacks on CPSs
with increased frequency and sophistication, resulting in substantial financial losses and,
at times, the loss of life [2, 3].

Ruff et al. [4] refined the definition of anomaly provided by Hawkins [5] as “an
observation that deviates considerably from some concept of normalcy.” An attack on
a CPS may be detected as an anomaly reflected in the logs from the system, sensors,
actuators, or their interconnections. The automation of attack detection in CPSs is
a task with many challenges. Damodaran and Rowe show that for any algorithm or
anomaly detection approach, there is an inherent limitation in which certain adversarial
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activities are fundamentally undetectable [6]. Further, irrespective of whether the normal
operational behavior of a CPS is correctly and completely documented at design time,
the operational behavior of the CPS may deviate after its deployment or be modified
through lifecycle changes. Because many CPSs are systems of systems, composed of
other CPSs, having definite and total knowledge of what “the concept of normalcy” from
such deployed CPSs is frequently absent in practice.

To address this difficulty, we propose a machine learning approach that will learn
this “concept of normalcy” from operational data. Because the methods and effects
of adversaries are constantly evolving, the approach is unsupervised and is not fit to
historical instances of attacks. Several unsupervised approaches to attack detection have
been proposed previously [7]. However, we have identified through this research that
many applications may require historical recordings of baseline behavior for making
comparisons.

Most CPSs exhibit distinct operational behavior at different points in time that we
refer to as modes. Whether an event is anomalous may depend entirely on the context
provided by the mode of the system. For example, an aircraft may have the modes of
take-off, cruising, and landing, and an action such as lowering the landing gear may
be an anomaly while cruising but not while landing. The unknown of the system’s
mode and the dependency of the detection to these modes have motivated the approach
proposed in this work. This work addresses the central challenge for attack detection
where the system’s current mode, number of total modes, and number of attacks are all
unknown. In comparison, frameworks, such as finite state space filters, that presuppose
this knowledge produce inaccurate results when these inputs are misspecified, see [8, 9].

Another motivating problem for this work is the need for flexible solutions that
assimilate many heterogeneous forms of data streams. The time-series data recorded by
CPSs may contain variables that are interval, e.g., location; ratio, e.g., altitude; ordinal,
e.g., floor numbers; or nominal, e.g., commands [10]. Often in practice, anomalies are
localized and require the examination of combinations of data streams to correctly identify
them.

The primary goal of the attack detection algorithm is to segment the periods of attack
from periods of normal behavior, by accurately determining the beginning and the end
of each attack present [11]. This paper presents the modeling framework and inference
algorithm to identify attacks in an unsupervised manner and demonstrates its efficacy on
two types of systems: an avionics testbed and a consumer robot.

1.1. Contributions
Our contributions through this work are the following. First, we present a novel sticky
Hierarchical Dirichlet Process Hidden Markov Model (sHDP-HMM) based framework
and the associated inference algorithm for attack detection that is capable of detecting
attacks reflected in multimodal and multivariate operational data of mixed continuous
and categorical type.

Second, we evaluate this framework over experimental physical and cyber attacks
conducted on two operational systems using a novel set of metrics. First, we analyzed



MIL-STD-1553 bus logs from an avionics testbed subject to a variety of attacks [12].
Second, we performed sensor and actuator attacks on a Roomba Create2 robot and
evaluated the model’s efficacy in identifying these events [13]. Our results from these
evaluations are encouraging, and we are able to detect several attacks with limited false
positives.

The rest of the sections are as follows. The next section discusses related work.
Section 3 contains our sHDP-HMM framework for attack detection, followed by Section 4
which defines how temporal attack detection sequences are evaluated. Section 5 discusses
the experiments with the avionics testbed, and Section 6 discusses the experiments with
a consumer robot. Finally, Section 7 concludes this paper and discusses future work.

2. Related Work
The problem of anomaly detection in CPS under adversarial conditions has seen prolific
research contributions as recent surveys indicate [1, 14, 3]. Machine learning techniques
have been widely applied to the general problem of anomaly detection, and to the specific
problem of attack detection. Neural networks have been applied to anomaly detection in
[15, 16]. Bulusu et al. surveyed applications of deep learning for anomaly detection [17].
Ruff et al. provided a unified review of deep and shallow learning for anomaly detection
[4]. The earliest published use of Hidden Markov Model (HMM) for intrusion detection
was by Gao et al. in 2002 [18]. A more recent application of HMMs to anomaly detection
for robotic actions was performed by Altan and Sariel [19]. Research into the problem
of the lack of identifiability for the number of latent states in HMMs was conducted by
[20, 21].

Teh et al. introduced the Hierarchical Dirichlet Process Hidden Markov Model (HDP-
HMM) in [22]. Linderman et al. applied the HDP-HMM approach to study neural activity
in rodents [23]. Blei et al. applied the HDP-HMM to application of topic modeling [24].
Fox et. al. observed that the original HDP-HMM formulation lacked stability for the
latent state and introduced spurious transitions. The authors proposed remedying this
problem through the introduction of an explicit self-transition parameter 𝜅, formulating
the sticky HDP-HMM (sHDP-HMM) model [25]. The sHDP-HMM was applied by Wu
et al. to the application of monitoring in robotics [26].

More recently, the sHDP-HMM model has been applied to attack detection in avionics
safety by Li et al. [27]. In their application, the authors analyze Automatic Dependent
Surveillance - Broadcast (ADS-B) data with features such as longitude, latitude, altitude,
and velocity and contrast latent state sequences against historical normal sequences
to identify attacks. Our analysis also uses the sHDP-HMM approach, though we also
incorporate continuous variable values and symbolic values from the captured system
logs. Further, in contrast to their work, wherein the authors demonstrate the efficacy of
attack detection using directly inserted anomalies into the operational logs, anomalies
used to evaluate the methods in this work are captured by sensors in physical and
communications layers.

Feedback control modeling of the physical dynamics of CPS has previously been



considered in [28, 1]; in particular, the authors consider the optimal stopping problem of
hypothesis testing with minimal samples [29]. For these linear time invariant systems, the
authors in [30, 8] treat the estimation of attack vectors as sparse recovery problems. The
usage of log information for feature training of classifiers for attacks is well accepted [31].
In the context of avionics, Stan et al. demonstrated the utility log messages recorded on
the MIL-STD-1553 standard conformant system bus in detecting adversarial behavior
[32].

3. An sHDP-HMM Framework for Attack Detection
3.1. Convention & Notation
In this work, the notation 𝑥|𝜃 is used to describe the distribution of the quantity 𝑥
conditioned on or given a parameter 𝜃; if 𝑥 is the data, 𝑥|𝜃 describes how the data is
being generated given a set of parameters describing the observation process. In Bayesian
hiearchical modeling, 𝜃 itself is considered a random quantity and in a hierarchical fashion
there maybe a model describing its realization from a population 𝜃|𝜂 governed by the
parameter 𝜂. Wherein the quantity P(𝑥|𝜃) is referenced, it is the density function of the
distribution 𝑥|𝜃.

For a random time series, 𝑥𝑡 refers to the random series at the point in time 𝑡, whereas
𝑥𝑢:𝑣 refers to the entire collection between and including the points 𝑢 and 𝑣 and 𝑥−𝑡 refers
to the entire collection (from times 1 to 𝑇 ) excluding the point at time 𝑡. The superscript
𝑖 in 𝑥

(𝑖)
𝑡 refers to different realizations or replications of 𝑥𝑡, identical in distribution.

In this work, the notion of a state is referenced, which is typically indexed over 𝑗. 𝜋𝑗,𝑘

refers to the transition probability from 𝑗 to 𝑘 and 𝜋𝑗,· refers to the array of transition
probabilities from state 𝑗 (summing to one) and 𝜋·,𝑘 refers to the array of transition
probabilities from state 𝑘 (not necessarily summing to one). In this work, 𝑧𝑡 refers to the
random state at time 𝑡 and 𝑗 denotes the specific state, for instance {𝑧𝑡 = 𝑗} is the event
that the system at time 𝑡 is in state 𝑗.

3.2. Description
The operational behavior of a CPS may exhibit time varying modes. Our framework
described in this section models operational behavior as latent states in a Hidden Markov
model (HMM). The interest of this analysis is the identification of abnormal transitions
between these latent states and potential identification of emergent anomalous behavior
or new latent states during attack events. The latent states in normal operations may
correspond to physical operational modes, but further research is needed to understand
the nature of such correspondence. We hypothesize that under attack, the system may
visit a non-finite number of novel latent states indicating anomalies. Figure 1 shows
the transformation of a transition matrix of latent states under attacks in the avionics
testbed described in Section 5.

We utilize the first order HMM model to identify these transitions between latent
states. Because of the lack of identifiability of the number of latent states, we adopt the



(a) State transition probability matrix
for normal operation

(b) State transition probability matrix
under attack

Figure 1: Figure 1b depicts emergence of anomalous latent states, and change in transition probabilities
during the attack, in contrast to normal behavior shown in Figure 1a. Recorded on the avionics
testbed (see Section 5).
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Figure 2: Graphical model with an upper layer for the latent state and a lower layer for the observed
sequences.

non-parametric Bayesian approach where the latent states are informed by the data using
the Dirichlet process. The data generated by the system {𝑦𝑡}𝑇

𝑡=1 may be a combination of
continuous measurements recorded by sensors or tuples of symbolic configuration values.
By assuming that the distribution and behavior of this data changes according to the
latent state of the system at time 𝑡, which we label as 𝑧𝑡 and consequently assume that
the data is generated according to a member of a collection Θ - 𝜃𝑧𝑡 , we perform Bayesian
inference to partition or cluster the data and estimate parameters.

We briefly review now the sHDP-HMM formulation by Fox et al. [25]. The HDP-HMM
contains a global Dirichlet process (DP) 𝐷𝑃 (𝛾𝐻) where 𝛾 is a concentration parameter
and 𝐻 is a base measure. With 𝛾, the GEM (Griffiths, Engen, and McCloskey) model
may be described by the following stick-breaking procedure [33],

𝛽′
𝑗′ |𝛾 ∼ Beta(1, 𝛾) (1)

𝛽𝑖 = 𝛽′
𝑗

∏︁
𝑗<𝑖

(1 − 𝛽′
𝑗) (2)

Alongside this sequence 𝛽 = {𝛽𝑖}, 𝜃𝑖 may be drawn according to a base measure 𝐻
over Θ and this global DP prior may be defined as 𝐺 =

∑︀
𝑖 𝛽𝑖𝛿𝜃𝑖

. The individual rows of



Figure 3: sHDP-HMM Framework for Attack Detection

the transition matrix between the latent states Π = [𝜋𝑖,𝑗 ] have local DP priors 𝐻(𝛼, 𝛽)
where 𝛽 allows for shared pooling of information.

The prior distribution for the transition probability to the next latent state given that
the system is in the current state 𝑧𝑡−1 is:

Global Dirichlet 𝛽|𝛾 ∼ GEM(𝛾) 𝑖 = 1, . . .
Process Prior: 𝜃𝑖 ∼ 𝐻
Transition Matrix Prior: 𝜋𝑖,· ∼ 𝐷𝑃 (𝛼 · 𝛽 + 𝜅 · 𝛿𝑖) 𝑖 = 1, . . .
Latent State Transition: 𝑧𝑡|𝑧𝑡−1 ∼ 𝜋𝑧𝑡−1,· 𝑡 = 1, . . . , 𝑇
Configuration Transition Prior: 𝑦𝑡|𝑦𝑡−1, 𝑧𝑡−1, 𝑝𝑧𝑡−1 ∼ 𝑝

𝑧𝑡−1
𝑦𝑡−1,𝑦𝑡 𝑡 = 1, . . . , 𝑇

We propose a novel two-layer Markov chain model for the sequences of configuration
emissions, where the transition probabilities [𝑝𝑧

𝑖,𝑗 ] varies depending on the latent state
labeling of the system, allowing the pattern of sequences to vary as demonstrated in
Figure 1. A graphical model representation of the proposed two-layer model is depicted
in Figure 2.

Figure 3 summarizes our framework. The operational logs are pre-processed to identify
unique combination of attribute values in each operational log to feed into the sHDP-
HMM based inference algorithm (see Section 3.3). A detection heuristic is applied to the
latent state transition matrix generated by the algorithm to output discrete temporal
sequences of operation logs that correspond to attacks. The detection heuristic can vary
based on the validation method used for detection, discussed in Section 3.4.

In the case where a known normal history of the system exists and is known to span
the modes present in the system’s behavior, the set of sufficient statistics estimated from
this series �̂�0 is a subset of the sufficient statistics estimated from the series containing
the potential alternatives �̂�1. Identifying the matching subset of �̂�0 of �̂�1 is a problem of
matching the overlap of two high dimensional point clouds.

3.3. Inference Algorithm
In Algorithm 1, the inference implementation of the model uses the direct assignment
Gibbs sample by Teh et al. [22]. The matrix 𝑁 records the number of transitions between
latent states, 𝑁 [𝑗, 𝑘] =

∑︀
1<𝑡≤𝑇 1{𝑧𝑡−1 = 𝑗, 𝑧𝑡 = 𝑘}. At each time instant, the new latent

state labeling must be inferred by conditioning out the influence of its present labeling
as shown in Line 8. The new labeling is sampled using the Chinese Restaurant Franchise
analogy [25] and subsequently if a new state is realized the transition matrix is expanded
(Line 6) and the associated summary statistics are updated (Line 8). Conversely, if a
pre-existing latent state is found redundant, it is removed in Line 3, allowing the number



of latent states identified to decrease. Having fixed the latent state assignments, the
remainder of the parameters in the model are conditionally updated. Algorithm 1 outputs
the latent states and transition probability matrix among the latent states discovered in
the operational data.
Algorithm 1: Direct Assignment Gibbs Sampler for sHDP-HMM

1 for 𝑖 = 1, . . . , 𝑛 do
2 for 𝑡 = 1, . . . , 𝑇 do
3 Decrement 𝑁 [𝑧(𝑖)

𝑡−1, 𝑧
(𝑖−1)
𝑡 ], 𝑁 [𝑧(𝑖−1)

𝑡 , 𝑧
(𝑖−1)
𝑡+1 ]

4 Sample the state labeling 𝑧
(𝑖)
𝑡

5 if 𝑧
(𝑖)
𝑡 = 𝐾(𝑖) + 1 then

6 Introduce state 𝐾(𝑖) + 1 into array 𝛽(𝑖) and matrix 𝑁

7 Increment 𝐾(𝑖)

8 Increment 𝑁 [𝑧(𝑖)
𝑡−1, 𝑧

(𝑖)
𝑡 ], 𝑁 [𝑧(𝑖)

𝑡 , 𝑧
(𝑖−1)
𝑡+1 ]

9 for 𝑗 = 1, . . . , 𝐾(𝑖) do
10 if 𝑁𝑗· = 0 and 𝑁·𝑗 = 0 then
11 Delete row and column 𝑗 from 𝑁

12 Update the count of unique states 𝐾(𝑖) = |𝑗 : 𝑧
(𝑖)
𝑡 = 𝑗 for 𝑡 = 1, . . . , 𝑇 |

13 Sample the CRF auxiliary variable matrix 𝑀 (𝑖)

14 Sample the self-transition parameter(s)
15 Sample the global weights 𝛽(𝑖)

16 Sample the hyper-parameters

If 𝐾(𝑖) is the number of latent states at iteration 𝑖, the number of operations required
for iteration 𝑖 is 𝒪(𝑇𝐾(𝑖)) where 𝑇 is the length of the data trace. Because each iteration
requires a pass through the time series, Algorithm 1 may be expensive for massive
data streams. In practice, we determine the convergence of the chain by examining the
sequence of latent state labels {𝑧

(𝑖)
𝑡 } for stability.

3.4. Detection Heuristic
Detection heuristics (see Figure 3) may be derived using the model output to contruct
alarms. To determine whether an attack has occurred, there are a few possible approaches.
If historical data from the system’s normal operation is available, Algorithm 1 can be run
on that data to identify the latent states and transition probabilities in normal behavior.
This information may be contrasted against latent states and transition probabilities
discovered from the attack data, as in Section 6. Alternately, if subject matter expertise
is available, then specific rules-based alarms may be derived using the algorithm’s output,
as in Section 5. In the absence of historical data and domain knowledge, anomalies may
be identified on the basis on the latent state frequency relative to the entire recording.
However, the specific correspondence between these statistical anomalies and attacks
and the points of differentiation between attacks and malfunctions and rare events are



subjects that require further exploration.

4. Metrics
One of the important ways of evaluating the detection framework is understanding the
classification quality of detecting transitions from the “concept of normalcy” [4]. One
aspect of the model output which can be used for comparison against other approaches is
the ability to accurately detect the transition event from normality. This event detection
may be formulated as a binary classification problem and evaluated with a confusion
matrix.

However, the temporal nature of the observations is problematic for point-to-point
evaluation of the classification quality. Slight delays in the time of detection should be
differentiated from complete misses and the point-to-point measure for false positives
may be multiplicative and overly punitive. These discrepancies and others issues relevant
to other applications have been noted in [34, 16].

We present a set of metrics for evaluating detection of anomalous temporal discrete
sequences. These metrics involve introducing two additional parameters ℎ and 𝜔, whose
purpose is to partition the time series into periods of true positives and true negatives.
We recommend these be selected to balance the labels present in the data set. 𝜔 is the
length of time used to divide periods of non-detection into true negatives. Additionally,
ℎ serves to introduce tolerance for slight delays in detection. For detecting the beginning
of attacks (similar analogues may be made towards detecting the end of attacks):

1. For a latent state transition at time 𝑡𝑖, if within the interval [𝑡𝑖, 𝑡𝑖 + ℎ], there are
no transitions detected then the period [𝑡𝑖, 𝑡𝑖 + ℎ] is categoried as a False Negative
(FP).

2. For a latent state transition at time 𝑡𝑖, if within the interval [𝑡𝑖, 𝑡𝑖 + ℎ], there is a
transition detected at �̂�𝑗 ∈ [𝑡𝑖, 𝑡𝑖 + ℎ] then the period [𝑡𝑖, 𝑡𝑗 + ℎ] is categoried as a
True Positive (TP).

3. For a latent state non-transition at time 𝑡, if within the interval [𝑡, 𝑡 + ℎ], there
are one or more estimated transitions {�̂�𝑗} ∈ [𝑡𝑖, 𝑡𝑖 + ℎ], then the period [𝑡, 𝑡 + ℎ] is
categorized as False Positive (FP).

4. For a latent state non-transition at time 𝑡, if there are no estimated transitions,
categorize the period [𝑡, 𝑡 + ℎ] as True Negative (TN).

5. Avionics Testbed
In a system with a bus architecture, the system components interact with each other
only through a shared communication bus that employs a communication protocol. The
MIL-STD-1553 standard, also referred to as 1553, is a serial bus communication protocol
standard used primarily in avionics systems [12]. This standard is used for communication
among components, called remote terminals (RT) or devices. Examples of terminals
are GPS receivers, auto-pilot controllers, or flight control components, such as ailerons,



elevators and rudders. In a 1553 compliant system, all devices are connected to a common
wire, or multiple redundant wires, and most devices are slaves, except for a master device.
The slave devices wait for queries from the master device, called the Bus Controller (BC).
The master device commands a slave with its address, directionality, data sub-address,
and data size to be sent [12]. This command is sent in a query called a command word,
which provides specific direction for the slave to act. Our avionic testbed consists of a
physical 1553 bus, and several components. Each component is a software module that
used an Alta eNet-1553 interface device [35] to interact with the 1553 bus.

5.1. Attacks
Attacks are conducted using virtualized flight components interacting with the 1553 bus
through the Alta eNet interface. Our BC cycles through lists of messages to transact,
producing a deterministic and periodic pattern. The 1553 protocol allows any device
connected to the bus masquerade as a BC, allowing a bad actor to hijack the bus. We
conducted 17 attacks on the system with differing complexity, ranging from noise attacks
to denial-of-service. See Table 2 for details of the attacks.

5.2. Detection
The operational data is collected from the 1553 bus using the Alta eNet-1553 interface
device. In the pre-processing step, to represent the state of the bus, we used the symbolic
message attributes as outlined in Table 1.

Field Value Ranges Variable Type
Message Type BC to RT, RT to BC, RT to RT, mode command, mode command with

transmit data, and mode command with receive data

Ca
te

go
ric

al

Remote Terminal Address 0 - 31
Transmit/Receive 0, 1
Subaddress/Mode 0 - 31
Data Word Count/Mode Code 0 - 31

Table 1
MIL-STD-1553 Message Attributes

Algorithm 1 is used to detect latent state transitions on the collected data. To derive
the detection heuristic, we observe that the system exhibited only a single latent state,
as shown in Figure 4, and confirmed by the experimenter on the timing of attacks. The
operational data is collected only on 16 attacks, since Attack 13 is not reflected in the
operational logs. Therefore, our detection heuristic in this case is simple; any latent state
transition to a new latent state and return to the single stable latent state is an attack.
The results are in Table 2.

In order to evaluate the detection quality of the inference for the experiment, we
use the procedure described in Section 4 with 𝜔 = 350. Selecting 𝜔 = 350 and ℎ = 1
divides the time series into 32 intervals, half of which are true positives and the other



Figure 4: Latent state estimation of system recorded on the MILD-STD-1553 bus. Normal operation
of the system contains only one mode - any departure from this single mode of behavior is considered
to be an attack.

Attack Attack Occurrence Detected Occurrence Detection Description
Attack 0 3451 - 4248 3451 - 4248 TP Denial of Service 1
Attack 1 4538 4538 TP Noise Attack 1
Attack 2 4568 4568 TP Noise Attack 2
Attack 3 4714 4714 TP Noise Attack 3
Attack 4 4860 4860 TP Noise Attack 4
Attack 5 5006 5006 TP Protocol Violation 1
Attack 6 5152 5152 TP Protocol Violation 2
Attack 7 5298 5298 TP Protocol Violation 3
Attack 8 5444 5443 - 5445 TP Protocol Violation 4
Attack 9 5590 - 5968 5600, 5647-5700, 5740-

5745, 5773-5789, 5818-
5834, 5863-5879, 5908-
5911

TP Denial of Service 2

Attack 10 6114 6114 TP Buffer Attack 1
Attack 11 6405 6405 TP Buffer Attack 2
Attack 12 6551 6551 TP Anomalous Traffic 1
Attack 13 N/A N/A FN Atypical Traffic
Attack 14 6726 None FN Anomalous Traffic 2
Attack 15 6872 6872 TP Anomalous Traffic 3
Attack 16 7018 7018 - 7019 TP Data Payload Attack

Table 2
Detection of attacks on the avionics testbed based on metrics in Section 4. TP is short for true
positive; FN - false negative; TN - true negative; FP - false positive.

half true negatives. We conclude that there are 15 true positives, 0 false positives, 16
true negatives, and 2 false negatives. A human expert analysis of sample traffic collected
during the DDoS Attack 9 revealed multiple periods of normal traffic interlacing the
anomalous measurements, which may explain the fragmentation.

6. Consumer Robot
In this section, we describe detection of attacks on a consumer robot. This system is
a Roomba Create2 [13], and the experiment set-up is described in detail in a previous
paper [36]. This system is different from the avionics testbed described in Section 5 in
the following significant way. The robot has physical sensors and actuators and is a fully
functioning CPS. The attacks in this experiment are directly to the physical sensors and
actuators. The log attributes used in this experiment for pre-processing are summarized
in Table 3.



6.1. Attacks
As summarized in Table 4, in the sensor attack, an obstruction is introduced in front
of the left optical sensor, causing the Roomba to prematurely halt traveling towards
its destination. Outside intervention removes this obstruction, allowing the Roomba to
continue its course. In the actuator attack, the robot is physically held in place on a
slippery surface. The wheels continue to spin; however, the robot does not make any
forward movement. Outside intervention removes the restraint on the robot, and it is
allowed to move forwards.

Field Value Ranges Variable Type
Voltage 0 - 65535

Co
nt

inu
ou

sCurrent -32768 - 32767
Velocity Left -500 - 500
Velocity Right -500 - 500
Light Bumper Front Left 0 - 4095
Light Bumper Front Right 0 - 4095

Table 3
Roomba Attributes

6.2. Attack Detection

Experiment Attack Vector Data Attack Occurrence Detected Occurrence Start Attack End Attack
1 wall sensors light bumpers,

velocity
(58, 59) - (74, 75) 62 - 73 TP TP

2 actuators current, volt-
age

(171, 172) - (212, 217) 172 - 192 TP FN

Table 4
Table summarizing the results of the experiments, attacking the position/motion sensors and the
actuators of the Roomba. In both cases, novel states that emerge in the attack recordings are then
compared to recordings collected during normal operation. The location of these novel states is
compared against the ground truth of the attacks to determine if detection is successful with tolerance
ℎ = 5 (defined in Section 4) and 𝜔 unspecified as the sample size is too limited to report the accuracy
statistics.

In contrast to the avionics testbed that has only a single latent state, or mode,
detectable by Algorithm 1, the Roomba Create2 shows multiple modes, as shown in
Figure 5. The different colors indicate different latent states, and the solid black line is
the wall sensor output that measures distance to an obstruction, see Table 4.

In both attack experiments, comparison between the number of latent states in record-
ings of normal traffic and attack traffic identified more latent states in the later. Because
each latent state has associated sufficient statistics for the sensors, it is straightforward
to draw correspondences between the latent states in each set of recordings and identify
which latent states are novel with respect to normal behavior. Having identified the novel
latent states in the attack recordings, we analyze the mode of the start of the transition
to these states and compare it against expert annotation to determine the accuracy of
the start/end of attack detection.



(a) Wall sensors and states for the Roomba
under normal operation.

(b) Current readings and states for the
Roomba under normal operation.

(c) Wall sensors and states for the Roomba
under sensor attack.

(d) Current readings and states for the
Roomba under actuator attack.

Figure 5: Plot of Roomba sensor readings and latent state estimates under normal operation (top
row) and under attack (bottom row) during experiments. Top row displays the wall sensor readings
during Experiment 1 in Table 4 in which the wall sensors are attacked, and bottom row displays
the current (ampere) readings during the Experiment 2 in Table 4 in which the wheel actuators are
attacked.

7. Conclusion & Future Work
We presented in this paper an unsupervised learning framework based on the sHDP-HMM
model and detection heuristic to detect attacks on two types of systems using different
attack approaches. In both cases, no domain knowledge of the system architecture was
used to infer the location and number of attacks in the time series. This unsupervised
approach for attack detection is applicable for many systems for which the only available
information consists of the operations logs. We demonstrated the ability of this frame-
work to assimilate heterogeneous data consisting of continuous sensors and categorical
configurations. While these preliminary results are encouraging, more testing on a wider
variety of systems is needed to better understand the limitations and wider applicability
of this approach.

We surmise that the algorithm’s detection is most accurate if the entire attack is
contained within the data recording. It is unresolved how partial capture of the attack will
impact the detection accuracy. Further, the exploration of the detection of cyberattacks
on the avionics testbed has identified instances of known cyberattacks, whose effects are
absent from the system bus logs.

A key challenge for machine learning approaches for attack detection in CPSs is the
explainability of the results to non-experts and was a key motivator for this approach
[37]. Although the model presented here as a switching process between an ensemble of
simple models is more transparent in comparison to alternatives, there is potential to
better integrate these outputs with other sources of data and physical laws to provide
greater clarity into the causality of anomalies. Additionally, although we considered the



many common types of tabular data in this work, the framework presented here may
also assimilate many forms of higher fidelity data such audio and video. Lastly, because
Algorithm 1 performs multiple passes through the data, it poses an interesting challenge
to scaling up the approach to the massive streams of data encountered in real-time
monitoring systems[38]. Addressing this challenge of scalability is an area of research we
are actively investigating.
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