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Abstract  
The paper proposes a method for clustering predicates of arbitrary dimensionality. To this end, 

a theorem of the general form of first-order predicate is formulated, which justifies the first-

order two-layer decomposition method of predicate, resulting in a predicate defined on a set of 

significantly smaller power than the original. This allows for the identification of conditions 

for the most effective identification of processes of human intellectual activity using the 

generalized comparator identification method. Additionally, a second-order two-layer 

decomposition method of predicate is developed, which is based on the concept of the general 

form of second-order predicate. Based on the combination of the concepts of two-layer 

decomposition of first and second-order predicate, a method of three-layer decomposition of 

predicate is developed. The resulting method of multilayer decomposition of predicate is 

suitable for building electronic circuits that implement arbitrary relationships. The predicate 

scheme is widely parallelized, resulting in its high performance. 
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1. Introduction 

In recent years, great attention has been paid to the development of new methods for parallel 

information processing. Practically all existing approaches [1-3] are based on the concepts of 

decomposition and composition in one way or another - be it programming, databases, neural networks, 

and so on. Therefore, the development of new theoretical methods of decomposition is a highly 

promising and interesting direction in algebraic logic. This work proposes a new method of multi-layer 

decomposition of predicates, which will be obtained from the generalized properties of comparator 

identification. 

In predicate algebra, comparator identification is widely used, which is a type of indirect 

identification [4, 5]. A comparator K is a device with m inputs y1, y2,…, ym and one output t, where 

t0, 1 is the binary reaction of the comparator. The comparator determines whether its input signals 

y1, y2,…, ym  are in a given relation K or not. Comparator identification is successfully applied in solving 

many artificial intelligence problems. In [5], its capabilities for alternative evaluation models in 

decision-making systems are shown. In [6], interesting results were obtained for the theory of color 

vision using the comparison method. This method is designed for investigating objects with input 

signals that are inaccessible for direct measurement. The subject of such identification is often the 

human intelligence. 
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In predicate algebra, during the comparator identification process, the identifiable object P 

implements a predicate Р (x1, x2, …, xm) = K(f1(x1), f2(x2), …, fm(xm)), referred to as the predicate of 

object P. The simplest task of comparator identification is to mathematically describe the output signals 

у1, у2, …, уm of processes f1, f2, …, fm and the processes themselves based on the given comparator and 

the known properties of object P. The comparator's behavior implements a predicate K (y1, y2,…, ym)=t, 

corresponding to the relation K. The identifiable processes f1, f2,…, fm. are connected to the inputs of 

the comparator by their outputs. Here, x1A1, x2A2,…, xmAm  are input signals of processes, while 

y1В1, y2В2,…, ym Вm  are their output signals. A1, A2,…, Am  are sets of input signals of processes, 

and В1, В2,…, Вm  are sets of output signals of processes. 

2. Generalization of the comparator identification method 

Let us consider the main concepts that will help us generalize the method of comparator 

identification to a wider class of predicates.  

Let E (x, y) be a predicate defined on the Cartesian product of a non-empty set M. Then the predicate 

E is called [7–9]: 

• reflexive if it satisfies the condition xМ E (x, х); 

• symmetric if it satisfies the condition ∀х, у ∈ М (Е(х, у) ⊃ Е(у, х)); 
• transitive if ∀x,y,z∈x, y, z M , from хЕу and уЕz result хЕz. 

Any reflexive, symmetric, and transitive predicate is called an equivalence predicate [1, 7]. 

Let N be a non-empty set, f – be a surjective function mapping set M to set N and let D – be the 

equality predicate defined on N x N with the condition: х, уN   D (х, у) = аN хауа.  

It is known [8, 9] that any predicate E on M x M expressed for any x, yM as  

     𝐸(𝑥, 𝑦) = 𝐷(𝑓(𝑥), 𝑓(𝑦)),                                                                    (1) 
is an equivalence predicate. The function f is called the characteristic function of the equivalence 

predicate. 

In predicate algebra, any equivalence predicates, and only they, can be represented in the general 

form (1) with a suitable choice of the set N and function f. From a mathematical point of view, this 

result is trivial, but it is very important for the theory of comparator identification because it indicates 

the necessary and sufficient features that can always be used to determine whether an object 

implementing the predicate E can be identified by the comparator method. 

If a system implements the predicate t=E (x, y), and this predicate satisfies the conditions of 

reflexivity, symmetry, and transitivity, then it can be identified using the comparator method. However, 

if at least one of these three conditions is not satisfied, then the comparator method is not applicable for 

such an object. These results of comparator identification can be applied to any physical objects that 

satisfy the aforementioned conditions. 

Above it has been shown that a pair (N, f), where f: M→N, determines a unique equivalence 

predicate E (x, y) =D(f(x), f(y)) on the set M M. However, does every equivalence predicate E uniquely 

determine the pair (N, f)? It turns out, no. There exist different pairs (N, f) and (N’, f’) that define the 

same equivalence predicate E. The property formulated below specifies the necessary and sufficient 

condition under which two pairs (N, f) and (N', f') determine the same equivalence predicate E. 

Statement 1. In order for two pairs (N, f) and (N', f') to define the same equivalence predicate E on 

the Cartesian product of the set M, it is necessary and sufficient for there to exist a bijection T between 

the domain of N and the range of N' such that for all xM f’(x)=T(f(x)). 

From Statement 1 it follows that if the equivalence predicate E (x, y) can be represented as (1) for 

any x, уM, then it can also be represented as 

Е(𝑥, 𝑦) = 𝐷(𝑇(𝑓(𝑥)), 𝑇(𝑓(𝑦))), (2) 
where T is an arbitrarily chosen bijection.  

It follows from statement 1 that if the predicate E is represented by two different methods Е (x, y)= 

=D(f(x), f(y))=D(f’(x), f’(y)), then there always exists a bijection T that links the functions f and f' by 

the dependence f’(x)=T(f(x)), which holds for any x ∈ M. Therefore, it is impossible to specify a unique 

characteristic function f for the equivalence predicate E. 
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Thus, if some function f is found that mathematically describes the identification object, then an 

entire family of other functions can also claim to describe this object. In other words, the output signals 

of the identification object through comparator identification allow for various options for mathematical 

descriptions. Such multiplicity of object representation may indicate the incompleteness of its 

description by the comparator identification method and, consequently, the disadvantage of this method 

compared to classical direct identification methods. In fact, the degree of completeness of object 

description in these two identification methods is absolutely the same. The fact is that in direct 

identification, the object description is obtained only by virtue of the fact that the method of describing 

its output signals was chosen before the identification process began. In the case of comparator 

identification, however, the method of describing the output signals is chosen in the identification 

process itself, and this is precisely what leads to multiple descriptions of the object.  

It is known that the comparator identification method describes an object up to isomorphism [4, 9]. 

Essentially, this means that comparator identification, just like direct identification, provides a unique 

description of the object up to notations. 

To solve problems of comparator identification, an important question is the issue of isomorphism 

of equivalence characteristic functions.  

Predicates Р and Р on А В и А В, are called weakly isomorphic (or simply isomorphic) if there 

exist bijective functions : A A and : В В,  such that for all xА and yВ the equality is satisfied: 

P (x, y) = P ((x), (y)).    (3) 

We also say that the predicate P(x, y) is isomorphic to the predicate P. The bijections  and  that 

satisfy condition (3) are called left and right isomorphisms of the predicates P and Р. 

The predicates Р (x, y) and Р(x, y) on sets А В and А В are called strongly isomorphic if there 

exists a bijection : AB→AB, such that for all xА and yВ, the equation is satisfied 

 P (x, y) =P ((x), (y)). (4) 

We will also say that predicate Р is -isomorphic to predicate Р. A bijection  that satisfies 

condition (4) is called an isomorphism of predicates Р and Р. 

The concepts of weak and strong isomorphisms of predicates play an important role in the theory of 

comparator identification. The point is that the choice of designations for the signals of the identified 

system is within the power of the researcher and is determined by the unit’s system adopted by him. If 

two researchers studying the behavior of the same system use different designations for its input signals, 

they will obtain different predicates for it. If all input signals of the same system under study are 

recorded by each researcher in a single (but their own) units’ system, then the predicates obtained by 

them will be strongly isomorphic, and if they are recorded in different systems, the predicates will be 

weakly isomorphic. In this case, it is said that the studied systems are identified up to designations 

(common or separate). In the case of strong isomorphism of predicates, it is said that the identified 

systems coincide up to designations in a single unit’s system. In the case of weak isomorphism of 

predicates, it is said that the identified systems coincide up to designations in different units’ systems. 

Statement 2. If АВ= and АВ=, then weakly isomorphic predicates Р and Р, defined on 

А   В and А В, will also be strongly isomorphic. 

In essence, this property means the following: two different descriptions of the same identifiable 

system P (x, y), whose input signals are defined on non-intersecting domains, always coincide up to 

strong isomorphism, i.e., they coincide up to the designation of input signals x and y of the system Р 

described in a unified notation system. 

Statement 3. If the equivalence predicates Е and Е on sets А А and А А weakly isomorphic, 

then they are also strongly isomorphic. 

The substantive content of property 3 means that the signals x and y of the equivalence predicate 

E (x, y) cannot be described in different notation systems, but only in the same one. To describe the 

system E (x, y) with an equivalence model, a researcher must express its output signals x and y in a 

single notation system. 

Statement 4. Let E be an equivalence predicate on А А and f: A B be its characteristic function. 

Then, equivalence relation E is isomorphic to equality relation D on В В if and only if  f  is injective. 

This statement determines in which cases a human perceives complete information about objects 

and in which cases not. Information is not lost when a person's sense organs assign a subjective image 

(regardless of what it is) to each object. However, if the number of images is less than the number of 
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perceived objects, some information about the objects is lost. For example, the human eye loses some 

information about light when perceiving light radiation. This is proven by the existence of different 

types of light radiation that appear as the same color to the eye. For instance, there is a mix of red and 

green monochromatic radiation that appears the same color as yellow monochromatic radiation. 

Let us now turn to the study of isomorphism of characteristic functions of equivalences. Suppose 

we have a signal transformer that implements a function у=f(х), which maps set A to set B. By renaming 

its input and output signals x and y using bijective maps : A B and : A B, we obtain x=(x), 

у=(y). As a result, the same signal transformer is now described by a different function у=f (x), 

which maps set A' to set B'. Using the inverse function, denoted by  -1, we express the function f' in 

terms of f: f (x) = (f ( (x)). Similarly, the function f is expressed in terms of f:  

𝑓(𝑥)  =   (𝑓( (𝑥)), (5) 

where    is the inverse function of the bijection . 

Let Е and Е be equivalences on А А and А А; D and D be equality predicates on В В and 

В  В.  

Statement 5. If the predicate E is -isomorphic to the predicate E', then there exists a bijection 

: A B, such that the function f (, )-isomorphic to the function f,  and the predicate D is 

- isomorphic to the predicate D. 

Statement 6. If the function f (, )-isomorphic to the function f, then the predicate E is 

- isomorphic to the predicate Е, and the predicate D is -isomorphic to the predicate D. 

It directly follows from statements 5 and 6 that the following property holds. 

Statement 7. For the equivalence E to be φ-isomorphic to the equivalence Е, it is necessary and 

sufficient for the function f to be (, )-isomorphic to the function f.  

The substance of statements (5)–(7) means that the behavior of E (x, y) = D(f(x), f(y)) of the identified 

system E, is fully determined (i.e., up to notation) by the action of the identified object f and vice versa. 

In addition, the action of the zero organ D (u, v) is fully determined both by the behavior of the system 

E and the action of the object f. All of the above indicates that the comparator method is an effective 

means of identifying the object f, the internal state u=f(x) of the system E, and the zero organ D (u, v). 

There is some inequality between the external behavior E of the test and the corresponding internal 

information process f since strong isomorphism of the predicates E and Е corresponds to weak 

isomorphism of the functions f and f. The following statement establishes a condition under which the 

predicate E and the function f become equal in this sense. 

Statement 8. In order for the -isomorphism of any equivalences E on А А and Е on А А to be 

equivalent to the -isomorphism of their characteristic functions f: A B, f: A B,  it is necessary 

and sufficient for the sets А and В, А and В to be disjoint. 

Statement 8 states that if it is required that objects and their images can be measured in the same 

system of physical units and always obtain the system's action in the form of an equivalence predicate, 

it is necessary to ensure that the set of all analyzed objects and the set of their images do not intersect. 

For example, when creating an artificial color vision system, colors as physical objects should be 

represented not by light emissions, but by some physical processes, such as magnetic fields. 

Thus, a comparator identification method is described for mathematically describing subjective 

phenomena. The behavior predicate Р of the subject allows determining the set of images or thoughts, 

as well as the intellectual functions of the human (perception, understanding, recognition) uniquely up 

to isomorphism. Human behavior in many cases allows description using an equivalence predicate. The 

question arises: is there another general form of a binary predicate, and what is it? Undoubtedly, there 

must be some general expression that gives some binary predicate. To answer this question, consider 

the following concepts. 

3. First-order two-layer decomposition of predicate 

Let us consider an arbitrary binary predicate P defined on А1 А2, and seek a representation for it, 

in which the comparison of the values of the two corresponding functions f1 and f2 is carried out using 
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a simple predicate, in some sense. This predicate should replace the equality predicate in formula (1). 

In order to obtain the required form of the predicate, let us first consider several important concepts. 

Statement 9. On accompanying equivalences. For any predicate P defined on the Cartesian 

product АВ, the predicates ЕL on АА and ЕR on ВВ of the form 

𝐸𝐿(𝑥1, 𝑥2)  =  𝑦𝐵 (𝑃(𝑥1, 𝑦)  𝑃(𝑥2, 𝑦)), (6) 

𝐸𝑅(𝑦1, 𝑦2)  =  𝑥𝐴 (𝑃(𝑥, 𝑦1) 𝑃(𝑥, 𝑦2)) (7) 

are equivalences. 

Statement 10. Generalization of the theorem on accompanying equivalences for a predicate of 

arbitrarity. For any predicate Р (х1, х2, … хn) on A1A2…A, the predicates Ei on AiAi (𝑖 = 1, 𝑛)  of 

the form 

              𝐸𝑖(𝑥′
𝑖, 𝑥′′

𝑖) =  ∀𝑥1 ∈ 𝐴1 ∀𝑥2 ∈ 𝐴2 … ∀𝑥𝑖−1 ∈ 𝐴𝑖−1∀𝑥𝑖+1 ∈ 𝐴𝑖+1 … ∀𝑥𝑛 ∈ 𝐴𝑛 

P(𝑥1, 𝑥2, …, 𝑥𝑖−1, 𝑥′𝑖, 𝑥𝑖+1, …, 𝑥𝑛)  P(𝑥1, 𝑥2, …, 𝑥𝑖−1, 𝑥′′𝑖, 𝑥𝑖+1, …, 𝑥𝑛) 
(8) 

are equivalences. 

The predicates ЕL and ЕR, defined by expressions (6) and (7), are called accompanying equivalences 

(left and right) of the predicate P. The predicate Ei, defined by expression (8), is called the i-th 

accompanying equivalence of the predicate P.  

Let Е and E1 be equivalences on АА. We will say that the equivalence E is embedded in the 

equivalence Е1 and write Е Е1, if for any х, уА from Е (х, у)=1 then Е1(х, у)=1. If Е Е1 and Е Е1, 

then we will write Е <Е1 and say that the equivalence E is strictly embedded in the equivalence E1. If  

Е <Е1, we will say that the partition R corresponding to the equivalence E is finer than the partition R1, 

corresponding to the equivalence Е1. We will also say that the partition R1 is coarser than the partition 

R. If Е Е1, then we will say that the partition R is finer than or equal to the partition R1. If Е Е1, then 

the partition R corresponding to the equivalence E is called a sub-partition of the partition R1, 

corresponding to the equivalence Е1. It is easy to see that the embedding relation defined on the set of 

equivalence predicates is reflexive, transitive, and antisymmetric, i.e., it is a partial order relation. 

Theorem 1. On the general form of a binary predicate of the 1-st order. Let P be a predicate on 

А1А2; ЕL and ЕR be its accompanying equivalences on А1 А1 and А2 А2, respectively; Е1 on А1 А1 

and Е2 on А2 А2 be equivalences that satisfy the conditions Е1 ЕL, Е2 ЕR; f1: A1 B1 and f2: A2 B2 

be characteristic functions of the equivalences Е1 and Е2 respectively. Then there exists a unique 

predicate L on В1 В2, such that for any хА1 and уА2 

𝑃(𝑥, y) =  L(𝑓1(𝑥), 𝑓2(𝑦)). (9) 

Expression (9) represents the general form of a binary predicate Р. Surjections f1 and f2 are called 

the characteristic functions (left and right) of predicate Р. Predicate L is called the image of predicate 

P under equivalences Е1 and Е2. Equivalences Е1 and Е2 can be taken as accompanying equivalences 

ЕL and ЕR, in which case predicate L takes on the simplest form and is called the absolute image of 

predicate P. 

Below, we describe a method for finding the image of a predicate. Given Р, f1 and f2, predicate L is 

found using the formula: 

𝐿(𝑣, 𝑤)  =  Р(𝑓1
−1(𝑣), 𝑓2

−1(𝑤)), (10) 
where f1

-1 and f2
-1 are inverse mappings of surjections f1 and f2. 

Theorem 1 can be extended to the case of an arbitrary n-ary predicate Р(х1, х2, ..., хn). In this case, 

the theorem can be formulated as follows. 

Statement 11. Let P be a predicate on на А1А2…Аn, Еic be its accompanying equivalence 

relation on Ai (𝑖 = 1, 𝑛), Еi be an equivalence relation satisfying the condition Еi Еic, fi: Ai  Bi be the 

characteristic function of equivalence relation Еi. Then there exists a unique predicate L on В1

В2…Bn such that for any х1А1, х2А2,…, хnАn 

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐿(𝑓1(𝑥1), 𝑓2(𝑥2), … , 𝑓𝑛(𝑥𝑛)).   (11) 
Expression (11) represents the general form of an n-ary predicate P.  

By representing the predicate in its general first-order form (9, 10), we have achieved that the 

maximum amount of information carried by predicate P about the relationships between the elements 

of sets А1 and А2, has been transferred to functions f1 and f2, while the comparator bears minimal burden. 

The following property states that by this comparator identification method, п objects f1, f2, ..., fn. 

can be identified exhaustively (i.e., up to notations). This means that even in the most general case, the 
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depth of analysis of objects using the comparator identification method is not inferior to that of direct 

identification method. 

Statement 12. Let the predicate Р(х1, х2,..., хn) be defined on the set А1А2 ... Аn, the predicate 

Р'(х'1, х'2,..., х'n) on the set А'1 А'2 ... А'n, and let the predicates L(v1, v2, ..., vn) and L'(v'1, v'2, ..., v'n) 

be defined on the sets В1 В2 ...Вn, В'1 В'2 ...В'n respectively, where L is the image of predicate 

P under equivalences Е1 Е2 ... Еn, and L' is the image of predicate P' under equivalences Е'1 Е'2
... Е'n. Suppose that the predicates P and Р' are (1, 2,..., n)-isomorphic, and that the predicates Еi 

and  Е'i are i-isomorphic, where i: Ai A'i, i=1, 𝑛. Then there exist bijections i: Ai A'i, i=1, 𝑛, 

such that the predicates L and L' (1, 2, ..., n) are isomorphic. 

Identification of human intellectual activity using this scheme opens the way to a mathematical 

description and artificial reproduction of such important aspects of the mind for machine intelligence 

as perception, understanding, recognition, and awareness. Undoubtedly, subjective states in the human 

brain are implemented in some, as yet poorly understood, material structures and processes. Clearly, 

direct identification methods are unacceptable in this case, since images of situations and meanings of 

texts, being subjective states of a human being, are inherently inaccessible to direct physical 

measurement. 

A first-order two-layer decomposition of predicate is called its decomposition into characteristic 

functions and images according to its general first-order form. The most important case for practice is 

the decomposition using accompanying equivalences. There is also a case of using equivalences nested 

in accompanying equivalences. 

4. Second-order two-layer decomposition of predicate 

It was previously mentioned that any equivalence predicate can be represented in the form (1), where 

f: А→В is a surjection, B is the set of images of the objects in set А; u= f(x) is the image of object x. 

The question arises: what form will the predicate E (type of predicate) take if an arbitrary mapping is 

used instead of a surjection f? To answer this question, the general form of the predicate needs to be 

slightly modified. The following statement provides the required modified form of the predicate E. 

Statement 13. On the variant of the general form of the equivalence predicate. Let F (x, u) be a 

predicate on A B, corresponding to the surjection f: A B, f(x)=u. Then the predicate E, whose values 

for any x, y А are expressed as  

𝐸(𝑥, 𝑦) = 𝑢 В (𝐹(𝑥, 𝑢)  𝐹(𝑦, 𝑢)), (12) 

is an equivalence relation on A. 

And vice versa: For any equivalence predicate E on A, there exist a set B and a well-defined, one-

to-one, and surjective predicate F on А В, such that for any x, y А equality (12) holds. 

The predicate F (x, u) is called the characteristic predicate of the equivalence. It uniquely determines 

the characteristic function f of the equivalence. It is important to have a method for constructing the 

characteristic predicate for any equivalence.  

Let us ask the following question: What kind of predicate E will we obtain if, in equality (12) that 

characterizes the general form of predicate E, we take an arbitrary predicate F(x, u) on A B instead of 

a surjective, one-to-one, and well-defined predicate F? That is, instead of the surjection f: A B, we 

take an arbitrary mapping f(x)=u, acting from A to B. To answer this question, we will consider some 

concepts.  

The predicate E on A А is called quasi-reflexive if it satisfies the condition 

∀𝑥 ∈ 𝐴((∃𝑦 ∈ 𝐴(𝐸(𝑥, 𝑦) ∨ 𝐸(𝑦, 𝑥))) ⊃ 𝐸(𝑥, 𝑥). (13) 

This property implies that the predicate E is reflexive, but not on the entire set A, but on some of its 

subset А, defined by the formula 𝐴′(𝑥) = ∃𝑦 ∈ 𝐵𝐸(𝑥, 𝑦). 

On the domain АА the predicate E is reflexive, but outside of it, i.e., for any хА or уА, this 

predicate becomes zero Е (х, у)0.  

A reflexive and symmetric predicate is called tolerant. A quasi-reflexive and symmetric predicate 

are called quasi-tolerant. After the natural restriction of the domain of the predicate E from A to АА, 

the quasi-reflexive predicate E on A А becomes a reflexive predicate E on АА. 

 
  

   
    



→ →

 →

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
→


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Statement 14. On the general form of a tolerant predicate. Let E be a predicate on BB. Then E 

is tolerant if and only if there exist a set A and a predicate F on BA,  such that  

a) for any x, yB  

𝐸(𝑥, 𝑦) = 𝑢𝐴 (𝐹(𝑥, 𝑢) 𝐹(𝑦, 𝑢)); (14) 

b) for any xB, the condition uA F (x, u) is satisfied.  

The expression of tolerance E given by formula (14) is referred to as its general form, and the 

predicate F is the characteristic predicate of tolerance. The mapping f corresponding to predicate F is 

called the characteristic mapping of tolerance.  

If all restrictions are removed from the predicate F, then the following theorem on the general form 

of quasi-tolerance predicate [10] holds, according to which the predicate E on BB is a quasi-tolerance 

if and only if there exists a set A and a predicate F on BA, such that equality (14) holds for any x, yB. 

If we replace the surjection f with an arbitrary (in general, partial and multivalued) mapping in the 

equivalence scheme E (x, y) =D(f(x), f(y)), we obtain the quasitolerant predicate E (x, y) = u, u B 

(F (x, u) F (x, u) D(u, u)). The equality predicate D (u, u)=1, if at least one of the values of f(x)=f(y) 

coincides, and F is a mapping defined everywhere. If we change the surjection f: А В in the scheme 

to the function f: А В, then nothing will change – we will get any equivalence on the left. Thus, 

quasitolerance is the most general case of a symmetric predicate.  

In conclusion, it should be noted that the general form for the most general case of a symmetric 

predicate, i.e., the quasitolerant predicate, has been obtained. If we remove the last restriction - the 

symmetry of the predicate E – the following theorem will be valid. 

Theorem 2. On the general form of a binary predicate of the 2-nd order. For any binary 

predicate E on A1 А2, there exist a set B and predicates F1 on А1B and F2 on А2B such that for any 

x1А1, x2А2, the following equality holds: 

𝐸(𝑥1, 𝑥2) =  𝑢В (𝐹1(𝑥1, 𝑢)  𝐹2(𝑥2, 𝑢)). (15) 

The formula (15), which represents the general form of a 2nd-order predicate Е (x1, x2), can be 

expressed differently as: 

𝐸(𝑥1, 𝑥2) = 𝑢В (𝐹1(𝑥1, 𝑢)  𝐹2(𝑥2, 𝑢)) = 𝐷𝐵(ℎ1(𝑥1), ℎ2(𝑥2)), (16) 

where DВ is a symmetric and reflexive predicate, which we define as follows 

𝑀1, 𝑀2  В      𝐷𝐵(𝑀1, 𝑀2) (𝑢 В   𝑀1(𝑢)  𝑀2(𝑢)). (17) 

It should be noted that in formula (16), h1 and h2 are not functions, as in the general form (9) of a 

1st-order binary predicate, but rather mappings, i.e., objects of a more general nature than functions. 

The predicate F1, which appears in expression (15), is called the left characteristic predicate of the 

predicate E, and F2 is the right characteristic predicate. 

Statement 15. Generalization of the general view theorem of the 2-nd order into n-ar 

predicates. For any predicate E on А1А2…Аn, there exist a set B and predicates Fi on АiB (𝑖 =

1, 𝑛) such that for any х1А1, х2А2, …, хnАn the equality holds: 

𝐸(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑢В (𝐹1(𝑥1, 𝑢)  𝐹2(𝑥2, 𝑢) … 𝐹𝑛(𝑥𝑛, 𝑢)), (18) 

where characteristic predicates Fi on АiB (𝑖 = 1, 𝑛) of the predicate E on А1А2…Аn can be found 

using the formula: 

𝐹𝑖(𝑥𝑖, 𝑢) = ∃𝑥1 ∈ 𝐴1∃𝑥2 ∈ 𝐴2 … ∃𝑥𝑖−1 ∈ 𝐴𝑖−1∃𝑥𝑖+1 ∈ 𝐴𝑖+1 … ∃𝑥𝑛 ∈ 𝐴𝑛 

S(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑢), 
(19) 

where S is a function that assigns different names u to all sets (x1, x2, …, хn), for which Е (x1, x2, …, 

хn) =1; В is the set of all such names. 

Expression (18) represents the general form of the 2nd kind predicate Е (x1, x2, …, хn) on А1
А2…Аn. 

In turn, the 2nd-order two-layer decomposition of a predicate is a representation of the predicate in 

its general 2nd-order form using formula (16). Thus, the representation of any predicate in its general 

2nd-order form has been considered. In this form of predicate representation, a certain classifying 

function appears that assigns names to all sets of variables. This property is very useful in describing 

the structures of many information objects (such as databases, microchip design) [11, 12]. 
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5. Three-layer predicate decomposition 

In the previous sections, two types of two-layer decomposition of predicates were considered – the 

first and second orders. Their combination results in a three-layer decomposition of the predicate, which 

completes the construction of the method of multi-layer decomposition of predicates. The first order of 

decomposition transforms the predicate E into a construction E(x, y) = L(f1(x), f2(y)), where f1 and f2 are 

functions, and L is a simpler predicate than E (defined on a set of smaller cardinality). The 2-nd order 

of decomposition transforms the predicate E into a construction of the form E(x, y) = DВ(h1(x), h2(y)), 

where h1 and h2 are mappings, i.e., objects of a more general nature than functions; DВ is a predicate 

defined by expression (17), the same for all predicates E, which in some sense is the simplest predicate.  

By performing a 2nd-order two-layer decomposition of the predicate L, it can be represented as L(v, 

w) = DВ(h1(v), h2(w)). Here, the mappings h1 and h2 have a special form: h1(v) = g1
-1(v), h2(w) = g2

-1(w), 

where g1: R→В1 and  g2: R→В2 are some functions, and h1: В1→R and h2: В2→R are mappings whose 

inverses are functions g1 and g2 , respectively. 

Thus, a three-layer decomposition gives a representation of the predicate E as: 

E(𝑥, 𝑦) = 𝐷𝐵(𝑔1
−1 (𝑓1(𝑥)), 𝑔2

−1 (𝑓2(𝑦))), (20) 

where f1, f2, g1, g2 are some functions. Rewriting formula (20) in a different way gives a more compact 

form of the multilayer decomposition of the predicate: 

Е(𝑥, 𝑦) = 𝐷𝐵(p, q) = ⋁ 𝑝𝜎

𝜎∈𝐵

𝑞𝜎 = 𝑡. (21) 

We will interpret the obtained result in technical terms. The signal transformer E (Figure 1a) is 

transformed into a two-layer connection of blocks f1, f2, L with intermediate signals v and w (Figure 1b). 

The signal transformer L, in turn, is transformed into a two-layer connection of blocks DB, g1
-1 и g2

-1.  

As a result, we obtain a three-layer connection of blocks DB, g1
-1, g2

-1, f1 and f2 with intermediate signals 

v, w and p, q (Figure 1c). In it, the blocks that implement the functions f1 and g1,  f2 and g2, are included 

in reverse order. Above, it was shown how the functions g1 and g2 are practically sought.  

 

 
                a)                                                 b)                                                  c) 

Figure 1: Signal transformation schemes 

 

In this section, a method was developed for constructing schemes that implement arbitrary relations, 

and relations, as is known, represent a universal tool for modeling any objects and processes. It is 

important to note that the brain also implements relations, and no other neural structures have been 

found in the brain [1, 2]. It is natural to assume that the principle of brain operation is also based on a 

three-layer decomposition of predicates. The mathematical results of the work can be used in systems 

for automatic processing of textual information (effective support and implementation of databases, 

knowledge bases, expert systems, etc.), as well as in automated design of new information technologies. 



6. Applying multi-layer predicate decomposition in the example of modeling 
linguistic relations 

It is well known that predicate logic is a natural and convenient tool for modeling natural language 

relations. This tool satisfies all the requirements imposed on language formalizations. Moreover, all 

types of language processing are reduced to solving algebraic equations with different input data. 

Predicate logic is highly formalized and well-studied. It is designed to describe a very limited part of 

semantics, the one that deals with the truth or falsity of statements. Nevertheless, its elements – logical 

connectives, quantifiers, and especially predicates - allow for a broader range of applications. 

To enable a computer to understand natural language, it is not only necessary to break down the 

language into its basic elements and input this information into the computer, but also to create a 

complete system for natural language processing [13–15]. 

Special importance in word inflection is played by the endings of word forms (flexional morphemes 

or simply flexions). In language morphology, there exists a certain dependency (relationship) between 

flexion and the surrounding text. The task is to mathematically describe the existing dependency, i.e. 

formalize the concept of flexion. The text surrounding the ending is heterogeneous with respect to it. 

We will distinguish between the proximate text (bordering the ending directly in the word form) and 

the distant text (bordering the word form). According to the principle of unambiguousness, the ending 

always unambiguously depends on its meaning. This principle can be interpreted as a requirement for 

completeness of the set of features used to select the ending. We will call the set of features complete 

if it ensures unambiguousness of the selection of the corresponding flexion for any feature values. A 

set of features that satisfies the completeness requirement will be considered meaningful. 

Let us describe the mathematical formulation of the task of flexional processing of complete non-

possessive adjectives in the Ukrainian language. In other words, the task is to formally describe the 

morphological predicate Р (X, Y, Z), which is the model of flexional processing of Ukrainian adjectives. 

Thus, it is necessary to form a three-letter ending Z=z1z2z3 of the word form X depending on the set of 

grammatical features Y. In the Ukrainian language, there are 24 endings of complete non-possessive 

adjectives. 

ий, им, их, ими, і, ій, ім, іх, іми, ого, ому, ої, ою, а, я, у, ю, е, є, ї, їй, їм, їх, їми. 

The influence of the word X on the first, second, and third letters of the ending (z1, z2, z3) can be 

unambiguously characterized by the set of features Х=(х1, х2, х3), where х1 is the feature of the last letter 

of the stem with values of  б, в, г, д, ж, з, к, л, м, н, п, р, с, т, у, ф, х, ц, ч, ш, щ, ь; х2 is the feature of 

the stress on the stem with values of у – stressed, б – unstressed; х3 is the feature of softening of the 

stem with values of м – soft, т – hard. 

Let's write the domains of the introduced variables: 

z1
а   z1

е   z1
є   z1

и   z1
і   z1

ї   z1
о   z1

у   z1
ю   z1

я = 1, 

z2
г   z2

ї   z2
й   z2

м   z2
х   z2

ю = 1, 

z3
и   z3

о   z3
у   z3

- = 1, 

х1
б   х1

в   х1
г   х1

д   х1
ж   х1

з   х1
к   х1

л   х1
м   х1

н   

  х1
п   х1

р   х1
с   х1

т   х1
ф   х1

х   х1
ц   х1

ч   х1
ш   х1

щ   х1
ь = 1, 

х2
у   х2

б = 1,            

х3
м   х3

т = 1. 

(22) 

Linguistic studies [16, 17] have shown that it is necessary to introduce four grammatical features 

Y=(у1, у2, у3, у4), that unambiguously characterize the influence of the distant text Y on the ending Z, 

where у1 is the case with values н – nominative, р – genitive, д – dative, з – accusative, о – instrumental, 

м – locative; у2 is gender with values м – masculine, ж – feminine, с – neuter; у3 is number with values 

е – singular, м – plural; у4 is animacy with values о – animate, н – inanimate. Let us write the domains 

of definition for the introduced variables: 

у1
н   у1

р   у1
д   у1

з   у1
о   у1

м = 1,        у2
м   у2

ж   у2
с = 1, 

у3
е   у3

м = 1,      у4
н   у4

о = 1, 
(23) 

The morphological predicate Р (X, Y, Z) corresponds to the function Z=Р (X, Y). In order to express 

this function in a compact form, we will use the first-order two-layer decomposition. Let us introduce 

the functions a=(x) and t=(y), and then write the desired function as z=(а, t). Now let us write the 

function a=(x), but first, to avoid cluttering the notation, we introduce some symbols: 



Пригол(х1)= х1
б   х1

в   х1
д   х1

з   х1
л   х1

м   х1
н   х1

п   х1
р   х1

с   х1
т   х1

ф; 

Зяз(х1) = х1
г   х1

к   х1
х; 

Шипл(х1) = х1
ж   х1

ч   х1
ш   х1

щ; 

Гол(х1)= х1
а   х1

е   х1
є   х1

и   х1
і   х1

о   х1
у   х1

ю   х1
я. 

(24) 

It should be noted that in the Ukrainian language, there are no adjectives with stems that end in -е, 

- и, -ї, -о, -у, -ю or a soft consonant in an unstressed syllable. Taking into account the aforementioned 

fact and the introduced notations, the function a will be expressed as follows: 

(х1
ц   Сог(х1)) х3

т   Зяз(х1)   Шипл(х1)   х1
йх2

у = а1; 

Зяз(х1)   Шипл(х1) х2
б  = а2; 

(Пригол(х1)   х1
ь) х2

у х3
м = а3; 

(Гол(х1)   х1
й) х2

у = а4; 

Пригол(х1)х3
т   х1

ц  х3
т х2

б = а5. 

Шип(х1) х2
у = а6. 

(25) 

The function t=(y) will have the following form: 

(у1
н   у1

з у4
н) у2

м у3
е = t1; 

(у1
р   у1

з у4
о) у2

м у3
е   у1

р у2
с у3

е = t2; 

у1
д (у2

м   у2
с) у3

е = t3; 

у1
о (у2

м   у2
с) у3

е   у1
д у3

м = t4; 

у1
м (у2

м   у2
с) у3

е = t5; 

у1
н у2

ж у3
е = t6; 

(у1
д   у1

о   у1
м) у2

ж у3
е= t7; 

у1
з у2

ж у3
е = t8; 

у1
о у2

ж у3
е = t9; 

(у1
н   у1

з) у2
с у3

е = t10; 

(у1
н   у1

з у4
н) у3

м = t11; 

(у1
р   у1

з у4
о   у1

м) у3
м = t12; 

у1
о у3

м = t13; 

у1
р у2

ж у3
е = t14. 

(26) 

Formulas (25) and (26) show that a word affects the endings of the full form of non-possessive 

adjectives in 6 different ways, and a text in 14 different ways.  

As a result, we get a function z=(а, t) of the following form: 

z1 
и z2 

й z3
- = a1 t1; 

z1 
и z2 

х z3
- = a1 t12; 

z1 
и z2 

м z3
- = a1 t4; 

z1 
и z2 

м z3 
и = a1 t13; 

z1 
і z2 

й z3
- = (a2 a3) (t1 t7); 

z1 
і z2 

- z3
- = (a2 a3 a6) t11; 

z1 
і z2 

м z3
- = (a2 a3) (t4 t5); 

z1 
і z2 

х z3
- = (a2 a3) t12; 

z1 
і z2 

м z3
и = (a2 a3) t13; 

z1 
о z2 

г z3 
о = (a1 a3) t2; 

z1 
о z2 

м z3 
у = (a1 a3) (t3 t5); 

z1 
о z2 

ї z3
- = (a2 a5) t14; 

z1 
о z2 

ю z3
- = (a2 a5) t9; 

z1 
ї z2 

- z3
- = a4 t11; 

z1
ї z2 

м z3
- = a4 t4; 

z1 
ї z2 

м z3 
и = a4  t13; 

z1 
ї z2 

х z3
- = a4 t12; 

z1 
ї z2 

й z3 
- = a4 t1; 

z1 
а z2 

- z3 
- = a1 t6; 

z1 
у z2 

- z3 
- = a1 t8; 

z1 
е z2 

- z3 
- = a1 t10; 

z1 
я z2 

- z3 
- = (a3 a4) t6; 

z1 
ю z2 

- z3
- = (a3 a4)  t8; 

(27) 



z1 
є z2 

- z3
- = (a3 a4)  t10. 

Thus, formulas (23) – (27) form a model of the flexion of adjectives in the Ukrainian language. It is 

evident that processing such a system of equations is extremely difficult and it is necessary to further 

decompose the original morphological predicate P(X, Y, Z) as described above, i.e., to perform its 

binarization and then exclude uninformative variable pairs from consideration. Similarly, it is possible 

to describe the declension of all adjectives, nouns, pronouns, and numerals, as well as the conjugation 

of verbs. Naturally, formalizing the concept of flexion for each part of speech presents certain problems. 

The results obtained in this work can find broad applications in various areas of human activity 

related to computer and information technologies. The most promising direction is the creation of a new 

generation computer based on the principles of parallel information processing [18]. Clearly, if various 

regularities of natural language are described using the two-layer decomposition method of 1st and 2nd 

order predicates and microprocessors are built on this basis, they will be able to perform the functions 

of certain structures of human intelligence that participate in the implementation of corresponding 

aspects of human language activity. 

7. Conclusions 

The scientific problem of developing algebraic methods for predicate decomposition for the formal 

analysis of information processes, particularly for the formal representation of natural language text 

semantics, has been solved in this work. 

A series of theorems have been considered and proven, characterizing the method of comparator 

identification, which is a method suitable for studying and modeling subjective states of a person. By 

representing the predicate in its general form of the first kind (9), we have achieved that the maximum 

possible amount of information carried by the predicate R about the relationships between elements of 

the sets А1 and А2 has been transferred to the functions f1 and f2, while the comparator L bears a minimal 

load. This general form of the predicate is a new model of comparator identification. The relationship 

between the types of isomorphisms of the model of comparator identification (equivalence predicate) 

and the practical features of measuring input signals has been investigated, which allowed the theory of 

comparator identification to be developed for a wider class of objects. 

We were also able to present the predicate in its general form of the 2nd kind, which gives the 

researcher even more opportunities for formalizing any relations in logic algebra. The combination of 

the two-layer decomposition of the 1st and 2nd order made it possible to obtain a three-layer 

decomposition of any predicate of any dimensionality. This representation of the predicate, and 

therefore the relation, allows for parallel processing of information, which significantly speeds up the 

process of formalization and brings it closer to the workings of the human brain. 

 The development of formal representation methods for arbitrary relations and their subsequent 

schematic implementation contributes to the development of artificial intelligence systems and the 

improvement of the process of automated design of digital devices, which can, in particular, be part of 

an intelligent interface, computer-aided design and learning systems, expert systems, decision support 

systems, etc. 
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