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Abstract  
Speech enhancement is one of the most vulnerable problems, which exists as a complex 

challenge task for scholars. Single channel - approach has the low computation and easy 

implementation, which almost use the spectral subtraction operation. However, this research 

direction leads to speech distortion in the scenarios with non - stationary environment. 

Consequently, microphone array technology is used for reducing speech distortion by using 

the priori information about spatial beampattern. Minimum Variance Distortionless Response 

owns high directional beampattern while suppressing all background noise, interference while 

preserving the certain direction target speaker. In realistic situations, the performance of 

MVDR beamformer is often corrupted due to many reasons, the different microphone array 

sensitivities, the error of the direction of arrival of interest signal or the imprecise array 

distribution. In this article, the author suggested using spectral mask, which uses the 

information of power level difference to enhance MVDR beamformer’s evaluation. The 

demonstrated experiment shows the improvement of speech enhancement with the signal-to-

noise ratio (SNR) from 2.0 (dB) to 3.1 (dB). 
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1. Introduction 

Target speech extracting digital signal processing algorithm separates the desired talker in an 

annoying complex environment when third - party speaker, interference, living equipment or 

background noise exit. These methods serve as an essential preprocessing front - end for several speech 

communication systems, such as speech acquisition, speech enhancement, surveillance devices, smart 

home, automatic speech recognition, human verification, and digital hearing - aid devices. With recent 

development of microphone array (MA) technique, several research about MA beamforming, which 

use the prior spatial information about the direction of arrival (DOA) of useful signal, the properties of 

surrounding recording environment. Minimum Variance Distortionless Response (MVDR) 

beamformer is one of the most suitable techniques, which installed in almost speech applications for 

suppressing background noise with speech distortion. 

However, the real - life performance always degraded due to the imprecise necessary parameters, 

undetermined estimation of DOA, that corrupt the MVDR beamformer’s evaluation. Therefore, an 

important problem is increasing the outperformed MVDR, which requires preserving the original 

speech component while alleviating the total output noise power. Much early direction research 

synthesizes the beamformer’s output after cooperating with the time - frequency (TF) spectral mask 

with the obtained microphone array signals [1 - 3]. Exploiting the noise phase plays a major role in 

improvement of speech quality and speech intelligibility [4 - 7]. Phase - aware T - F masks have been 
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categorized in two branches: complex ration mask [8] and phase - sensitive mask [3], [8], which have 

been proposed, evaluated, and enhanced the overall MVDR beamformer’s speech separation. 

 

 
Figure 1: The complex surrounding environment around the target speaker 

 

Besides T-F mask, several research, which avoids estimating the magnitude and phase parts [9], 

[10], which only operates directly on the time - domain of noisy mixture of microphone array signals. 

The approach, which uses the neural network (NN) - based speech separation systems that have been 

demonstrated. Many approaches [11], [12] replace the conventional STFT and inverse STFT signal 

processing by a learnable NN based encoder and decoder configuration for enhancing performance 

according to many objective measurements to extract the target speech. Purely NN - based speech 

separation system has obtained promising resulting numerical experiments since they greatly suppress 

the amount of the remaining noisy components or interfering third - party speech.  

 

 
Figure 2: The using of microphone array for extracting the desired talker 

 

Recently, the combination with the multi-channel Wiener filter [13 - 14], the linearly constrained 

minimum variance (LCMV) filter [15] has been proposed. Other beamformer, such as Generalized 

Eigenvalue (GEV) beamformer [16 - 17] aim to improve the signal - to - noise ratio (SNR) without 

decreasing the speech component has achieved many successful. Additionally, multi-frame MVDR 

(MF - MVDR) [18 - 20] have been adopted in single - channel speech separation systems to block the 

noise and ensure the purpose of distortionless of the obtained result. These studies prove that when 

oracle information is available, the MF - MVDR filter can diminish the interference and background 



noise while introducing very little distortion. The combination between T-F mask and NN has been 

studied in [21 - 24], that leads to more precise estimation of the speech and noise components, and 

better speech enhancement or speech recognition caused of fewer distortion and increasing the speech 

quality. 

 

 
Figure 3: Beampattern, the essential component of microphone array beamforming 

 

Many online MA beamforming techniques for purpose of signal processing real - time or time – 

varying. In [25], a recursive algorithm with heuristic updating factors to calculate the time - varying 

covariance matrix of speech and noise components. The authors [26 - 28] also use the smoothing factors 

to estimate the time - varying covariance matrices and allow better outperformed evaluation in noisy 

conditions. [29] presented a frame - level beamforming method and obtained achieved more robustness 

of MA beamforming. 

However, in many complex undetermined acoustical environments, these above literatures own 

speech distortion, which cause the degradation of the speech quality or speech intelligibility. The 

purpose of the presented work is to resolve this problem by using an additive spectral mask, which 

reduces the above unresolved lack. In this contribution, the authors proposed a new enhanced MVDR 

beamformer, which exploits an effective spectral mask. The resulting results prove that the suggested 

method allows increasing the speech quality in terms of the signal-to-noise ratio (SNR) from 2.0 to 3.1 

(dB), reducing the speech distortion to 8.0 (dB). The remaining section of this paper is organized as 

following way: Section II describes the brief of principal working of MVDR beamformer, Section III 

presents the proposed method. Section IV illustrates the evaluated experiments and Section V 

concludes.  

2. The signal model 

MVDR beamformer is based on the constrained mathematical problem of preserving the target 

signal at a certain direction while removing the background noise with minimum total output noise 

power. The criterion of saving desired signal is the beampattern at the direction of useful signal is equal 

1. The signal processing of MVDR beamformer can be expressed through the above formulation. 

In general speaking, we will consider the model signal with dual - microphone system (DMA2). The 

two captured microphone array signals can be derived as: 

 

𝑋1(𝑓, 𝑘) = 𝑆(𝑓, 𝑘)𝑒𝑗𝛷𝑠 + 𝑉1(𝑓, 𝑘) (1) 

𝑋2(𝑓, 𝑘) = 𝑆(𝑓, 𝑘)𝑒−𝑗𝛷𝑠 + 𝑉2(𝑓, 𝑘) (2) 
 

With the current frame 𝑘, current frequency 𝑓, the desired speech component 𝑆(𝑓, 𝑘), the additive 

noise 𝑉1(𝑓, 𝑘), 𝑉2(𝑓, 𝑘), 𝜃𝑠 direction of arrival of interest talker, the distance between two microphones 



𝑑, speed propagation of sound in the fresh air is 𝑐 (343 m/s), 𝜏0 = 𝑑/𝑐 is the sound delay and 𝛷𝑠 =
𝜋𝑓𝜏0𝑐𝑜𝑠(𝜃𝑠). 

 

 

.  

Figure 4: The principal working of MVDR beamformer 

 

With the predefined formulation: 𝑫(𝑓, 𝜃𝑠) = [𝑒𝑗𝛷𝑠 𝑒−𝑗𝛷𝑠 ]𝑇 is the steering vector, 𝑿(𝑓, 𝑘) =
[𝑋1(𝑓, 𝑘) 𝑋2(𝑓, 𝑘)]𝑇, 𝑽(𝑓, 𝑘) = [𝑉1(𝑓, 𝑘) 𝑉2(𝑓, 𝑘)]𝑇 with 𝑇 indicates transpose operator. The 

system (1-2) can be rewritten as: 

 

𝑿(𝑓, 𝑘) = 𝑆(𝑓, 𝑘)𝑫(𝑓, 𝜃𝑠) + 𝑽(𝑓, 𝑘) (3) 
 

In most of digital signal processing problem, the scholars need find an appropriate coefficient 

𝑾(𝑓, 𝑘), which can allow obtaining the final output signal �̂�(𝑓, 𝑘) ≈ 𝑆(𝑓, 𝑘): 

 

�̂�(𝒇, 𝒌) = 𝑾𝐻(𝑓, 𝑘)𝑿(𝑓, 𝑘) (4) 
 

The constrained criteria are illustrated as the following way: 

 
𝑚𝑖𝑛

𝑾(𝑓, 𝑘)𝑾𝐻(𝑓, 𝑘)𝑷𝑉𝑉(𝑓, 𝑘)𝑾(𝑓, 𝑘) 𝑠. 𝑡. 𝑾𝐻(𝑓, 𝑘)𝑫(𝑓, 𝜃𝑠) = 1 (5) 

 

where 𝑷𝑉𝑉(𝑓, 𝑘) = 𝐸{𝑽(𝑓, 𝑘)𝑽∗(𝑓, 𝑘)} is a covariance matrix of noise signals. The optimum 

coefficients of MVDR beamformer, which is derived from (5) can be expressed as: 

 

𝑾(𝑓, 𝑘) =
𝑷𝑉𝑉

−1𝑫(𝑓, 𝜃𝑠)

𝑫𝐻(𝑓, 𝜃𝑠)𝑷𝑉𝑉
−1𝑫(𝑓, 𝜃𝑠)

 
(6) 

 

However, in realistic situations, the information about covariance matrix of noise is not easy 

calculated, the covariance matrix of captured microphone array signals is used instead of. The final 

optimum solution for MVDR beamformer is achieved that: 

 

𝑾(𝑓, 𝑘) =
𝑷𝑋𝑋

−1𝑫(𝑓, 𝜃𝑠)

𝑫𝐻(𝑓, 𝜃𝑠)𝑷𝑋𝑋
−1𝑫(𝑓, 𝜃𝑠)

 
(7) 

 

𝑷𝑋𝑋(𝑓, 𝑘) = 𝐸{𝑿(𝑓, 𝑘)𝑿∗(𝑓, 𝑘)} of observed microphone signals are computed as: 

 



𝑷𝑋𝑋(𝑓, 𝑘) = {
𝑃𝑋1𝑋1

(𝑓, 𝑘) ∗ 1.001 𝑃𝑋1𝑋2
(𝑓, 𝑘)

𝑃𝑋2𝑋1
(𝑓, 𝑘) 𝑃𝑋2𝑋2

(𝑓, 𝑘) ∗ 1.001
} 

(8) 

 

where 𝑃𝑋𝑖𝑋𝑗
(𝑓, 𝑘), 𝑃𝑋𝑖𝑋𝑖

(𝑓, 𝑘), 𝑖, 𝑗 ∈ {1,2} are determined as: 

 

𝑃𝑋𝑖𝑋𝑗
(𝑓, 𝑘) = (1 − 𝛼)𝑃𝑋𝑖𝑋𝑗

(𝑓, 𝑘 − 1) + 𝛼𝑋𝑖
∗(𝑓, 𝑘)𝑋𝑗(𝑓, 𝑘) (9) 

In almost acoustic environments, the unwanted and imprecise factors also degrade the evaluation of 

MVDR beamformer. Speech distortion, corrupted speech quality is the lack in microphone array 

beamforming. In the next section, the author suggested a spectral mask for dealing this problem. 

3. The proposed spectral mask 

MA signal processing uses the spatio - temporal priori information, which is obtained from the 

configuration of MA with sound source, the coherence of background noise, or the MA signals. Spectral 

masks have been an attractive research direction for decades and play an essential role in the 

development of almost speech applications. And recently, the mask - based MA beamforming has 

attracted increased research due to their effectiveness of pre-processing signal, reducing the speech 

distortion, and improving total speech enhancement of system. 

In this section, the author proposed a spectral mask, 𝑚𝑠𝑝(𝑓, 𝑘), which suppresses the speech 

component at the recorded microphone array signals as the above approach: 

 

�̂�1(𝑓, 𝑘) = msp(𝑓, 𝑘) × 𝑋1(𝑓, 𝑘) (10) 
𝑋2(𝑓, 𝑘) = msp(𝑓, 𝑘) × 𝑋2(𝑓, 𝑘) (11) 

 
The ideal of suggested 𝑚𝑠𝑝(𝑓, 𝑘) based on the exponent function of the power level difference 

(PLD) as the following way: 

 

𝑃𝐿𝐷(𝑓, 𝑘) =  
𝑃𝑋1𝑋1

(𝑓, 𝑘)  −  𝑃𝑋2𝑋2
(𝑓, 𝑘)

𝑃𝑋1𝑋1
(𝑓, 𝑘) +  𝑃𝑋2𝑋2

(𝑓, 𝑘)
 

(12) 

msp(𝑓, 𝑘) =  𝑒−𝑃𝐿𝐷(𝑓,𝑘) (13) 
 

In the frame, in which only exits noisy component, 𝑃𝐿𝐷(𝑓, 𝑘) towards “0’, consequently the 

𝑚𝑠𝑝(𝑓, 𝑘) towards 1. In the presence of speech component, 𝑃𝐿𝐷(𝑓, 𝑘) often obtained value from 0.2 

to 0.5; therefore, 𝑚𝑠𝑝(𝑓, 𝑘) less than 1, consequently, the operator (10 -11) ensures block the speech 

component at microphone array signal 𝑋1(𝑓, 𝑘), 𝑋2(𝑓, 𝑘).  

In the next section, an experiment is performed to confirm the promising advantage of 𝑚𝑠𝑝(𝑓, 𝑘). 

4. Experiments 

In this section, the author demonstrated a promising experiment to rate the effectiveness of suggested 

method. DMA2 with two mounted microphones is one of the most suitable MA’s configurations in 

several acoustic equipment, which is common used for extracting the desired target speaker while 

eliminating the background noise, interferences or annoying noise. The author illustrated a talker, which 

stands at 2 (m) relative to the DMA2’s axis. The scheme is shown in Figure 5. 

The purpose of the experiment is comparison the promising performance of the proposed method 

(pro-sm-me) with the conventional MVDR beamformer (ctl-MVDR-beam). All microphone array 

signal are sampled at Fs = 16kHz. For further signal processing, the author used these necessary 

parameters: NFFT = 512, overlap 50%, the smoothing parameter 𝛼 = 0.5. An objective measurement 

[30] is used for calculating the speech quality in terms of the signal-to-noise ratio (SNR). The 

experiment is conducted in living room, where exits the other sound source or noise. 

 



 
Figure 5: The illustrated experiment with DMA2 

 

The waveform of the original microphone array signal is presented in Figure 6. 

 

 
Figure 6: The waveform of the original microphone array signal 

 

The waveform of processed signal by ctl-MVDR-beam is show in Figure 7. 

 

 
Figure 7: The waveform of processed signal by ctl-MVDR-beam 



 

The promising signal, which was derived by pro-sm-me, is expressed in Figure 8. 

 

 
Figure 8: The waveform of processed signal by pro-sm-me 

 

And the comparison of energy between the original microphone array signal, the processed signal 

by ctl-MVDR-beam, pro-sm-me are illustrated in Figure 9. 

 

 
Figure 9: The energy of microphone array signal, the processed signals by ctl-MVDR-beam, pro-

sm-me 

 

From these figures, we can see that the suggested technique allows better achieving result of speech 

enhancement. The SNR was increased from 2.0 (dB) to 3.1 (dB), and pro-sm-me reduces the speech 

distortion to 8.0 (dB). 

 

Table 1 

The signal - to - noise ratio (SNR) 

Method Estimation Microphone array 

signal 

ctl-MVDR-beam pro-sm-me 

NIST STNR 3.0 20.2 22.2 

WADA SNR 2.2 16.4 19.5 

 



Through the numerical results, the proposed method not only improves the overall MVDR 

beamformer’s performance, but also reduces the unwanted speech distortion. The proposed technique 

can be integrated into multi - microphone system to enhance the evaluation in real - life recording 

scenarios. 

Degraded MVDR beamformer’s performance is unavoidable problem in almost existing speech 

applications due to microphone mismatches, the error of the direction of arrival of  useful signal or the 

imprecise microphone array ‘s distribution or undetermined the properties of surrounding environment. 

These factors corrupt the signal processing and cause speech distortion or decreasing speech 

enhancement. Therefore, dealing the drawback of MVDR beamformer is essential problem, which was 

deal in this correspondence.  

5. Conclusion 

Speech enhancement plays a major role in numerous speech applications, such as hand-free 

communication, mobile phones, audio processing, stereo-sound systems. Digital signal processing 

algorithms are chosen based on the type of properties of surrounding environment, the recording 

configuration, and different noisy cases. MA uses the spatial beampattern to retrieve the desired clean 

speech component from noisy situations and becomes increasingly important. In this correspondence, 

the author proposed a new spectral mask. The results of this study clearly show that the spectral mask 

is an appropriate approach for dealing with the speech distortion in MA beamforming and enhancing 

the speech quality. 
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