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Abstract
This paper proposes a framework for source code comment classification, which classify a comment
based on its usefulness within the source code. This qualitative classification assists new developers
in correctly comprehending the source code. We implement two binary classification mechanisms of
source code comments based on two machine learning models: logistic regression and support vector
machine. The classifier will classify each comment into two categories - useful and not useful. We extract
comment features such as comment length, the position of comment within source code, and significant
word ratio before training both models. We use a source code database of over 9000 instances written in
C language in our work. Both models achieve an F1-score value of 0.688 and 0.684, respectively.
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1. Introduction

Software controls almost every sector of human essentials, such as finance, hospitals, transport,
and many more. Many organizations constantly modify existing software or build new software
based on human requirements. The amount of source code gradually increases with the increase
of software functionality daily. Maintaining this large amount of source code is a crucial phase
of Software Development Life Cycle (SDLC). Developers often need to fix bugs, develop new
source code, or upgrade already deployed applications. Also, developers used to get a short
period to comprehend a large code base. This increases the vulnerability of the developer
and eventually leads to improper coding practices. In most cases, the documentation, such
as requirement specification, high-level design, low-level design, etc., and change traces are
outdated and incomplete, and the knowledge transfer process or help from the earlier developers
is unobtainable.

Developers need to follow a proper process to tackle this type of scenario. New developers
generally have the source code, sample test cases, requirement documents, and a debugger to
implement new functionality. The developer has to understand the existing source code before
modifying it. Thus, they are forced to repeatedly run the current application on the sample
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test cases to identify execution patterns, understand the design, and comprehend the program.
This process is time-taking, monotonous, effort-intensive, and often not manageable. These
shortcomings force the developers to perform quick patches, further introducing errors that are
sometimes difficult to filter. These limitations drastically dip the software quality and lower
the developers’ productivity. These types of situations demand a systematic quality-controlled
development process for ease of use by the developers. Program comprehension is one such
process of maintaining existing source code in a better way. This reverse engineering process
is beneficial for reuse, inspection, maintenance, and many others in the context of software
engineering[1].

Comment within a program plays an essential role in understanding and assessing the
program in a better way. Many developers are working on the same codebase and think
differently while giving comments. These versatile approaches of inserting comments in the
same codebase decrease the program’s readability. Hence, a standard way of writing code and
giving comments is necessary to increase the program’s readability. But this approach does not
help programmers in understanding an already registered code. An intuitive understanding of
source code comments may be a good idea to solve the readability program. Researchers are
working on this domain to develop such applications, which help new programmers understand
existing code, increasing their programming efficiency.

In this paper, we propose a binary classification algorithm to understand the source code
comments present in a program written in C language. We classify each comment into two
classes - Useful and Not Useful. We try to use logistic regression and support vector machine
(SVM) techniques for comment classification. We have a training data set of over 8000 samples
and test data set of 1000 samples. We extract relevant structural features such as comment
length, the position of comment within source code, and significant word ratio[2] and train
the classification model on that. Five fold cross-validation is used for the model validation. We
employ the hinge loss function for the SVM strategy and the cross-entropy loss function for the
logistic regression strategy. Both models have achieved 68.6% as an average F1-score value.

The rest of the paper is organized as follows. Section 2 discusses the background work done
in the domain of comment classification. Details of existing methods are discussed in section
3. We discuss the proposed method in section 4. Results are addressed in section 5. Section 6
concludes the paper.

2. Related Work

Understanding a program automatically is a well-known research area among people working in
the software domain. New programmers generally check for existing comments to understand a
code flow. Although, every comment is not helpful for program comprehension, which demands
a relevancy check of source code comments beforehand. Many researchers worked on the
automatic classification of source code comments in terms of quality evaluation. For example,
Omal et al.[3] discussed that the factors influencing software maintainability can be organized
into hierarchical structures. The author defined measurable attributes in the form of metrics for
each factor which helps measure software characteristics, and those metrics can be combined
into a single index of software maintainability. Fluri et al.[4] examined whether the source code



and associated comments are changed together along the multiple versions. They investigated
three open source systems, such as ArgoUML, Azureus, and JDT Core, and found that 97% of
the comment changes are done in the same revision as the associated source code changes.
Another work[5] published in 2007 which proposed a two-dimensional maintainability model
that explicitly associates system properties with the activities carried out during maintenance.
The author claimed that this approach transforms the quality model into a structured quality
knowledge base that is usable in industrial environments. Storey et al. did an empirical study on
task annotations embedding within a source code and how it plays a vital role in a developer’s
task management[6]. The paper described how task management is negotiated between formal
issue tracking systems and manual annotations that programmers include within their source
code. Ted et al.[7] performed a 3 × 2 experiment to compare the efforts of procedure format with
those of comments on the readability of a PL/I program. The readability accuracy was checked
by questioning students about the program after reading it. The result said that the program
without comment was the least readable. Yu Hai et al.[8] classified source code comments into
four classes - unqualified, qualified, good, and excellent. The aggregation of basic classification
algorithms further improved the classification result. Another work published in [2] in which
author proposed an automatic classification mechanism ”CommentProbe” for quality evaluation
of code comments of C codebases. We see that people worked on source code comments with
different aspects[9, 10], but still, automatic quality evaluation of source code comments is an
important area and demands more research.

3. Task and Dataset Description

In this section, we have described the task addressed in this paper. We aim to implement a binary
classification system to classify source code comments into useful and not useful. The procedure
takes a code comment with associated lines of code as input. The output will be a label such as
useful or not useful for the corresponding comment, which helps developers comprehend the
associated code. Classical machine learning algorithms such as logistic regression and SVM can
be used to develop the classification system. The two classes of source code comments can be
described as follows:

• Useful - The given comment is relevant to the corresponding source code.
• Not Useful - The given comment is not relevant to the corresponding source code.

A dataset consisting of over 9000 code-comment pairs written in C language is used in
our work. Each instance of data consists of comment text, a surrounding code snippet, and a
label that specifies whether the comment is useful or not. The whole dataset is collected from
GitHub and annotated by a team of 14 annotators. A sample data is illustrated in table 1. The
development dataset consists of 8000 instances, and the test dataset consists of 1000 instances.

4. Working Principle

We try two machine learning models - logistic regression and support vector machine (SVM)
to implement the binary classification functionality. The system takes comments as well as



# Comment Code Label

1 /*test 529*/

-10. int res = 0;
-9. CURL *curl = NULL;
-8. FILE *hd_src = NULL;
-7. int hd;
-6. struct_stat file_info;
-5. CURLM *m = NULL;
-4. int running;
-3. start_test_timing();
-2. if(!libtest_arg2) {
-1. #ifdef LIB529
/*test 529*/
1. fprin

Not Useful

2 /*cr to cr,nul*/

-1. else
/*cr to cr,nul*/
1. newline = 0;
2. }
3. else {
4. if(test->rcount) {
5. c = test->rptr[0];
6. test->rptr++;
7. test->rcount–;
8. }
9. else
10. break;

Not Useful

3
/*convert minor status code
(underlying routine error) to text*/

-10. break;
-9. }
-8. gss_release_buffer(&min_stat, &status_string);
-7. }
-6. if(sizeof(buf) > len + 3) {
-5. strcpy(buf + len, ”.\n”);
-4. len += 2;
-3. }
-2. msg_ctx = 0;
-1. while(!msg_ctx) {
/*con

Useful

Table 1
Sample data instance

surrounding code snippets as input. We extract features such as comment length, the position
of comment within source code, and significant word ratio[2] from the given input. The output
of the feature extraction process is used to train both machine learning models. The training
dataset consists of 8047 data instances along with their labels. Among them, 3710 data instances
are labeled as not useful and 4337 data instances are marked as useful. We use a five-fold
cross-validation process during training the model to deal with the unlikeliness of the training
data. The description of each model is discussed in the following section.



4.1. Logistic Regression

We use logistic regression for the binary comment classification task which uses a logistic
function to keep the regression output between 0 and 1. The logistic function is defined as
follows:

𝑍 = 𝐴𝑥 + 𝐵 (1)

𝑙𝑜𝑔𝑖𝑠𝑡 𝑖𝑐(𝑍) = 1
1 + 𝑒𝑥𝑝(−𝑍)

(2)

The output of the linear regression equation (refer to equation 1) is passed to the logistic
function (see equation 2). The probability value generated by the logistic function is used for
binary class prediction based on the acceptance threshold. We keep the threshold value of 0.6
in favor of the useful comment class. We have a three-dimensional input feature extracted
from each training instance which is passed to the regression function. The Cross entropy loss
function is used during training for the hyper-parameter tuning.

4.2. Support Vector Machine

We also implement a support vector machine model for our binary classification task. We take
the output of the linear function (given in equation 1), and if the output is greater than 1, then
we identify it with one class, and if the output is less than -1, then we classify it with another
class. We train the SVM model using the hinge loss function, as shown below.

𝐻(𝑥, 𝑦 , 𝑍) = 0, 𝑖𝑓 𝑦 ∗ 𝑍 ≥ 1
= 1 − 𝑦 ∗ 𝑍 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

The loss function suggests that the cost is 0 if the predicted and actual values are of the same
sign. We calculate the loss value if they are of different signs. The Hinge loss function is used
for the SVM model hyper-parameter tuning.

5. Results

We train both models in a system having an Intel i5 processor and 8GB RAM. We test our
both models using our test dataset. The test dataset consists of 1001 data instances, among
which 719 data instances are labeled as not useful and 282 instances are marked as useful. Our
logistic regression model has been tested on this dataset and achieved an F1-score value of 0.688.
Similarly, the SVM model achieves a 0.684 F1-score value. The corresponding confusion matrix
is shown in table 2 and 3. Both models achieve high recall values of 0.851 and 0.84, respectively.
It shows that both models correctly predict useful comments in a better way. Both models
achieve lower precision, such as 0.574 and 0.577, compared to the recall value. Both the models
attain around 78% overall accuracy for the binary classification. Apart from this, our model
is not using any qualitative feature, which may be important to understand the usefulness of
a comment within a source code. Using these qualitative features may increase the overall
accuracy of the binary classification.



Useful Not Useful
Useful 240 42
Not Useful 178 541

Table 2
Confusion Matrix for Logistic Regression

Useful Not Useful
Useful 237 45
Not Useful 174 545

Table 3
Confusion Matrix for Support Vector Machine

6. Conclusion

This paper has addressed a binary classification problem in the domain of source code comment
classification. The classification has been done based on the usefulness of the comment present
within a source code written in C language. We have used two machine learning models,
logistic regression and support vector machine, to implement the binary classification task. We
extracted three structural features: the length of the comment, the position of the comment
within the source code, and the significant word ratio from each data instance. Both models
have been trained using a training dataset with more than 8000 data instances. Cross entropy
loss and hinge loss have been used during hyper-parameter tuning for both models, respectively.
The models are tested on a test dataset of 1000 data instances. The logistic regression model
achieved an F1-score value of 0.688, and the SVM model achieved an F1-score value of 0.684.
Both models have achieved an overall accuracy of 78%. Currently, we are using structural
features for the classification task, which may not be sufficient for the qualitative analysis of
the source code comments. In the future, we will use some qualitative features of the comment,
which may increase the accuracy of the comment classification task.
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