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Abstract  
In many speech applications, such as source tracking, hearing aids, augmented reality, 

teleconferencing, robot audition; acoustic beamforming is routinely implemented to enhance 

the speech quality, speech intelligibility of captured microphone array signals in many real-

world recording situations. The designed beamformer uses priori information to form a spatial 

beampattern, which moves towards the target sound source while eliminating all surrounding 

noise and interferences. However, robust performance in annoying scenarios still exists as a 

challenging task, due to several reasons. In this article, the author proposed a spectral mask, 

which applied to Minimum Variance Distortionless Response beamformer to improve the 

speech enhancement. The resulting experiment shows that the advantage of suggested 

technique was confirmed in increasing the signal-to-noise ratio from 5.2 (dB) to 6.2 (dB) and 

reduce speech distortion to 3.2 (dB). The author’s proposed approach consistently ensures 

enhancing perceptual quality metrics compared to the conventional beamformer. 
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1. Introduction 

 
Figure 1: The complex surrounding environment around the target speaker 

 

The utilizing of microphone arrays (MA) [1-9] and its technique beamforming has become widely 

commonly used in almost speech applications, such as robot audition, teleconferencing, mobile phones, 
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hearing aids, surveillances devices, virtual assistants. These devices require acquiring desired speech 

from a target direction in presence of third-party talker, complex annoying noise, and unwanted 

interferences from the other directions. In a special recording scenario, when the talker is far from 

microphones, the received signal - to - noise ratio (SNR) will be inadequate for further signal processing 

and in these cases the spatial filtering can’t provide high speech quality or little distortion. The existing 

beamformers outperform well in laboratory conditions but may less well in real-world situations, which 

contains multiple undetermined noise source, interfering sound sources with locations and 

characteristics vary with times and non-stationary. 

Acoustics beamforming are conveniently installed in the short time Fourier transform (STFT) 

domain.  In each time - frequency cell, the complex value of final output signal is derived by 𝒘𝐻𝒚, 

where 𝒘 is the optimum coefficients that related to the designed beamformer’s properties. When 

choosing 𝒘, a common purpose of the constrained criteria is to maximize the SNR of the beamformer 

output signal with minimizing the total output noise power. For obtaining this goal, it is convenient to 

calculate the direction of arrival (DOA) of interest signal 𝜃𝑠, the steering vector of target speaker 

𝒅𝑠(𝑓, 𝜃𝑠), which indicates the frequency response of the target sound source and each element of MA, 

and MA’s geometry distribution.  

 

 
Figure 2: Microphone array beamforming is used for separation of sound source 

 
Minimum Variance Distortionless Response (MVDR) [10-17] beamformer is one of the most 

importance MA beamforming, which use the a priori information of 𝜃𝑠, 𝒅𝑠(𝑓, 𝜃𝑠) and the covariance 

matrix of observed MA signals to find the optimum solution 𝒘. Consequently, MVDR beamformer 

probably the most commerce beamforming technique. A lot of research, which referred to robust 

MVDR, has been proposed, evaluated in real-world experimental conditions to avoid speech distortion. 

As a rule, these algorithms are performed by extending the spatial region. Nevertheless, even assuming 

perfect the DOA of useful talker or sound source localization, the different microphone sensitivities and 

directional responses make the performance of MVDR beamformer is not handle well. Therefore, 

speech distortion is the existing problem of MA.  

In this paper, the author considers the problem of preserving the original speech acquisition in noisy 

environment. Since surrounding noise greatly corrupts the speech enhancement, high quality noise 

reduction is an essential problem in MVDR’s performance. While precise estimation of steering vector 

plays a major role for robust MA beamforming, in practical situations, the priori information of steering 

vector is often based on the knowledge of MA geometry and plan wave propagation of sound source. 

To overcome this limitation, recently, a time - frequency mask - based research direction has been 



proposed that enhances the MVDR beamformer’s evaluation. The central idea is suppressing the speech 

component in the microphone array signal.  

 
Figure 3: The principal extracting the desired talker by using microphone array 

 

In this paper, the author suggested using a suitable spectral mask, which uses an appropriate 

modified coherence - valued of surrounding noise, and desired signal. The illustrated experiments have 

confirmed the effectiveness of the proposed method through comparison of the conventional MVDR 

beamformer (MVDR-conventional) and the suggested technique (SLM) in terms of SNR. 

This contribution is organized as follows. The second section describes the principal working of 

MVDR beamformer. Section III will analyze the suggested ideal of SLM and the experiments will be 

evaluated in Section IV. Finally, the Conclusion and the direction of the author’s research. 

2. The model signal 

 
Figure 4: The scheme of MVDR beamformer’s performance 

 



In this section, the principal working of MVDR beamformer is presented in Figure 4. MVDR 

beamforming uses the spatial information about the direction - of - arrival of useful talker and minimizes 

the total noise power output for preserving the target speech component. Consequently, MVDR 

beamformer is based on the constrained problem to extracting desired speaker while suppressing all 

background noise without speech distortion. The scheme of the implementation of MVDR beamformer 

with dual – microphone system (DMA2) [19-25, 28] can be written as the following way in the 

frequency domain. 

Two captured microphone array signals are denoted by 𝑋1(𝑓, 𝑘), 𝑋2(𝑓, 𝑘) with the frequency index 

𝑓 and frame index 𝑘, respectively. The representation in short - time Fourier transform as: 

 

𝑋1(𝑓, 𝑘) = 𝑆(𝑓, 𝑘)𝑒𝑗𝛷𝑠 + 𝑉1(𝑓, 𝑘) (1) 

𝑋2(𝑓, 𝑘) = 𝑆(𝑓, 𝑘)𝑒−𝑗𝛷𝑠 + 𝑉2(𝑓, 𝑘) (2) 
 

Where 𝑆(𝑓, 𝑘): the desired speech component, additive noise 𝑉1(𝑓, 𝑘), 𝑉2(𝑓, 𝑘), 𝜃𝑠 direction of 

arrival of interest talker, the distance between two microphones 𝑑, speed propagation of sound in the 

fresh air is 𝑐 (343 m/s), 𝜏0 = 𝑑/𝑐 is the sound delay and 𝛷𝑠 = 𝜋𝑓𝜏0𝑐𝑜𝑠(𝜃𝑠). 

Without generality, we can denote 𝑫(𝑓, 𝜃𝑠) is the steering vector, 𝑫(𝑓, 𝜃𝑠) = [𝑒𝑗𝛷𝑠 𝑒−𝑗𝛷𝑠]𝑇,  

 𝑿(𝑓, 𝑘) = [𝑋1(𝑓, 𝑘) 𝑋2(𝑓, 𝑘)]𝑇and 𝑽(𝑓, 𝑘) = [𝑉1(𝑓, 𝑘) 𝑉2(𝑓, 𝑘)]𝑇 with symbol 𝑇 

indicates transpose operator. The equations (1-2) can be expressed as the above formulation: 

 

𝑿(𝑓, 𝑘) = 𝑆(𝑓, 𝑘)𝑫(𝑓, 𝜃𝑠) + 𝑽(𝑓, 𝑘) (3) 
 

In almost digital signal processing algorithm, the important requirements is finding an optimum 

appropriate solution 𝑾(𝑓, 𝑘), which adjust the final output signal �̂�(𝑓, 𝑘) is approximately the original 

𝑆(𝑓, 𝑘): 

 

�̂�(𝒇, 𝒌) = 𝑾𝐻(𝑓, 𝑘)𝑿(𝑓, 𝑘) (4) 
 

Where symbol 𝐻 is Hermitian conjugation. 

The constrained of saving the desired target speech while alleviating, minimizing the total output 

noise power without speech distortion can be expressed in a mathematical formulation as: 

 

𝑚𝑖𝑛
𝑾(𝑓, 𝑘)𝑾𝐻(𝑓, 𝑘)𝑷𝑉𝑉(𝑓, 𝑘)𝑾(𝑓, 𝑘) 𝑠. 𝑡. 𝑾𝐻(𝑓, 𝑘)𝑫(𝑓, 𝜃𝑠) = 1 (5) 

 

where 𝑷𝑉𝑉(𝑓, 𝑘) = 𝐸{𝑽(𝑓, 𝑘)𝑽∗(𝑓, 𝑘)} is a covariance matrix of noise signals. (5) leads to the 

coefficients of MVDR beamformer: 

 

𝑾(𝑓, 𝑘) =
𝑷𝑉𝑉

−1𝑫(𝑓, 𝜃𝑠)

𝑫𝐻(𝑓, 𝜃𝑠)𝑷𝑉𝑉
−1𝑫(𝑓, 𝜃𝑠)

 
(6) 

 

Unfortunately, in real - life recording situations, the information about noise often can’t be precisely 

calculated or correctly estimated. And the covariance matrix of observed microphone arrays signals is 

used instead of. 𝑷𝑋𝑋(𝑓, 𝑘) = 𝐸{𝑿(𝑓, 𝑘)𝑿∗(𝑓, 𝑘)} of received microphone signals are determined by: 

 

𝑷𝑋𝑋(𝑓, 𝑘) = {
𝑃𝑋1𝑋1

(𝑓, 𝑘) ∗ 1.001 𝑃𝑋1𝑋2
(𝑓, 𝑘)

𝑃𝑋2𝑋1
(𝑓, 𝑘) 𝑃𝑋2𝑋2

(𝑓, 𝑘) ∗ 1.001
} 

(7) 

 

where 𝑃𝑋𝑖𝑋𝑗
(𝑓, 𝑘), 𝑃𝑋𝑖𝑋𝑖

(𝑓, 𝑘), 𝑖, 𝑗 ∈ {1,2} computed as: 

 

𝑃𝑋𝑖𝑋𝑗
(𝑓, 𝑘) = (1 − 𝛼)𝑃𝑋𝑖𝑋𝑗

(𝑓, 𝑘 − 1) + 𝛼𝑋𝑖
∗(𝑓, 𝑘)𝑋𝑗(𝑓, 𝑘) (8) 



 

Where 𝛼 is the smoothing parameter, which in the range {0 … 1}. 

Finally, the received optimized solution of conventional MVDR beamformer is: 

𝑾(𝑓, 𝑘) =
𝑷𝑋𝑋

−1𝑫(𝑓, 𝜃𝑠)

𝑫𝐻(𝑓, 𝜃𝑠)𝑷𝑋𝑋
−1𝑫(𝑓, 𝜃𝑠)

 
(9) 

3. The suggested spectral mask 

The ideal of spectral mask 𝑆𝐿𝑀(𝑓, 𝑘) is based on the estimation of a priori SNR. And the 𝑆𝐿𝑀(𝑓, 𝑘) 

is derived in the following equation: 

 

𝑆𝐿𝑀(𝑓, 𝑘) =
1

1 + 𝑆𝑁𝑅(𝑓, 𝑘)
 

(10) 

 

In [26], an estimation of the signal - to - noise ratio is derived by: 

 

𝑆𝑁𝑅(𝑓, 𝑘) =
𝛤𝑛 − 𝛤𝑥

𝛤𝑥 − 𝛤𝑠
 

(11) 

 

Where 𝛤𝑥, 𝛤𝑠, 𝛤𝑛 is the coherence function between two microphone array signals, the complex 

coherence function of the desired signal and the coherence of surrounding noisy environment.  

We can predict the appropriate model, which presents exactly these coherence functions due to many 

factors. Based on the working [27], the authors use the formulation as: 

 

𝑆𝑁𝑅(𝑓, 𝑘) =
𝛤𝑛 − 𝑅𝑒{𝛤𝑠

∗𝛤𝑥}

𝑅𝑒{𝛤𝑠
∗𝛤𝑥} − 1

 
(11) 

Therefore, microphone array signal, 𝑋1(𝑓, 𝑘), 𝑋2(𝑓, 𝑘) are pre - processed as the following way to 

suppress the speech component. 

 

�̂�1(𝑓, 𝑘) = 𝑋1(𝑓, 𝑘) × 𝑆𝐿𝑀(𝑓, 𝑘) (12) 

�̂�2(𝑓, 𝑘) = 𝑋2(𝑓, 𝑘) × 𝑆𝐿𝑀(𝑓, 𝑘) (13) 
 

The spectral mask allows outperforming the MVDR’s evaluation more robust. In the next section, 

the authors demonstrated an experiment in coherence noise field. 

4. Experiments 

 

 
Figure 5: The illustrated scheme of experiment 



In this section, the author performed an illustrated experiment with a target desired speaker, who 

stand at distance 𝐿 = 2(𝑚) related to a DMA2 at direction 𝜃𝑠 = 900. The distance between two 

microphones is 𝑑 = 5(𝑐𝑚). The recording situation in a living room, where still exists coherence noise 

field. 

 The purpose is verifying the effectiveness of the proposed spectral mask (SLM) in comparison 

with the MVDR-conventional in terms of increasing the speech quality and reducing speech distortion. 

An objective measurement [18] is used for calculating the speech quality. The noisy signal is captured 

with DAM2 at 𝐹𝑠 = 16𝑘𝐻𝑧. For further signal processing, these necessarily parameters are used: 

𝑁𝐹𝐹𝑇 = 512, overlap 50%, smoothing parameter 𝛼 = 0.5. Figure 6 shows the waveform of 

microphone array signal.  

 

 
Figure 6: The waveform of microphone array signal 

  

By applying the conventional MVDR beamformer, the resulting output signal is derived in Figure 

7.  

 

 
Figure 7: The waveform of processed signal by MVDR - conventional 

 

 The spectral mask allows removing the speech component at the MVDR beamformer’s input 

and enhances the overall performance. The received signal is shown in Figure 8.   

 



 
Figure 8: The waveform of processed signal by using spectral mask - SLM 

 

In the comparison the energy of microphone array signal, the processed signals by MVDR – 

conventional and SLM, we can see that SLM reduced speech diction to 3.2 (dB), and increase the speech 

quality in terms of the signal-to-noise ratio (SNR) from 5.2 (dB) to 6.2 (dB). 

 

 
Figure 9: The energy of microphone array signal, MVDR – conventional and SLM 

 

Table 1. 

The signal-to-noise ratio (SNR)  

 

Method Estimation Microphone array 

signal 

MVDR - 

conventional 

SLM 

NIST STNR 3.5 18.3 23.6 

WADA SNR 1.7 19.5 25.7 

 

In this demonstrated experiment, the advantage of the suggested spectral mask has been proven. The 

obtained result is very promising in improvement of speech enhancement by MVDR beamformer, 

which is the most widely common installed MA configuration in almost acoustic device. Speech 

degradation or corrupted the output signal still a problem with digital signal processing algorithms, the 

author exploits the priori information about the direction of arrival of interest signal, the properties of 



surrounding environment to form an appropriate spectral mask to suppress the speech component and 

improve MVDR beamformer’s performance. The proposed method, which is easy to implement and 

owns low computation, can be applied into multi - microphones system. 

5. Conclusion 

Target speech separation methods extract desired speaker from noisy mixture of speech, background 

noise when interfering sources and third - party talker exits. These designed algorithms serve as 

essential front - ends for many speech communication systems, such as speech recognition, digital 

hearing aid devices, surveillance, smart home, speaker verification, teleconferencing systems. 

Consequently, digital signal processing by MA beamforming is an important part in almost speech 

applications. In this contribution, the author demonstrated an additive useful spectral mask, which 

suppresses the speech component in the MA signals to enhance the MVDR beamformer’s performance. 

The numerical results confirmed the suggested technique in terms of increasing the speech quality and 

perceptual quality metric of the final output signal from 5.2 (dB) to 6.2 (dB) and reducing speech 

distortion to 3.2 (dB). The author’s future working is combination with surrounding properties of 

recording situations to improve the MVDR beamformer’s enhancement.  
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