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Abstract
Code commenting is a practice developer pursues to improve the readability of the code. Hence, it is
essential to evaluate comments based on whether they increase code understandability for software
maintenance tasks. Although some studies have been conducted for detecting useful code comments,
most of them exploit various handcrafted features, and the recent advancement of transformer-based
models is still under-explored. Therefore to fill the gap, we explore transformer-based models and
propose a fusion-based solution for detecting Useful comments based on the shared task, "Information
Retrieval in Software Engineering (IRSE) 1" at FIRE 2022. We observe that our fusion-based model
BERT+CodeBERT(PP), which uses features from both code comments and snippets, achieves the highest
Macro F1 score of 90.739 among all the models and ranked first in this task.
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1. Introduction

Software development refers to a software deliverable’s design, documentation, programming,
testing, and ongoing maintenance 1. During the development and ongoing maintenance of
the product, a developer has to write a lot of code to fix bugs and extend/add new features.
Although during the development phase, the developer writes codes based on his thinking and
code writing style, it may not be the case when a bug comes, or new features have to be added;
the same developer may be working on the same code he wrote earlier. Therefore, the new
developer must understand the existing code before modifying it. However, it is not always
easy to understand the current code just by going through it without proper documentation.
Even if documentation is found, without adequate updates, it becomes outdated, which may not
benefit the new developers. Therefore, developers must manually search and mine source files
and other knowledge sources like emails, and defect trackers, to understand the application’s
overall design [1]. Nevertheless, this prolonged procedure decreases developer productivity,
introduces hidden defects resistant to regression testing, and lowers the quality of the code.
Hence code commenting is a technique developer follows to increase the readability of the
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Table 1
Example of Some Useful and Not-Useful Comments

code [2]. A code comment is a programmer-readable explanation or annotation in a computer
program’s source code, added to make the source code manageable for humans to comprehend, and
is commonly ignored by compilers and interpreters.2

Commenting code is not always as easy as described in the definition. Depending on the
products and company guidelines, the technique of writing comments may differ. Although, to a
large extent, the commonality among all the guidelines is that a comment should be informative
and meaningful and represent whatever is written in actual coding without any ambiguity.
Nevertheless, it is undeniable that comments can be noisy, unstable, and may not evolve with
the source code [3]; still, source code and associated comments can play an essential role [4] in
understanding the code rapidly for ongoing maintenance.

In addition, merely placing irrelevant comments in the codes does not add any significance
to enhance the readability of the source code. Thus it is necessary to identify useful comments
in the source code given a code snippet. Therefore to engage and facilitate the research around
useful comment detection, the organizers of the “Information Retrieval in Software Engineering
(IRSE)" [5] shared task at FIRE 2022 have introduced a dataset for useful comments classification
given the associated code snippet. The objective of the shared task is to devise methodologies
to detect useful comments automatically. We show some examples of Useful and Not-Useful
comments in Table 1.

To this end, several strategies have been explored to classify comments based on various hand-
crafted features such as explicit syntactic information, presence of specific tags (e.g., @param,
@deprecated, etc.), words and symbols; or implicit elements, such as comment length, parts-of-
speech of comment words or the cosine similarity of words in code-comment pairs [6, 7, 8, 9];
however, the recent advancement of transformer-based models(e.g., BERT [10], CodeBERT [11])
are still under-explored.

In this paper, we attempt to use the existing transformer-based models for our classification
task, which have already been seen to outperform several baselines and stand as a state-of-the-
art model for various downstream tasks [12, 13, 14] in Natural language processing. The rest of
the paper is organized as follows. In section 2, we discuss some of the related work. In section
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3, we present the dataset description. In Section 4, we introduce the system description that we
propose. Finally, we discuss the results in section 5 and the conclusion in Section 6.

2. Related Works

This section discusses some of the proposed strategies in the literature to investigate and
evaluate comments quality by detecting inconsistencies and classifying comments.

2.1. Detecting inconsistencies with source code

Tan et al. [15] devised a tool iComments, to analyze comments written in natural language
to extract implicit program rules and used those rules to automatically detect inconsistencies
between comments and source code, indicating either bugs or irrelevant comments. For this
purpose, the author incorporates Machine Learning, Natural Language Processing(NLP), Statis-
tics, and Program Analysis methods and evaluates the tools on four large code bases: Linux,
Mozilla, Wine, and Apache. Ratol el al. [16] designed a new rule-based approach called Fraco to
detect fragile comments. It incorporates the identifier’s type, its morphology, the identifier’s
scope, and the location of the comment. The author evaluated the method by comparing its
precision and recall against hand-annotated benchmarks created for six targets Java systems
and compared the results against the performance of Eclipse’s automatic in-comment identifier
replacement feature.

2.2. Comment classification & quality evaluation

Haouari et al. [8] empirically studied existing comments in different open source Java projects
from both a quantitative and a qualitative point of view. The authors proposed a taxonomy of
comments based on comment scope (inline, method, constructor), comment type (application,
implementation, and the like), and comment style for their analysis. Padioleau et al. [17]
manually examined 1,050 comments randomly from operating systems code written in C from
three open source projects: Linux, FreeBSD, and OpenSolaris (started as closed software) due
to their overwhelming complexity and the critical essence of trustworthiness. The authors
studied the comments from several dimensions and categorized them based on memory, locks,
data-structure related, errors, control flow, TODO or FIXME, etc. Aman et al. [18] collected Java
methods (programs) from six popular open source products and conducted analyses on words
that emerged in their comments. The authors showed that a method with longer comments (more
words) tends to be more change-prone and requires more fixes after releases. Steidl et al. [9]
presented a semi-automatic approach for quality analysis and assessment of code comments. The
method furnishes a model for comment quality based on different comment categories(copyright,
header, member, inline, section, code, and application task). The authors explored machine
learning models to categorize comments on Java and C/C++ programs. Additionally, they
presented a quality model that filters out useless and uninformative comments by examining the
similarity of words in code-comment pairs using the Levenshtein distance and comment length.
Majumdar et al. [6] proposed CommentProbe for automatic classification and quality evaluation
of code comments of C codebases based on how they can assist in understanding existing code.



Split Useful Not-Useful Total
Train 4,337 3,710 8,047
Test 282 719 1001
Total 4,619 4,429 9,048

Table 2
Dataset statistics

For this purpose, the authors have collected 20,206 comments from open-source GitHub projects
and annotated them with assistance from industry experts. The authors handcrafted several
features to analyze comments semantically and using machine learning models, classified them
as Useful, Partially Useful, and Not Useful.

Although the existing methodologies established several baselines for meaningful code
comments analysis, none of the approaches used the recent advancement of transformer-based
models. Hence to fill the research gap, in this work, we propose a fusion-based technique using
pre-trained transformer-based models to classify Useful comments based on the dataset shared
by the organizers of IRSE.

3. Dataset Description

The shared task on Useful Comment Classification (given the surrounding code snippet) in
Information Retrieval in Software Engineering (IRSE) [5] at FIRE 2022 is based on a classification
problem to evaluate the usefulness of code comments to improve the readability of the codes for
the developers. The primary focus of the shared task is to improvise methodologies for Useful
code comments detection. For this purpose, the organizers developed a dataset by labeling
code comments as Useful and Non-Useful based on the associated code. In total, a team of 14
annotators was assigned for the task, and two individual annotators labeled each code comment
as Useful and Non-Useful. To supervise the annotation process, the organizer conducted weekly
meetings with the annotators. To evaluate the quality of the annotated dataset, the organizers
used the cohen kappa score and achieved a kappa (𝑘) value of 0.734, which shows substantial
agreement among the annotators. We show the class distribution of the shared dataset in Table
2. The training set consists of 8,047 code comments (out of which 4,337 comments were labeled
as Useful), and the test set consists of 1,001 Comments.

4. System Description

This section discusses the methodology we followed for detecting Useful code comments. The
detail of the pipeline is shown in Figure 1.

4.1. Pre-Processing

While manually going through the dataset, we observe the code comments contain lots of
special characters, blank spaces, newlines, etc. Therefore we apply pre-processing steps to
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Figure 1: Architecture of the Fusion-based BERT+CodeBERT(PP) Model.

remove all the non-English characters. Further, we observed the comments are associated with
the code snippet, so we removed the code comments from the code snippet as well.

4.2. Uni-modal Text-based BERT Model

As part of our initial experiments, we pose the problem as a unimodal text classification task.
Here, instead of using the comments along with their associated codes, we only use the code
comments to find out whether the comment is useful or not. The idea is that although the code
associated with the comment is not utilized explicitly for the classification, sometimes developers
write code snippets in the comment to make it more transparent, which can indicate the model
to determine the usefulness of the comments. For this purpose, we use the transformer-form
model BERT [10].

BERT3, which stands for Bidirectional Encoder Representations from Transformers, is pre-
trained on a large corpus of English data utilizing masked language modeling (MLM) and
Next sentence prediction (NSP) objectives in a self-supervised manner. It consists of a stack
of transformer encoder layers with 12 “attention heads," i.e., fully connected neural networks
augmented with a self-attention mechanism. The model can handle a maximum of 512 tokens
as input. To fine-tune BERT, we add a fully connected layer with the output corresponding to
the CLS token in the input. This CLS token output usually carries the representation of the
sentence provided to the model.

3https://huggingface.co/bert-base-uncased
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4.3. Fusion Model

As discussed above, the uni-modal model does not explicitly consider the associated code
snippet along with the code comments. However, to decide whether a comment is useful, the
use of surrounding code is crucial. Therefore we design a fusion-based model to take into
consideration both code comments and code snippets to understand better the relationship
between the comments and surrounding code snippets.

Although programming languages are primarily written in the English language, the grammar
of programming languages does not follow the rule of natural language. Hence using a model
like BERT, which is pre-trained on natural language, won’t be an excellent choice to represent
the code. Thus we use the model CodeBERT 4 [11], a multi-programming-lingual model
pre-trained on NL-PL pairs in 6 programming languages (Python, Java, JavaScript, PHP, Ruby,
Go). This model is initialized with Roberta-base and trained with MLM and Replaced Token
Detection(RTD) objective. Similar to BERT, the illustration of [CLS] works as the aggregated
sequence representation passed through the model.

Here we extract the 768-dimensional features vector from the last layer of the BERT and
CodeBERT model using the code comments and code snippets, respectively. Then these feature
vectors are separately provided through three dense intermediate layers of size 256, 128, and
64, respectively. Finally, we concatenate all the nodes(BERT+CodeBERT) and reduce them to a
feature vector of length 2(Useful or Not-Useful).

4.4. Post-Processing

We further apply the following post-processing step to improve the classification performance
of the models. We interviewed two software developers and asked how they felt about the
short-length comments. Based on their prior experience, both of them have noticed that shorter
code comments are mostly Not-Useful. Thus as a post-processing step, we relabeled all the
comments less than five tokens to Not-Useful.

4.5. Experimental Setup

We have trained the models for ten epochs with binary cross entropy loss for both the uni-modal
and fusion-based models. We have used the Adam optimizer with an initial learning rate of 2e-5
and epsilon of 1e-8. For the unimodal text-based BERT model, we have used the batch size of 16
and maximum token length of 100; for the fusion-based model, we have used the batch size of
32. Additionally, as no validation set was given for the experiments, we divided the training
data points into 85% and 15% split and used the 15% as a validation set. We predict the test
set for the best validation performance. We have used HuggingFace[19] and PyTorch [20] for
implementing all the models.

4https://huggingface.co/microsoft/codebert-base
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Model Accuracy Macro-F1 F1(U) P(U) R(U)
BERT 89.810 87.595 82.352 80.405 84.397
BERT(PP) 92.607 90.482 85.984 92.276 80.496
BERT+CodeBERT 90.909 88.804 83.950 83.508 84.397
BERT+CodeBERT(PP) 92.807 90.739 86.363 92.682 80.851

Table 3
Performance Comparisons of All the Models. U: Useful Class. PP: Post-Processing. The best performance
in each column is marked in bold and second best is underlined
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Figure 2: Confusion Matrix on Test Data for Each Model

5. Results

Table 3 demonstrates the performance of each model. As expected, the BERT+CodeBERT
model(Accuracy: 90.909, Macro F1: 88.804), which utilizes features from code comments
and snippets, performs better than the standalone BERT(Accuracy: 89.810, Macro F1: 87.595)
model. Further, we observe post-processing improves the model’s performance. In conclu-
sion, BERT+CodeBERT(PP) model performed the best in terms of accuracy(92.807) and macro
F1(90.739) score. We plot the confusion matrix in Figure 2 to further assess the models. Although
post-processing makes the majority of the correction for Not-Useful classes; however, some of
the Useful classes’ test data points got misclassified, which further reduces the recall for Useful
classes, as shown in Table 3. The observation holds true for both the unimodal text-based model
and the fusion-based model. Nonetheless, the post-processing technique improves the overall
performance.

While Majumdar et al. [6] achieved a macro F1 score of 86.34, our fusion-based techniques
achieved a Macro F1 score of 90.73. Although one thing to keep in mind is that Majumdar et
al. [6] performed the analysis considering three classes, and here we have two classes; therefore,
the comparison is not entirely precise.



6. Conclusion

In this shared task, we deal with a novel problem of classifying Useful code comments given
the surrounding code snippet. We evaluated the state-of-the-art transformer-based models. We
found that the fusion-based model BERT+CodeBERT, which uses features from code comments
and snippets, performs better than the standalone text-based BERT model. In the future, we
plan to explore other transformer-based models, such as Roberta [21], CodeT5 [22], etc., for
code understanding and useful comments detection. We also plan to explore knowledge graphs
relevant to Software Engineering to improve the classification performance.
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