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Abstract
Source code is usually accompanied by comments which help in improving code comprehension. How-
ever, not all comments are helpful in this respect, with some comments being redundant, some being
unclear which results in a poorer code readability. Sifting through large volumes of code to identify such
comments manually being tedious, the task of automatically evaluating the usefulness of a comment
in context of the code it lies in can add value. In this work, we evaluate the performance of various
pretrained transformer encoders to solve this task. We demonstrate decent performance of a few models
alongside abnormally high performance obtained by a few other pretrained architectures.
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1. Introduction

Programmers rely on source comments to understand the functioning of code. It represents a
way of documenting the code, with the comments explaining the logic behind the different
parts of the code, the expected behavior, inputs, and outputs. Code comments not only
help programmers working with the code, but they also aid in aspects related to software
maintenance and reusability. However, not all comments are of high quality. Some examples
include inconsistent comments, redundant or superfluous comments explaining the code rather
than its rationale, and irrelevant comments. Such comments reduce the comprehensibility and
readability of the code and are thus not desirable.

This motivates the need for a way to evaluate the quality of code comments given the piece
of code they accompany. Different methods based on have been proposed in the literature for
solving this problem, such as those based on heuristics and subjective and objective quality
attributes [1]. Methods based on machine learning have also been proposed for solving this
problem [2]. A previous work [3] deals with information extraction from code comments for
obtaining a better representation for program analysis. A knowledge graph representing the
software implementation and management information was constructed based on comments
from C and C++ files. In another work, [4], categories of comments were studied based
on their relation to concepts in software development with the aid of manual annotation,
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following which comments were labeled as ‘Useful’, ‘Partially Useful’ or ‘Useless’. The 3-way
classification was annotated based on a rubric consisting of a set of rules to determine the
characteristics of the comment with respect to the code context in which it lies. The best
results were obtained using an LSTM architecture combined with handcrafted features from
comment analysis. The shared task [5] deals with the same problem but on a binary scale.
Given a comment and the code context in which it occurs, we classify it as ‘Useful or ‘Not Useful’.

Unlike previous work, which makes use of custom-trained embeddings and explicit features,
we investigate the efficacy of pretrained languagemodels in this particular task. Large pretrained
models have achieved SoTA performance across many downstream tasks in different domains.
Models such as CodeBERT [6] have also emerged recently, explicitly designed for software
engineering tasks and capable of understanding both source code semantics and natural language
semantics.

2. Method

Seven language models were chosen to experiment with for this task. These are - ALBERT [7],
BERT [8], CodeBERT [6], DeBERTa [9], MPNet [10], RoBERTa [11], and XLNet [12]. Off-the-
shelf pretrained versions of these models were then finetuned on the training set and optimized
using the dev set. We also used a Transformer [13] encoder initialized with random weights for
comparison against the pretrained models. Finally, the results were reported according to the
performance on the test set. This method benefits from being agnostic to language, with the
pretrained models capable of working with code in any language.
We have open-sourced our code for replication and further experimentation1.

3. Experimentation

3.1. Data

The provided dataset for the shared task consisted of separate splits for training and evaluation
(test) of sizes 8000 and 1001, respectively. However, duplicates were found in the samples
provided, and some samples in the test data were present in the training set. Hence, we first
removed all the duplicates from both sets and cleaned the test to remove all the samples already
preset in the train set to not tamper with the integrity of the evaluation. We also separated
10% of the data from the deduplicated train set as the validation (dev) set for saving the best
checkpoint during training.

train dev test
# samples 5354 595 678

Table 1
Dataset splits following data duplication and test set cleaning

1https://github.com/sagarsj42/irse-fire-2022

https://github.com/sagarsj42/irse-fire-2022


Following data duplication and test cleaning, the sizes of the data splits obtained are indicated
in Table 1.

3.2. Experimental Settings

For each of the experiments performed, base versions of the model were trained for 5 epochs on
a batch size of 4 for training, and gradients were accumulated for two steps, thus providing an
effective batch size of 8. The learning rate was increased till 40% of the training steps peaking
at 6e-5, followed by a cosine decay. Validation was performed at the end of each training epoch
using the dev set, and the best-performing model checkpoint was saved based on the F1 score.
The best checkpoint thus determined was used to evaluate the test data.

4. Results

Model Accuracy F1 MCC ROC-AUC
Transformer 67.55 51.33 29.97 0.78

BERT 69.91 44.86 37.74 0.63
ALBERT 70.35 73.09 53.86 0.94
XLNet 88.05 85.66 75.57 0.93
MPNet 87.02 83.88 73.02 0.93

Table 2
Results of different pretrained transformer architectures on the cleaned & deduplicated test set of the
task that performed well on the data

The results of the code comment usefulness classification on the deduplicated and cleaned
test data are in Table 2. In this table, we have only included models that gave a decent
performance on the dataset. Other models that gave an anamolously high performance
are included separately in Section 4.1. Evaluation was done using Accuracy, F1, Matthew’s
Correlation Coefficient (MCC) and ROC-AUC metrics 2.

The BERT model was performing only slightly ahead of the transformer encoder trained
from scratch. There were differences in the training process, however, with the BERT model
achieving the optimal performance within 3 epochs, but the transformer encoder showed a
gradual increase in performance, thus distinguishing the effect of pretraining. XLNet and
MPNet - the two permutation language modeling-based architectures - performed gave a
decent performance with the former having an edge in performance over the latter. ALBERT
performed close to BERT in accuracy but showed a significant gap w.r.t. the other three metrics.



Model Accuracy F1 MCC ROC-AUC
RoBERTa 99.56 99.45 99.08 1.00
CodeBERT 99.56 99.45 99.08 1.00
DeBERTa 99.41 99.26 98.77 1.00

Table 3
Results of transformer architecture models that gave an anomalously high performance on the data

4.1. Anomalously High Performance

The transformer architectures that gave an unusually high performance are shown in Table 3.
As can be seen, the models achieved an almost-perfect performance. Although CodeBERT and
RoBERTa tied up in the performance on the test set, CodeBERT achieved optimal performance by
the 3rd epoch in training while RoBERTa at the 4th epoch, CodeBERT being a model pretrained
on the RoBERTa architecture on programming language data, thus highlighting the faster
convergence achieved due to domain-specific pretraining. Both the models maintained accuracy
of 100% on the dev set in the subsequent epochs. The closest performance to these models was
achieved by DeBERTa. An ROC-AUC score of 1 indicates an almost perfect confidence achieved
in the classification task, which indicates that the models have been easily able to fit almost
perfectly on the distribution of the data, and the test and train data distributions do not have
any significant variation in the distribution. Such an anomalous behaviour might have resulted
from the annotations for the train and test set being done on the basis of a rule-set, and the
models being able to learn those rules.

5. Conclusion & Future Scope

In this work, we evaluated the performance of different pretrained transformer architectures
on the downstream task of code-comment usefulness prediction. While some of the models
gave a decent performance, some of them performed abnormally well. The latter aspect needs
to be investigated further by experimenting with different sets of data prepared over different
programming languages, and diverse set of annotations. A further investigation of themechanics
behind some architectures performing exceedingly well on the dataset - which does not have a
direct overlap between its train and evaluation splits - can add value to the effectiveness of a
transformer-based solution to the problem.
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