
Cluster Analysis of Discussions Change Dynamics on Twitter
about War in Ukraine

Sofiia Mainych
1, Alina Bulhakova

1 and Victoria Vysotska
1,2

1 Lviv Polytechnic National University, S. Bandera Street, 12, Lviv, 79013, Ukraine
2 Osnabrück University, Friedrich-Janssen-Str. 1, Osnabrück, 49076, Germany

Abstract
The article analyzes the dynamics of changes in the pace and directions of discussion of the

russian-Ukrainian war on Twitter based on a set of thematic hashtags from February 23, 2022.

A cluster analysis of popular tweets was conducted. The object of the study is the analysis of

the discussion of the russian-Ukrainian war on Twitter. Data on the number of tweets and

hashtags related to this topic of discussion from the beginning of the war were used for the

analysis. The largest share of all hashtags was #Ukraine, followed by #NATO and

#UkrainerussiaWar, respectively. At the beginning of the war (the first week), information

about the situation in Ukraine became a kind of explosion in the media space of the world. The

number of comments, posts, "tweets" on this topic reached a record high of 4,000,000. After a

week, this trend changed dramatically - the number of discussions decreased significantly. This

is due in particular to the fact that the crisis stage has passed (there has been a lot of information,

it is no longer so "interesting" for the world). Although it is also worth saying that this decrease

continued to a specific mark. For 50 days from the start of the invasion, the number of

publications decreased from 4,000 thousand to 500 thousand. At the level of 500 thousand, the

number is maintained until now (with insignificant deviations during certain military events).

We can assume that under constant circumstances, without significant changes, this trend will

take on a downward trend. At the same time, if the circumstances change, it is impossible to

make objective assumptions. Another interesting conclusion can be that during the cluster

analysis, it was found that the world focuses more on Ukraine, as a victim of the war, than on

russia, as the aggressor. Also, a large share of foreigners supports the initiative to help Ukraine

(in particular, the issue of joining NATO). On the contrary, it should not be forgotten that the

assumptions "support" - "do not support" are not objective, since people tagging the NATO

hashtag can also write negative posts. A fair statement would be the following: foreigners are

concerned about the situation in Ukraine and its request for protection from NATO.

Keywords 1
Хештег, пост, Twitter, #Ukraine, #NATO, #UkrainerussiaWar, кластерний аналіз

1. Introduction

Continuous consumption of information content from the Internet over the last year has already

become a new daily habit for most Ukrainians, especially from YouTube and various social networks
such as Telegram, Twitter, Facebook and others [1].

The Kyiv International Institute of Sociology conducted a survey commissioned by the OPORA

Civic Network from May 19 to 24, 2022, among 2,009 adult citizens of Ukraine who at that time were

in the territory of Ukraine controlled by the Ukrainian authorities [2]. The results showed the following
distribution of popularity of sources of operational news among surveyed Ukrainians: 76.6% - social

networks (77.9% of men and 75.5% of women), 66.7% – television (predominance among women -

70.4%), 61.2% – Internet sources without social networks (predominance among men – 63.5%), 28.4%

COLINS-2023: 7th International Conference on Computational Linguistics and Intelligent Systems, April 20–21, 2023, Kharkiv, Ukraine

EMAIL: sofiia.mainych.sa.2020@lpnu.ua (S. Mainych); alina.bulhakova.sa.2020@lpnu.ua (A. Bulhakova); victoria.a.vysotska@lpnu.ua (V.

Vysotska)

ORCID: 0000-0002-6449-5386 (S. Mainych); 0000-0002-6726-8859 (A. Bulhakova); 0000-0001-6417-3689 (V. Vysotska)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

– radio and 15.7% – print mass media. Young people generally get their news from social media (92%),
compared to the older, middle-aged generation (64%). The latter also prefer the Internet without social

networks (60%). Older people prefer television (78%), radio (36%) and sometimes print media (20%).

Rural residents are more likely to watch television (71.3% versus 64.4% in cities) and read print

media (21.5% versus 12.7%). On the other hand, townspeople more often consume news via the Internet
(64% vs. 55.6% in the village), social networks (79.2% vs. 71.4%), and radio (28.5% vs. 28.2%) [3].

In Western Ukraine, more people watch television (73.5%), read print media (23.2%) and listen to

the radio (34.6%). On the other hand, in eastern Ukraine, internet media are read the most (63.2%).
Social networks as a source of news are most actively used in southern Ukraine (77.8%) [1-3].

The main question to be investigated is the verification of the trend of interest regarding the situation

in Ukraine in the world (by time). First of all, we can put forward the following hypothesis: "At the
beginning of the war (the first few days-weeks), the number of publications (tweets) on the Internet

increased rapidly, after that it remained at approximately the same level for a certain time, later (let's

say a month later) interest is still higher, than it was before the reference point (the beginning of the

war), and yet it has already significantly decreased compared to the maximum value." The presented
hypothesis is based on completely logical ideas about the state of the media when riots, wars, and coups

suddenly begin. The news, which originated in one media space, spreads around the world with

extraordinary speed. People are interested in knowing details and predictions, both true and fake. Later,
when the state of affect passes and the world is already better informed about the situation, this interest

gradually subsides. But since this hypothesis is still purely empirical, a study was conducted, the results

of which are presented in this report. The purpose of this work is to verify the proposed hypothesis
using data analysis from the selected dataset on the topic "Discussion of the russian-Ukrainian war on

Twitter".

2. Related works

After the escalation of russia's war with Ukraine on February 24, 2022, the top 3 social networks,
where Ukrainians get information, changed somewhat [1-2]. Yes, YouTube remains the most stable in

the lives of Ukrainians - year after year, starting in 2019, it ranks second in Ukraine as a source of news.

In 2019-2021, the ranking of social networks remained almost unchanged, with the exception of 2019,

when the third most popular messenger was Viber. However, after the start of the full-scale invasion,
Facebook for the first time gave up its positions to Telegram and moved all the way to third place. Thus,

among 76.6% of citizens who use social networks as a source of information, 66% choose Telegram,

61% choose YouTube, and another 58% choose Facebook. Less popular news sources for Ukrainians
during the war were Viber (48%), Instagram (29%), TikTok (19.5%) and Twitter (8.9%).

The war exposed russian propaganda and changed the perception of Ukraine in the world, says Nina

Yankovich, vice-president of the "Center for Information Resilience" project [3]. russian disinformation

has played a crucial role in the war against Ukraine since 2014, although this role has changed
somewhat. Now we have become more aware of russia's intentions in Ukraine. Starting from 2022, the

russian information war in Ukraine is actually failing. Ukraine has shown the world its extraordinary

resilience, amazing creativity and authenticity in communications. The aggressor, russia, has become
less sophisticated in disseminating its disinformation, as social networks have learned to counter bots

and trolls. Therefore, there is less of such an artificial increase in informational emissions now. When

the full-scale invasion first began, people had a lot of questions about Ukraine. American publications
covered this conflict qualitatively: almost all of them now have correspondents in Ukraine. Ukraine's

constant presence in the international media has been incredibly important in filling the gaps that many

Americans have. There is a false impression that fighting disinformation means stifling freedom of

speech, as imposing restrictions on expression. This is not always true.
Social media is an important public platform for many democracies and autocracies around the

world, and without it, people resisting authoritarian regimes would have no voice [3]. Therefore, it is

very important that these multi-billion dollar corporations invest in people who actually understand the
context of what is happening in the country and develop regional offices. If Twitter, for example, claims

to be a voice for free speech and democracy, then it should support the democratic side of this conflict,

which is fighting for freedom. Also, if we're talking about content sharing and freedom of speech, social

networks should definitely allow users to share and document what they experience in their daily lives.
And any platform that doesn't, in my opinion, violates freedom of expression.

There is a huge interest in what is happening in Ukraine, and authentic content from "real people" is

one of the most effective ways to fight disinformation [1-3].

Many Ukrainians are rapidly gaining hundreds of thousands of followers by telling stories about
Ukraine. There is a huge interest in what is happening in Ukraine, and authentic content from "real

people" is one of the most effective ways to combat disinformation. Every well-told story is the perfect

antidote to propaganda. Because it's not just fact-checking or myth-busting, it's the real experience of
ordinary people. And it allows people living in the West with their simple, predictable lives to put

themselves in the shoes of people living in Ukraine, and it's extremely powerful. It is now much more

difficult to create a fake account and impersonate someone. Social networks have found ways to
recognize such accounts. And Americans have also become more savvy: they show this behavior more

often. It is still an actual threat. Aggressor russia finds ways to manipulate our discourse on the Internet.

But this threat is not as straightforward as before.

American businessman, founder of SpaceX and CEO of Tesla, Elon Musk, reported on May 18 that,
according to his calculations, 50% of Twitter accounts are bots [4-7]. Twitter's new identity verification

system has led to a boom in fakes. Perhaps Elon Musk is all too aware of how Twitter can influence

politics, politicians and political debates around the world, and is taking advantage of it. Previously,
Twitter said that only 5% of accounts on the social network are fake. After that, Musk suspended the

deal to buy the company. He also stated that "the deal cannot move forward" unless Twitter provides

evidence that the number of bots does not exceed 5% of daily active users per month during the quarter
[8]. At a conference in Miami, the businessman said that fake users make up at least 20% of all Twitter

accounts, and suggested that the figure could be as high as 90%. He also revealed that his team will

conduct its own audit of 100 random Twitter accounts to identify the number of fake ones. After these

statements, according to Musk, Twitter lawyers accused him of violating the rules of non-disclosure of
information (NDA) [9]. The head of Twitter's security department noted that the new policy is designed

to "help protect discussions on Twitter, starting with a focus on the russian invasion of Ukraine." On

May 19, the Twitter company introduced a new policy "to combat misinformation during a crisis",
which provides that false content about the war in Ukraine will be marked with special marks [10].

Twitter may add a warning to a post if it contains:

 false information that incorrectly characterizes the conditions on the ground during the

development of the conflict;

 false statements about the use of force, encroachment on territorial sovereignty or the use of

weapons;

 knowingly false or misleading statements about war crimes or mass atrocities against certain
population groups;

 false information about the reaction of the international community, sanctions, defensive

actions or humanitarian operations.

Under the new policy, the social network will not recommend or share tweets that have been
identified as false. Twitter will also limit the spread of such information: users will not be able to like,

retweet or share content that violates the new rules. This change is part of a broader promotion of

truthful information during a conflict or crisis following the Soviet invasion of Ukraine.
Twitter's head of security and corporate ethics, Yoel Roth, noted that the new policy is designed to

help protect discussions on Twitter, starting with a focus on the russian invasion of Ukraine [11]. These

rules will focus on potentially dangerous misinformation about alleged war crimes, armed conflicts,

humanitarian crises, etc.
We will remind, on February 26, the Twitter social network blocked the possibility of registering

accounts in russia [12]. For users from Ukraine and russia, the social network has suspended advertising

and some recommendations for tweets from people they are not following. This was done to reduce the
spread of offensive content. On February 28, Twitter began flagging russian state media. Then, in four

days, the social network recorded more than 45,000 tweets per day with links to russian state media,

but as of March 11, Twitter saw a drop in impressions. On March 11, the social network began flagging
the accounts of state media in Belarus [13]. On March 17, the social network deleted or marked as

unreliable more than 50,000 messages containing false information about russia's war against Ukraine

[14-21]. That is why this social network itself was chosen to analyse the discussion of the russian-
Ukrainian war on Twitter (the number of hashtags related to this topic from February 23, 2022 - from

the beginning of the full-scale war of russia against Ukraine).

3. Methods and materials

The following datasets were used for this work:

 general statistics of the daily number of tweets during 23.02-22.09:
https://github.com/alexdrk14/RussiaUkraineWar/blob/main/data/daily_stats.csv (Fig. 1);

 statistics of the use of various hashtags related to the russian-Ukrainian war of 2022:

https://github.com/alexdrk14/RussiaUkraineWar/blob/main/data/daily_hashtags.csv.

We will process the data in several stages, in particular: graphic representation of trends, calculations
of correlations (relationships between data) and cluster analysis. First of all, in any work with data, it is

necessary to properly organize them for further processing. The first type of presentation of the received

information is a tabular presentation. In addition to tables, graphs are a widely applicable way of

presenting data. With their help, you can visually see certain patterns, establish the type of connection,
and even roughly predict the behavior of a particular process. The main difference from a table is that

in a graph we have to clearly specify some relationship that we want to investigate, unlike a table, which

helps to quickly navigate a large volume of data.

Figure 1: Dataset loading result

Data for table presentation: number of tweets per day (9 subtables in Fig. 2).

Figure 2: Presentation of data in the form of a report table

Data for graphic representation: number of tweets per day since the start of the war:

Figure 3: Plotting in the Cartesian coordinate system for dynamics of discussion about russian-
Ukrainian war (x is day of war, y is the amount of tweets inthousands

Formulas for the transition to polar coordinates:
𝑟2 = 𝑦2 + 𝑥2

𝜑 =

{

 𝑎𝑟𝑐𝑡𝑔(

𝑦

𝑥
) 𝑥 > 0, 𝑦 ≥ 0

𝑎𝑟𝑐𝑡𝑔 (
𝑦

𝑥
) + 2𝜋 𝑥 > 0, 𝑦 < 0

𝑎𝑟𝑐𝑡𝑔 (
𝑦

𝑥
) + 𝜋 𝑥 < 0

𝜋

2
 𝑥 = 0, 𝑦 > 0

3𝜋

2
 𝑥 = 0, 𝑦 < 0

Data for graphical representation: ratio of hashtags #StopRussian and #StandWithUkraine.

Figure 4: Graphing in the polar coordinate system

As we can already see from Fig. 1-4, the number of "references" to the war is much greater at the
beginning of the war and significantly decreases over time. The graph of the Cartesian coordinate

system clearly shows this rapid drop in quantity to a certain number, after which the quantity is

maintained at a roughly constant level. The next important step in research is computation. As already
mentioned, the hypothesis that was put forward has no "numerical" basis, and it is this problem that is

solved by quantitative characteristics. We will use for work (Fig. 5):

 Mean – arithmetic mean (a measure of central tendency that reflects the most characteristic

value for this sample): �̅� =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 ;

 Sd – standard deviation (a measure of variation of a characteristic that reflects the amount of

its spread relative to the arithmetic mean): 𝜎 = √
∑ (𝑥𝑖−�̅�)

2𝑛
𝑖=1

𝑛−1
;

 Median – median (the value that divides an ordered set of variables in half): 𝑀𝑒(𝑛) =
𝑛+1

2
 (or

odd n), 𝑀𝑒(𝑛) =
𝑀𝑒(

𝑛

2
)+𝑀𝑒(

𝑛+2

2
)

2
 (for even n);

 Trimmed (trimmed mean) – abbreviated average;

 Mad – median absolute deviation;

 Min – minimum value;

 Max – maximum value;

 Range – scope;

 Skew – asymmetry (reflects the skew of the distribution relative to the fashion to the left or
right);

 Kurtosis – kurtosis (displays the height of the distribution);

 Se – standard error.

For calculations, we use the R studio environment and its built-in function for constructing

descriptive statistics: describe.

Figure 5: Descriptive data statistics

Another way of presenting data is a histogram. It is often used to visualize the difference in the

number of certain substances or substances over time. In our case, we will look at the histogram of the
number of #Ukraine hashtags during March. A histogram is used to display interval series. At the same

time, feature intervals are plotted on the abscissa axis, and frequencies are plotted on the ordinate axis.

For construction, it is necessary to find the number of partition intervals. For this, we will use the

Sturges formula 𝑘 = 1 + 𝑙𝑜𝑔2𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑘 is number of intervals.

Figure 6: Histograms of hastag #Ukraine in March and of#UkraineRussiaWar hastags during all war

Cumulatives are also a way of presenting data. It has a certain similarity with a histogram, but for
its construction it is necessary to calculate the accumulated frequencies. Accumulated frequencies show

how many units of the population have a characteristic value no greater than that under consideration.

You can build a cumulate in several ways, in particular, the number of #UkraineRussiaWar hashtags

throughout the war (Fig.6). Number of split intervals: Sturges formula 𝑘 = 1 + 𝑙𝑜𝑔2𝑛, 𝑘 is number of

intervals.

Figure 7: Cumulative plot by histogram and integral percentage

As can be seen in fig. 6-7, the built cumulates are similar, but the one built by integral percentage is
smoother, so it gives a smaller error.

library(readr) # dataset loading
dataset1 <- read.csv("daily_stats.csv")
dataset2 <- read.csv("daily_hashtags.csv")
dataset <- cbind(dataset1[1], dataset1[3], dataset2[2:11])
n <- dim(dataset)[1] # the number of elements
table <- as.data.frame(cbind(dataset$day, dataset$daily_tweets)) # formation of the report table
m <- dim(table)[2] # the number of stacks of the initial table
t <- 6# the number of subtables into which to split the original table
k <- round(n/t) # determining the number of rows in each subtable
l <- k + 1# row number that will move to the next subtable
a <- m + 1# the number of the first empty column of the initial table
for (j in 1:(t-1)){
 for (i in 1:k){
 for (q in 0:(m - 1)){ # table compression
 #if (table[l, 1 + q] != is.null)
 table [i, a + q] <- table[l, 1 + q]
 #else
 # stop
 }
 table <- table[-l,]
 }
 a <- a + m # determining the number of the next empty column
}
i <- 1# renaming the columns of the created table
while(i <= 2*t){
 names(table)[i] = "Date"
 names(table)[i + 1] = "Amount of tweets"
 i <- i + 2
}# plotting data in the Cartesian coordinate system
plot(1:dim(dataset)[1], dataset$daily_tweets/1000, xlab = "Day of war",
 ylab = "The amount of tweets (in thousands)", main = "Dynamics of discussion about russian-Ukranian war",
 type = "o", pch = 16, lwd = 3, col = "darkorchid4")
polardataset <- cbind(as.numeric(dataset$StopRussia), as.numeric(dataset$StandWithUkraine)) # plotting data in polar coordinate system
for(i in 1:n){ # creating a table for a polar graph regarding the ratio of hashtags StopRussian and StandWithUkraine
 r <- sqrt(polardataset[i, 1]^2 + polardataset[i, 2]^2) # transition to polar coordinates
 if (polardataset[i, 1] > 0 && polardataset[i, 2] >= 0)
 f <- atan(polardataset[i, 2]/polardataset[i, 1])*180/pi
 if (polardataset[i, 1] > 0 && polardataset[i, 2] < 0)
 f <- atan(polardataset[i, 2]/polardataset[i, 1])*180/pi + 2*pi
 if (polardataset[i, 1] < 0)
 f <- atan(polardataset[i, 2]/polardataset[i, 1])*180/pi + pi
 if (polardataset[i, 1] == 0 && polardataset[i, 2] > 0)
 f <- pi/2
 if (polardataset[i, 1] == 0 && polardataset[i, 2] < 0)
 f <- 3*pi/2
 polardataset[i, 1] <- r
 polardataset[i, 2] <- f
}
library(plotly) # graph construction
plot_ly(type = "scatterpolar", r = polardataset[, 1], theta = polardataset[, 2], mode = 'markers')
library("psych")# construction of descriptive data statistics
statistics <- describe(dataset[2:12])
hist(as.numeric(dataset$Ukraine[7:37]), breaks = round(1 + log2(n)), # histogram construction of #Ukraine hashtags distribution in March
 xlab = "Grouping intervals", ylab = "Frequency of values",
 col = "seagreen4", main = "Histogram of hastag #Ukraine in March")
k <- round(1 + log2(n)) # construction of cumulate according to histogram data

h1 <- hist(as.numeric(dataset$UkraineRussiaWar), breaks = k, xlab = "Grouping intervals",
 ylab = "Frequency of values", col = "mediumpurple2",
 main = "Histogram of #UkraineRussiaWar hastags during all war")
plot(h1$mids, cumsum(h1$counts)/n, xlab = "Intervals", ylab = "Frequency (probability)",
 main = "Cumulative plot by histogram", 'l', lwd = 3)
m <- dim(dataset)[1] - 1# construction of the cumulate by integral interest
h2 <- hist(as.numeric(dataset$UkraineRussiaWar), breaks = m, xlab = "Grouping intervals",
 ylab = "Frequency of values", col = "mediumpurple2",
 main = "Histogram of #UkraineRussiaWar hastags during all war")
plot(h2$mids, cumsum(h2$counts)/n, xlab = "Intervals", ylab = "Frequency (probability)",
 main = "Cumulative plot by integral percentage", 'l', lwd = 3)

4. Experiments, results and discussions

The study of a numerical series is mainly based on the analysis of its graphical representation. That

is, if we have a graph (a certain line), we can use it to provide conclusions about the state of our initial

data. This works well if the basic patterns are not affected by any other, random, external factors. If
such an influence is monitored, sometimes in order to "clean" the main trend from "obstacles",

smoothing methods are used. Time series for smoothing: number of #NATO hashtags for each day of

the war. The moving average method gives an estimate of the average level for a certain period of time
(the longer the time interval to which the average belongs, the more the level will be smoothed, but the

less accurately the trend of the original series of dynamics will be described).

The built-in function sma() was used in the programming environment.

Figure 8: Simple moving average (x – time, y – count of #NATO)

The method of the weighted moving average on each active area of the value of the central level is
replaced by the calculated one, which is determined by the formula of the weighted arithmetic average

(the weighting factors are determined using the method of least squares).

Figure 9: Locally weighted smoothing (x – time, y – count of #NATO)

library("zoo")# smoothing with a moving average
plot.ts(dataset$NATO,main = "Simple moving average", ylab = "Count of #NATO")
lines(rollmean(dataset$NATO,5),col = 'blue')
lines(rollmean(dataset$NATO,3),col = 'red')
lines(rollmean(dataset$NATO,7),col = 'green')
legend(50,150000,col = c('black','blue', 'red','green'), legend = c('main', 'SMA 5', 'SMA 3','SMA 7'),lty = 1,cex = 0.8)
plot.ts(dataset$NATO,main = "Locally weighted smoothing", ylab = "Count of #NATO")# lowess smoothing curve
lines(lowess(dataset$NATO,f = 0.5),col = "blue")
lines(lowess(dataset$NATO,f = 0.05),col = "red")
legend(50,150000,col = c('black','blue','red'), legend = c('main', 'LOWESS 0.5', 'LOWESS 0.05'),lty = 1,cex = 0.8)

When applying the method of moving averages, the selection of the smoothing interval value should

be made on the basis of meaningful considerations and be tied to the period of possibly existing

oscillatory processes. If the moving average procedure is used to smooth the time series in the absence
of any fluctuations, then most often the value of the smoothing interval is chosen equal to three, five or

seven. The larger the averaging interval, the smoother the trend graph looks. Time series for smoothing:

number of #UkraineRussiaWar hashtags for each day of the war (in thousands). Linear smoothing for

w = 3: �̅�1 =
5𝑦1+2𝑦2−𝑦3

6
; �̅�𝑖 =

𝑦𝑖−1+𝑦𝑖+𝑦𝑖+1

3
, �̅�𝑛 =

−𝑦𝑛−2+2𝑦𝑛−1+5𝑦𝑛

6
, 𝑖 = 2, 3, … , 𝑛 − 1.

Figure 10: Linear smoothing for w=3, 5, 7 (x – variant number, y – variant value in thousands)

Linear smoothing for w = 5: �̅�1 =
3𝑦1+2𝑦2+𝑦3−𝑦5

5
, �̅�2 =

4𝑦1+3𝑦2+2𝑦3+𝑦4

10
, �̅�𝑖 =

𝑦𝑖−2+𝑦𝑖−1+𝑦𝑖+𝑦𝑖+1+𝑦𝑖+2

5
,

�̅�𝑛−1 =
𝑦𝑛−3+2𝑦𝑛−2+3𝑦𝑛−1+4𝑦𝑛

10
, �̅�𝑛 =

−𝑦𝑛−4+𝑦𝑛−2+2𝑦𝑛−1+3𝑦𝑛

5
, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 3, 4, … , 𝑛 − 2.

Nonlinear smoothing for w = 7: 𝑖 = 4, 5, … , 𝑛 − 3

�̅�1 =
39𝑦1+8𝑦2−4𝑦3−4𝑦4+𝑦5+4𝑦6−2𝑦7

42
, �̅�2 =

8𝑦1+19𝑦2+16𝑦3+6𝑦4−4𝑦5−7𝑦6+4𝑦7

42
,

�̅�3 =
−4𝑦1+16𝑦2+19𝑦3+12𝑦4+2𝑦5−4𝑦6+𝑦7

42
, �̅�𝑖 =

−2𝑦𝑖−3+3𝑦𝑖−2+6𝑦𝑖−1+7𝑦𝑖+6𝑦𝑖+1+3𝑦𝑖+2−2𝑦𝑖+3

21
,

�̅�𝑛−2 =
𝑦𝑛−6−4𝑦𝑛−5+2𝑦𝑛−4+12𝑦𝑛−3+19𝑦𝑛−2+16𝑦𝑛−1−4𝑦𝑛

42
, �̅�𝑛−2 =

4𝑦𝑛−6−7𝑦𝑛−5−4𝑦𝑛−4+6𝑦𝑛−3+16𝑦𝑛−2+19𝑦𝑛−1+8𝑦𝑛

42
,

�̅�𝑛 =
−2𝑦𝑛−6+4𝑦𝑛−5+𝑦𝑛−4−4𝑦𝑛−3−4𝑦𝑛−2+8𝑦𝑛−1+39𝑦𝑛

42
.

y_n <- dataset$UkraineRussiaWar/1000 # linear smoothing for w = 3
l3_y_n <- vector()
l3_y_n[1] <- (5 * y_n[1] + 2 * y_n[2] - y_n[3])/6
for (i in 2:(n - 1))
 l3_y_n[i] <- (y_n[i - 1] + y_n[i] + y_n[i + 1])/3
l3_y_n[n] <- (- y_n[n - 2] + 2 * y_n[n - 1] + 5 * y_n[n])/6
plot(c(1:n), y_n, xlab = "Variant number", ylab = "Variant value (thousands)", main = "Linear smoothing for w = 3", 'l', lwd = 1)
lines(l3_y_n, col = "darkorange", lwd = 2)
l5_y_n <- vector()# linear smoothing for w = 5
l5_y_n[1] <- (3 * y_n[1] + 2 * y_n[2] + y_n[3] - y_n[5])/5
l5_y_n[2] <- (4 * y_n[1] + 3 * y_n[2] + 2 * y_n[3] + y_n[4])/10
for(i in 3:(n - 2))
 l5_y_n[i] <- (y_n[i - 2] + y_n[i - 1] + y_n[i] + y_n[i + 1] + y_n[i + 2])/5
l5_y_n[n - 1] <- (y_n[n - 3] + 2 * y_n[n - 2] + 3 * y_n[n - 1] + 4 * y_n[n])/10
l5_y_n[n] <- (- y_n[n - 4] + y_n[n - 2] + 2 * y_n[n - 1] + 3 * y_n[n])/5
plot(c(1:n), y_n, xlab = "Variant number", ylab = "Variant value (thousands)", main = "Linear smoothing for w = 5", 'l', lwd = 1)
lines(l5_y_n, col = "coral", lwd = 2)
l7_y_n <- vector()# nonlinear smoothing for w = 7
l7_y_n[1] <- (39*y_n[1] + 8*y_n[2] - 4*y_n[3] - 4*y_n[4] + y_n[5] + 4*y_n[6] - 2*y_n[7])/42
l7_y_n[2] <- (8*y_n[1] + 19*y_n[2] + 16*y_n[3] + 6*y_n[4] - 4*y_n[5] - 7*y_n[6] + 4*y_n[7])/42
l7_y_n[3] <- (-4*y_n[1] + 16*y_n[2] + 19*y_n[3] + 12*y_n[4] + 2*y_n[5] - 4*y_n[6] + y_n[7])/42
for(i in 4:(n - 3))
 l7_y_n[i] <- (-2*y_n[i - 3] + 3*y_n[i - 2] + 6*y_n[i - 1] + 7*y_n[i] + 6*y_n[i + 1] + 3*y_n[i + 2] - 2*y_n[i + 3])/21
l7_y_n[n - 2] <- (y_n[n - 6] - 4*y_n[n - 5] + 2*y_n[n - 4] + 12*y_n[n - 3] + 19*y_n[n - 2] + 16*y_n[n - 1] - 4*y_n[n])/42

l7_y_n[n - 1] <- (4*y_n[n - 6] - 7*y_n[n - 5] - 4*y_n[n - 4] + 6*y_n[n - 3] + 16*y_n[n - 2] + 19*y_n[n - 1] + 8*y_n[n])/42
l7_y_n[n] <- (-2*y_n[n - 6] + 4*y_n[n - 5] + y_n[n - 4] - 4*y_n[n - 3] - 4*y_n[n - 2] + 8*y_n[n - 1] + 39*y_n[n])/42
l5_y_n[n] <- (- y_n[n - 4] + y_n[n - 2] + 2 * y_n[n - 1] + 3 * y_n[n])/5
plot(c(1:n), y_n, xlab = "Variant number", ylab = "Variant value (thousands)", main = "Nonlinear smoothing for w = 7", 'l', lwd = 1)
lines(l7_y_n, col = "chocolate", lwd = 2)

Normalization of time sequences:

 makes it possible to compare the indicators obtained for different objects;

 linear transformation, which consists in the fact that the values of the levels of the time series

lead to the interval of values [0,1] according to the formula: 𝑦𝑖
н =

𝑦𝑖− 𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
, where 𝑦𝑖

н is

normalized value, 𝑦𝑖 is level value, 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥 – the smallest and largest value of the levels of

the time series.

norm_sequence <- function(x){ # normalization of time sequences
 x_norm <- vector()
 for (i in 1:length(x))
 x_norm[i] <- (x[i] - min(x))/(max(x) - min(x))
 return(x_norm)
}

Time series smoothing effectiveness criteria;

 Criterion of turning points: ((𝐼3 > 𝐼2)&& (𝐼3 > 𝐼4)) || ((𝐼3 < 𝐼2)&& (𝐼3 < 𝐼4)).

 Correlation coefficient: 𝑟𝑥𝑦 =
𝑛∑ 𝑥𝑖𝑦𝑖−

𝑛
𝑖=1 ∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1

√[𝑛 ∑ 𝑥𝑖
2− 𝑛

𝑖=1 (∑ 𝑥𝑖
𝑛
𝑖=1)

2
][𝑛 ∑ 𝑦𝑖

2− 𝑛
𝑖=1 (∑ 𝑦𝑖

𝑛
𝑖=1)

2
]

.

turn_points <- function(x, n){ # the search function for the number of turning points
 t <- 0
 for (i in 2:(n - 1)){
 if ((x[i] > x[i - 1]&& x[i] > x[i + 1]) || (x[i] < x[i - 1] && x[i] < x[i + 1]))
 t <- t + 1
 }
 return(t)
}
turn_points_value <- function(x, n){ # turning point search function
 v <- vector()
 for (i in 2:(n - 1)){
 if ((x[i] > x[i - 1]&& x[i] > x[i + 1]) || (x[i] < x[i - 1] && x[i] < x[i + 1]))
 v <- cbind(v, i)
 }
 return(x[v])
}
correlation_coeficient <- function(x, y, n){ # correlation coefficient determination function
 S1 <- 0
 S2 <- 0
 S3 <- 0
 S4 <- 0
 S5 <- 0
 for (i in 1:n){
 S1 <- S1 + x[i]
 S2 <- S2 + y[i]
 S3 <- S3 + x[i]*y[i]
 S4 <- S4 + (x[i])^2
 S5 <- S5 + (y[i])^2
 }
 return((n*S3 - S1*S2)/(sqrt((n*S4 - (S1)^2)*(n*S5 - (S2)^2))))
}

Smoothing according to Kendel's formulas is a type of weighted moving average. Made smoothing

according to Kendel's formulas for various w (3, 5, 7, 9, 11, 13, 15) for #NATO hashtags. According

to fig. 12, we can conclude that the property of linear smoothing (the larger the coefficient, the stronger

the graph is smoothed) is also true for smoothing according to Kendel's formulas. Correlation analysis
refers to a set of methods that make it possible to detect the presence and degree of relationship between

several randomly changing parameters (more details about correlation analysis will be found in clause

4, at this stage we are only interested in such concepts as "correlation table" (table of ratios) and turning
points (levels whose values are greater or less than two adjacent ones)).

Figure 11: Kendall smoothing for w=3,5, 7, 9, 11, 13. 15 and w = [3;15] (x – time, y – #NATO)

Figure 12: A fragment of the generalized correlation table for smoothing intervals according to
Kendel's formulas

Plotting pivot points for all smoothing intervals:

Figure 13: Turned points diagram, w=3, 5, 7, 9, 11, 13 and 15

Determination of efficiency criteria for performed smoothing according to formulas from Kendel:

Table 1
Table of smoothing efficiency criteria according to formulas from Kendel

Smoothing interval w Number of turning points Correlation coefficient 𝑟𝑥𝑦

3 54 0.9509346
5 32 0.8964826
7 20 0.8611363
9 16 0.8399593

11 12 0.8264445
13 12 0.8166181
15 9 0.8086317

Conclusion: the larger the parameter, the fewer turning points, the smaller the correlation coefficient.

Therefore, the more "smoothed" is the resulting graph (for ordinary smoothing according to Kendel's

formulas).

Figure 14: Result of software finding the smoothing efficiency criteria according to Kendel's formulas

Re-smoothing is when we apply the data obtained in the previous layer to the input data of the next

layer. Re-smoothing according to Kendel's formulas for different w (3, 5, 7, 9, 11, 15):

Figure 15: Repeated Kendall smoothing for w=3, 5, 7, 9, 11, 13, 15 and w=[3;15] (x – time, y – #NATO)

Construction of a correlation table for all intervals of re-smoothing according to formulas from

Kendel:

Figure 16: A fragment of the generalized correlation table for re-smoothing intervals according to
Kendel's formulas

Construction of turning point diagrams for all re-smoothing intervals according to Kendel's
formulas:

Figure 17: Turned points diagram, w=3, 5, 7, 9, 11, 13, 15

Determination of efficiency criteria for repeated smoothing according to Kendel's formulas:

Table 2
Table of criteria for the effectiveness of repeated smoothing according to Kendel's formulas

Smoothing interval w Number of turning points Correlation coefficient 𝑟𝑥𝑦

3 54 0.9509346
5 26 0.8758931
7 16 0.8346677
9 11 0.8154749

11 7 0.8021700
13 5 0.7902080
15 5 0.7785690

Figure 18: The result of software finding criteria for the effectiveness of repeated smoothing according
to Kendel's formulas

Compared to the results of "no re-smoothing", with re-smoothing, the number of turning points

decreases more rapidly, as does the correlation coefficient. Here already on parameter "11" the number

of turning points was 7, when there - 12 (and the smallest value is 9, when here - 5).

cat("\t\tKendall smoothing")# smoothing according to formulas from Kendel
library(irr)
kSmooth1 <- ksmooth(time(dataset$NATO), dataset$NATO, 'normal', bandwidth=3)
kSmooth2 <- ksmooth(time(dataset$NATO), dataset$NATO, 'normal', bandwidth=5)
kSmooth3 <- ksmooth(time(dataset$NATO), dataset$NATO, 'normal', bandwidth=7)
kSmooth4 <- ksmooth(time(dataset$NATO), dataset$NATO, 'normal', bandwidth=9)
kSmooth5 <- ksmooth(time(dataset$NATO), dataset$NATO, 'normal', bandwidth=11)
kSmooth6 <- ksmooth(time(dataset$NATO), dataset$NATO, 'normal', bandwidth=13)
kSmooth7 <- ksmooth(time(dataset$NATO), dataset$NATO, 'normal', bandwidth=15)
plot.ts(dataset$NATO, main = 'Kendall Smoothing', ylab = '#NATO') # image of smoothing according to Kendel's formulas on the graph
lines(dataset$NATO, col = '1')
lines(kSmooth1, type = 'l', col = '2')
lines(kSmooth2, type = 'l', col = '3')
lines(kSmooth3, type = 'l', col = '4')
lines(kSmooth4, type = 'l', col = '5')
lines(kSmooth5, type = 'l', col = '6')
lines(kSmooth6, type = 'l', col = '7')
lines(kSmooth7, type = 'l', col = '8')
legend(180,150000, col = c('1','2','3','4','5','6','7','8'),
 legend = c('original', 'KSM3', 'KSM5','KSM7', 'KSM9','KSM11', 'KSM13','KSM15'),lty = 1, cex = 0.8)
kendallSmoothing <- cbind(dataset$NATO, kSmooth1[[2]], kSmooth2[[2]], kSmooth3[[2]], kSmooth4[[2]],
 kSmooth5[[2]],kSmooth6[[2]], kSmooth7[[2]]) # construction of a generalized correlation table
colnames(kendallSmoothing) <- c("Y", "Yn, w = 3", "Yn, w = 5", "Yn, w = 7", "Yn, w = 9", "Yn, w = 11", "Yn, w = 13", "Yn, w = 15")
View(kendallSmoothing)
k_t <- vector()# the number of turning points when smoothing according to formulas from Kendel
for (i in 1:7){
 k_t[i] <- turn_points(kendallSmoothing[, i + 1], dim(kendallSmoothing)[1])
}# construction of diagrams of turning points for smoothing according to formulas from Kendel
barplot(turn_points_value(kSmooth1[[2]], length(kSmooth1[[2]])), col = "lightsalmon",
 names.arg = c(1:k_t[1]), main = "Turned points diagram, w = 3")
barplot(turn_points_value(kSmooth2[[2]], length(kSmooth2[[2]])), col = "lightsalmon",
 names.arg = c(1:k_t[2]), main = "Turned points diagram, w = 5")
barplot(turn_points_value(kSmooth3[[2]], length(kSmooth3[[2]])), col = "lightsalmon",
 names.arg = c(1:k_t[3]), main = "Turned points diagram, w = 7")
barplot(turn_points_value(kSmooth4[[2]], length(kSmooth4[[2]])), col = "lightsalmon",
 names.arg = c(1:k_t[4]), main = "Turned points diagram, w = 9")
barplot(turn_points_value(kSmooth5[[2]], length(kSmooth5[[2]])), col = "lightsalmon",
 names.arg = c(1:k_t[5]), main = "Turned points diagram, w = 11")
barplot(turn_points_value(kSmooth6[[2]], length(kSmooth6[[2]])), col = "lightsalmon",
 names.arg = c(1:k_t[6]), main = "Turned points diagram, w = 13")
barplot(turn_points_value(kSmooth7[[2]], length(kSmooth7[[2]])), col = "lightsalmon",
 names.arg = c(1:k_t[7]), main = "Turned points diagram, w = 15")
k_r_xy <- vector()# correlation coefficients when smoothing according to formulas from Kendel
for (i in 1:7){
 k_r_xy[i] <- correlation_coeficient(dataset$NATO, kendallSmoothing[, i + 1], dim(kendallSmoothing)[1])
}
k <- c(3, 5, 7, 9, 11, 13, 15) # displaying on the screen the number of turning points and correlation coefficients at different w
kndl_matrix <- cbind(k, k_t, k_r_xy)
colnames(kndl_matrix) <- c("Smoothing parameter", "Amount of turned points", "Correlation coefficient")
cat("\nKendall smoothing criteria:\n")
print(kndl_matrix)
cat("\n\t\tRepeated Kendall smoothing")# re-smoothing according to formulas from Kendel
kSmooth1 <- ksmooth(time(dataset$NATO), dataset$NATO,'normal',bandwidth = 3)
kSmooth2 <- ksmooth(time(kSmooth1[[2]]), kSmooth1[[2]], 'normal', bandwidth = 5)
kSmooth3 <- ksmooth(time(kSmooth2[[2]]), kSmooth2[[2]], 'normal', bandwidth = 7)
kSmooth4 <- ksmooth(time(kSmooth3[[2]]), kSmooth3[[2]], 'normal', bandwidth = 9)
kSmooth5 <- ksmooth(time(kSmooth4[[2]]), kSmooth4[[2]], 'normal', bandwidth = 11)
kSmooth6 <- ksmooth(time(kSmooth5[[2]]), kSmooth5[[2]], 'normal', bandwidth = 13)
kSmooth7 <- ksmooth(time(kSmooth6[[2]]), kSmooth6[[2]], 'normal', bandwidth = 15)
plot.ts(dataset$NATO, main = "Repeated Kendall Smoothing", ylab = '#NATO') # image of re-smoothing using Kendel's formulas on a graph
lines(dataset$NATO,col='1')
lines(kSmooth1,type='l',col='2')
lines(kSmooth2,type='l',col='3')
lines(kSmooth3,type='l',col='4')
lines(kSmooth4,type='l',col='5')
lines(kSmooth5,type='l',col='6')
lines(kSmooth6,type='l',col='7')
lines(kSmooth7,type='l',col='8')
legend(180,150000, col = c('1','2','3','4','5','6','7','8'),
 legend = c('original', 'KSM3', 'KSM5','KSM7', 'KSM9','KSM11', 'KSM13','KSM15'), lty = 1, cex = 0.8)
kendallSmoothing <- cbind(dataset$NATO,kSmooth1[[2]], kSmooth2[[2]], kSmooth3[[2]], # construction of a generalized correlation table

 kSmooth4[[2]],kSmooth5[[2]], kSmooth6[[2]], kSmooth7[[2]])
colnames(kendallSmoothing) <- c("Y", "Y'n, w = 3", "Y'n, w = 5", "Y'n, w = 7", "Y'n, w = 9", "Y'n, w = 11", "Y'n, w = 13", "Y'n, w = 15")
View(kendallSmoothing)
rep_k_t <- vector()# the number of turning points during re-smoothing according to Kendel's formulas
for (i in 1:7){
 rep_k_t[i] <- turn_points(kendallSmoothing[, i + 1], dim(kendallSmoothing)[1])
} # construction of diagrams of turning points for re-smoothing according to formulas from Kendel
barplot(turn_points_value(kSmooth1[[2]], length(kSmooth1[[2]])), col = "lightblue",
 names.arg = c(1:rep_k_t[1]), main = "Turned points diagram, w = 3")
barplot(turn_points_value(kSmooth2[[2]], length(kSmooth2[[2]])), col = "lightblue",
 names.arg = c(1:rep_k_t[2]), main = "Turned points diagram, w = 5")
barplot(turn_points_value(kSmooth3[[2]], length(kSmooth3[[2]])), col = "lightblue",
 names.arg = c(1:rep_k_t[3]), main = "Turned points diagram, w = 7")
barplot(turn_points_value(kSmooth4[[2]], length(kSmooth4[[2]])), col = "lightblue",
 names.arg = c(1:rep_k_t[4]), main = "Turned points diagram, w = 9")
barplot(turn_points_value(kSmooth5[[2]], length(kSmooth5[[2]])), col = "lightblue",
 names.arg = c(1:rep_k_t[5]), main = "Turned points diagram, w = 11")
barplot(turn_points_value(kSmooth6[[2]], length(kSmooth6[[2]])), col = "lightblue",
 names.arg = c(1:rep_k_t[6]), main = "Turned points diagram, w = 13")
barplot(turn_points_value(kSmooth7[[2]], length(kSmooth7[[2]])), col = "lightblue",
 names.arg = c(1:rep_k_t[7]), main = "Turned points diagram, w = 15")
rep_k_r_xy <- vector()# correlation coefficients with repeated smoothing according to Kendel's formulas
for (i in 1:7){
 rep_k_r_xy[i] <- correlation_coeficient(dataset$NATO, kendallSmoothing[, i + 1], dim(kendallSmoothing)[1])
}
k <- c(3, 5, 7, 9, 11, 13, 15) # displaying on the screen the number of turning points and correlation coefficients at different w
rep_kndl_matrix <- cbind(k, rep_k_t, rep_k_r_xy)
colnames(rep_kndl_matrix) <- c("Smoothing parameter", "Amount of turned points", "Correlation coefficient")
cat("\nRepeated Kendall smoothing criteria:\n")
print(rep_kndl_matrix)

Correlation analysis of time series is used when it is necessary to assess the presence and strength

of the relationship between certain indicators. In our case, the total number of tweets for each day since

the beginning of the war was taken as a series for analysis (we will present the data in the form of a
table). The correlation field is a graphical representation of the relationship between the two

investigated sequences (in our case, time and quantity). Correlation coefficient: an indicator of the

quantitative assessment of the tightness of the connection; in the range from -1 to 1; characterizes a
linear relationship, where when one value increases, the other increases (decreases)..

Figure 19: Fragment of a time series for correlation analysis and correlation field

The following formula is used for calculations: 𝑟𝑥𝑦 =
𝑛∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 − ∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1

√[𝑛 ∑ 𝑥𝑖
2− (∑ 𝑥𝑖

𝑛
𝑖=1)2𝑛

𝑖=1][𝑛∑ 𝑦𝑖
2− (∑ 𝑦𝑖

𝑛
𝑖=1)2𝑛

𝑖=1]
.

Figure 20: Found correlation coefficient

Since the correlation coefficient is negative, we can conclude that the dependence is decreasing, that
is, as the value of one value increases, the other decreases. In our case, over time, the number of hashtags

decreases (activity and interest in the problem, respectively). Correlation relation:

 used in the study of nonlinear dependencies;

 limits: [0,1], and if is strictly equal to one, then there is an unambiguous functional dependence

between the values.

Algorithm for finding a correlation relation:
1. Division of the correlation field by variable X into L grouping intervals of different lengths.

2. Search for "partial" mathematical expectations Y in each of the L selected groups �̅�𝑌𝑗
=

1

𝑛𝑗
∑ 𝑦𝑗
𝑛𝑗
𝑘=1

, 𝑗 = 1, 𝐿̅̅ ̅̅̅, 𝑘 = 1, 𝑛𝑗̅̅ ̅̅ ̅̅ , 𝑛𝑗 is number of sample elements in 𝑗th grouping intervals.

3. Mathematical expectation search of partial groupings of reviews using �̅�𝑌 =
1

𝑛
∑ 𝑛𝑗 ∗ �̅�𝑌𝑗
𝐿
𝑗=1 .

4. Calculation of group variance for variable y: 𝜎�̅�𝑌

2 =
1

𝑛
∑ 𝑛𝑗 ∗ (�̅�𝑌𝑗

− �̅�𝑌)
2

 𝐿
𝑗=1 .

5. Calculation of variance obtained from ungrouped response �̅�𝑌
2 =

1

𝑛
∑ (𝑌𝑖 − �̅�𝑌)

2𝑛
𝑖 =1 .

6. Construction of the correlation relation �̅�𝑌∗𝑋 =
�̅��̅̅̅�𝑌

�̅�𝑌
.

Figure 21: The result of searching for the correlation relation and checking the properties of the
correlation relation

Properties of the correlation relation�̅�𝑋∗𝑌 ≥ 0, 0 ≤ �̅�𝑋∗𝑌 ≤ 1, 𝜌𝑋∗𝑌 ≥ |𝑟𝑋∗𝑌 |. The obtained value

belongs to the space of permissible values for this indicator. 0.948 is a number close to 1, but not 1.
Conclusion: there is a strong relationship between the values, but not an unambiguous dependence.

Correlation matrix:

 a table containing correlation coefficients when analyzing a large number of observations;

 a square table in which the correlation coefficient between the corresponding parameters is

located at the intersection of the corresponding row and column.

Figure 22: The result of dividing the sequence into 3 equal parts and building a correlation matrix

Multiple correlation coefficients 𝑟𝑧𝑥𝑦 = √
𝑟𝑥𝑧
2 +𝑟𝑦𝑧

2 +2𝑟𝑥𝑦𝑟𝑥𝑧𝑟𝑦𝑧

1−𝑟𝑥𝑦
2 .

Figure 23: The multiple correlation coefficient was found

Calculation of autocorrelation is an indicator that characterizes the existence of dependence between

the previous and next levels of the time sequence and is calculated according to the formula:

𝑟(𝜏) =
1

𝑛−𝜏
∑ (𝑦𝑡− �̅�
𝑛−𝜏
𝑡=1)∗(𝑦𝑡+𝜏− �̅�)

1

𝑛−1
∑ (𝑦𝑡−�̅�)

2𝑛
𝑡=1

.

Figure 24: A fragment of the autocorrelation table

Graphing the autocorrelation function

Figure 25: Correlogram of autocorrelation function

Looking at the time series graph, we can conclude that the data has a downward trend. Therefore, it
is possible to assume the non-stationarity of the original time series.

To more accurately determine the stationarity of the series, the correlogram of the autocorrelation

function is analyzed. In the case of a stationary time series, a rapid decline with increasing t will be
depicted already after the first few values. The constructed correlogram demonstrates that the studied

series is not stationary, but contains a trend component.

cat("\t\tCorrelation analysis\n")# correlational analysis
cor_field <- function(x, y, a){ # construction of the correlation field
 field <- plot(x, y, xlab = "Factor charasteristics X", ylab = "Resulting characteristics Y", main=a, pch=16, lwd=2, type="b", col="darkorchid4")
}
correlation_ratio <- function(x, y, n){ # function for calculating the correlation ratio
 m <- 15 # number of separation intervals
 a <- x[1]

 L <- matrix(NA, m, 3) # division of the correlation field by variable X into 15 parts of different lengths
 k <- round(n/m)
 for (i in 1:m){ # a random number from a range [10, 15]
 if (a != x[n]){
 if (i %% 2 == 0){
 L[i, 1] <- a
 if(round(a + 0.7*k) <= x[n])# checking not to go beyond the initial X interval
 L[i, 2] <- round(a + 0.7*k)
 else
 L[i, 2] <- x[n]
 a <- L[i, 2] + 1
 }
 else
 {
 L[i, 1] <- a
 if(round(a + 1.3*k) <= x[n]) # checking not to go beyond the initial X interval
 L[i, 2] <- round(a + 1.3*k)
 else
 L[i, 2] <- x[n]
 a <- L[i, 2] + 1
 }
 }
 }
 for(i in 1:m){ L[i, 3] <- L[i, 2]-L[i, 1] + 1 }# determination of interval lengths
 colnames(L) <- c("The beginning", "The end", "Length")
 cat("Created intervals:\n") # displaying the formed intervals on the screen
 print(L)
 m_y_j <- vector() # finding partial mathematical expectations for each interval
 for (i in 1:m){
 S <- 0
 for(j in L[i, 1]:L[i, 2]){ S <- S + y[j] }
 m_y_j[i] <- S/L[i, 3]
 }
 cat("\tPartial expected values (m_y_j): \n") # display of partial mathematical expectations m_y_j
 for(i in 1:m)
 cat("Interval ", i, ": m_y_", i, " = ", m_y_j[i],"\n", sep = "")
 S <- 0 # finding the mathematical expectation of partial groupings
 for (i in 1:m){ S <- S + m_y_j[i]*L[i, 3] }
 m_y <- S/n
 cat("Total expected value: m_y =", m_y) # displaying the mathematical expectation m_y on the screen
 S <- 0 # calculation of the group variance of the variable y
 for (i in 1:m){ S <- S + L[i, 3]*(m_y_j[i] - m_y)^2 }
 D_m_y <- S/n # displaying the calculated group variance on the screen
 cat("\nGroup dispersion: (σ_m_y)^2 =", D_m_y)
 S <- 0 # calculation of variance is not by grouped response
 for (i in 1:m){ S <- S + (y[i] - m_y)^2 }
 D_y <- S/n
 cat("\nTotal dispersion: (σ_y)^2 =", D_y) # displaying the calculated group variance on the screen
 # finding a correlation relation for the dependent variable Y and the independent variable X
 r_xy <- sqrt(D_m_y)/sqrt(D_y)
 return(r_xy)
}
mult_cor_coefficient <- function(r, z, x, y){ # the function of determining the multiple correlation coefficient
 for (i in 1:3){ # z dependent variable, х, у - independent variables
 R_zxy <- sqrt((r[x, z]^2 + r[y, z]^2 - 2 * r[x, z] * r[y, z] * r[x, y])/(1 - r[x, y]^2))
 }
 return(R_zxy)
}
auto_cor_coeficient <- function(y, t, n){ # autocorrelation coefficient determination function
 S1 <- 0
 S2 <- 0
 for (i in 1:(n - t)){ S1 <- S1 + (y[i] - mean(y)) * (y[i + t] - mean(y)) }
 for (i in 1:n){ S2 <- S2 + (y[i] - mean(y))^2 }
 r <- ((1/(n - t)) * S1) / ((1/(n - 1)) * S2)
 return(r)
}
table <- cbind(c(1:n), dataset[1], dataset[2]) # table formation
colnames(table) <- c("№", "Day of war", "Amount of tweets")
cor.test(table[, 1], table[, 3]) # checking for correlation
cor_field(table[, 1], table[, 3], "Correlation field")# construction of the correlation field
r <- correlation_coeficient(table[, 1], table[, 3], n) # finding the correlation coefficient

cat("Correlation coefficient: r_xy =", r, "\n")
R_xy <- correlation_ratio(table[, 1], table[, 3], n) # calculation of the correlation ratio
cat("\nCorrelation ratio: ρ_xy =", R_xy)
cat("\n\nBasic correlation ratio properties:") # checking the main properties of the correlation relation
невід'ємність
cat("\n1) Correlation ratio is nonnegative: ρ_xy ≥ 0 =>", R_xy, "≥ 0:", R_xy >= 0)
cat("\n2) Correlation ratio is in [0, 1]: 0 ≤ ρ_xy ≤ =>", "0 ≤", R_xy, "≤ 1:", R_xy >= 0 || R_xy <= 1) # range of values from 0 to 1 inclusive
cat("\n3) Correlation ratio is equal or more than absolute value of correlation coefficient: # comparison with correlation coefficient
 ρ_xy ≥ |r_xy|: ", R_xy, " ≥ |", r, "|: ", R_xy >= abs(r), sep = "")
q <- 3 # splitting the sequence of tweets into 3 equal part
l <- (n - 2)/q
cor_table <- dataset$daily_tweets[1:210]
part_1 <- vector(length = l)
part_2 <- vector(length = l)
part_3 <- vector(length = l)
for (i in 1:(n - 2)){
 if (i <= l) part_1[i] <- cor_table[i]
 if (i > l && i <= 2*l) part_2[i - l] <- cor_table[i]
 else part_3[i - 2*l] <- cor_table[i]
}
L <- cbind(part_1, part_2, part_3)
cat("\n\nBreaking sequence into 3 equal parts:\n")
print(L)
cor_matrix <- cor(L) # construction of the correlation matrix for parts of the sequence
cat("\nCorrelation matrix for these parts:\n")
print(cor_matrix)
R_part1 <- mult_cor_coefficient(cor_matrix, 1, 2, 3) # search for multiple correlation coefficients
R_part2 <- mult_cor_coefficient(cor_matrix, 2, 1, 3)
R_part3 <- mult_cor_coefficient(cor_matrix, 3, 1, 2)
R_part <- cbind(R_part1, R_part2, R_part3)
cat("\nMultiple correlation coefficient: ", R_part)
auto_cor_value <- matrix(NA, 2, as.integer(n/4)) # autocorrelation of time series
for (i in 1:as.integer(n/4)){
 auto_cor_value[1, i] <- as.integer(i)
 auto_cor_value[2, i] <- auto_cor_coeficient(table[, 3], i, n)
}
rownames(auto_cor_value) <- c("Lag", "Autocorrelation coefficient")
colnames(auto_cor_value) <- c(1:round(n/4))
View(auto_cor_value)
cat("\n\nAutocorrelation coefficient for different lags:\n")
print(t(auto_cor_value))
barplot(auto_cor_value[2,], space = 1, names.arg = auto_cor_value[1,],
 col = "orchid3",xlab = "Lag", ylab = "Autocorrelation coefficient",
 main = "Correlogram of autocorrelation function")

Construction of a correlation table for all smoothing intervals, including a number of original values:

Figure 26: A fragment of the generalized correlation table for smoothing intervals according to the
formulas from Pollard

Returning to smoothing, we will modify the graph using Pollard's formulas, and also check their

effectiveness (similarly to Kendall's formulas, which were presented above). Series for analysis:

number of NATO hashtags. Smoothing according to the formulas from Pollard for different w (3, 5, 7,

9, 11, 13, 15):

Figure 27: Pollard smoothing for w=3, 5, 7, 9, 11, 13, 15 and w=[3;15] (x – time, y – #NATO)

Plotting pivot points for all smoothing intervals:

Figure 28: Turned points diagram, w=3, 5, 7, 9, 11, 13, 15

Determination of efficiency criteria for performed smoothing according to formulas from Pollard:

Table 3
Efficiency criteria for performed smoothing according to formulas from Pollard

Smoothing interval w Number of turning points Correlation coefficient 𝑟𝑥𝑦

3 108 0.9670561
5 110 0.7033669
7 104 0.5275968
9 106 0.4533610

11 98 0.3531801
13 102 0.2738721
15 98 0.2028413

Figure 29: The result of software finding the smoothing efficiency criteria according to the formulas
from Pollard

As you can see in the graphs above, Pollard's smoothing also reduces the number of turning points,

but unlike the previous smoothing results, it does not decrease as linearly. In contrast, the correlation
coefficient when applying these formulas decreases more rapidly, but still linearly. Re-smoothing

according to the formulas from Pollard for different w (3, 5, 7, 9, 11, 15):

Figure 30: Repeated Pollard smoothing for w=3, 5, 7, 9, 11, 13, 15 and w=[3;15] (x – time, y – #NATO)

Construction of a correlation table for all re-smoothing intervals according to formulas from Pollard:

Figure 31: A fragment of the generalized correlation table for re-smoothing intervals according to the
formulas from Pollard

Construction of turning point diagrams for all re-smoothing intervals using formulas from Pollard:

Figure 32: Turned points diagram, w=3, 5, 7, 9, 11, 13 and 15

Determination of efficiency criteria for repeated smoothings according to the formulas from Pollard:

Table 4
The table of criteria for the effectiveness of repeated smoothing according to formulas from Pollard

Smoothing interval w Number of turning points Correlation coefficient 𝑟𝑥𝑦

3 108 0.9670561
5 102 0.6883252
7 88 0.4623179
9 70 0.2648956

11 40 0.0832726
13 12 -0.0565457
15 12 -0.1771463

Figure 33: The result of software finding the criteria for the effectiveness of repeated smoothing
according to the formulas from Pollard

During repeated application of the Pollard method, the number of turning points began to drop
rapidly and linearly, and the same applies to the correlation coefficient. The formulas "smoothed out"

our graph so much that the relationship between the quantities changed its sign to the opposite. We can

conclude that Pollard's repeated method for a given function has too strong an effect, and it is better to
use previous methods (ordinary moving average or Kendall's method).

cat("\t\tPollard smoothing")# smoothing according to formulas from Pollard
pol_m <- function(data, w, a){
 if(w == length(a)){
 for(i in 1:length(data)){
 d <- 0
 if(i < w){
 data[i] <- 0
 }else{
 for (k in 0:(w-1)){
 data[i] <- (a[k+1] * data[i-k]) + d
 d <- data[i]
 }
 }
 }
 return(data)
 }
}
a3 <- c(0.3,0.1,0.1)
a5 <- c(0.2,0.1,0.1,0.05,0.05)
a7 <- c(0.5,0.1,0.1,0.1,0.1,0.05,0.05)
a9 <- c(0.5,0.1,0.1,0.1,0.1,0.025,0.025,0.025,0.025)
a11 <- c(0.48,0.1,0.098,0.098,0.08,0.075,0.025,0.02,0.02,0.002,0.002)
a13 <- c(0.47,0.1,0.091,0.09,0.075,0.06,0.025,0.02,0.02,0.01,0.008,0.007,0.002)
a15 <- c(0.45,0.11,0.11,0.091,0.08,0.05,0.02,0.02,0.019,0.01,0.01,0.01,0.008,0.007,0.005)
k1 <- pol_m(dataset$NATO, 3, a3)
k2 <- pol_m(dataset$NATO, 5, a5)
k3 <- pol_m(dataset$NATO, 7, a7)
k4 <- pol_m(dataset$NATO, 9, a9)
k5 <- pol_m(dataset$NATO, 11, a11)
k6 <- pol_m(dataset$NATO, 13, a13)
k7 <- pol_m(dataset$NATO, 15, a15)
plot.ts(dataset$NATO,main = 'Pollard Smoothing', ylab = '#NATO') # image of smoothing according to the formulas from Pollard on the graph
lines(k1, col='2')
lines(k2, col='3')
lines(k3, col='4')
lines(k4, col='5')
lines(k5, col='6')
lines(k6, col='7')
lines(k7, col='8')
legend(170, 150000,col = c('1','2','3','4','5', '6', '7', '8'),
 legend = c('original', 'PLR3', 'PLR5','PLR7', 'PLR9', 'PLR11', 'PLR13', 'PLR15'),lty = 1,cex = 0.8)
pollardSmoothing <- cbind(dataset$NATO, k1, k2, k3, k4, k5, k6, k7) # construction of a generalized correlation table
colnames(pollardSmoothing) <- c("Y", "Yn, w = 3", "Yn, w = 5", "Yn, w = 7", "Yn, w = 9", "Yn, w = 11", "Yn, w = 13", "Yn, w = 15")
View(pollardSmoothing)
p_t <- vector()# the number of turning points when smoothing according to formulas from Pollard
for (i in 1:7){ p_t[i] <- turn_points(pollardSmoothing[, i + 1], dim(pollardSmoothing)[1])
} # construction of diagrams of turning points for smoothing according to formulas from Pollard
barplot(turn_points_value(k1, length(k1)), col = "lightpink", names.arg = c(1:p_t[1]), main = "Turned points diagram, w = 3")
barplot(turn_points_value(k2, length(k2)), col = "lightpink", names.arg = c(1:p_t[2]), main = "Turned points diagram, w = 5")
barplot(turn_points_value(k3, length(k3)), col = "lightpink", names.arg = c(1:p_t[3]), main = "Turned points diagram, w = 7")
barplot(turn_points_value(k4, length(k4)), col = "lightpink", names.arg = c(1:p_t[4]), main = "Turned points diagram, w = 9")
barplot(turn_points_value(k5, length(k5)), col = "lightpink", names.arg = c(1:p_t[5]), main = "Turned points diagram, w = 11")
barplot(turn_points_value(k6, length(k6)), col = "lightpink", names.arg = c(1:p_t[6]), main = "Turned points diagram, w = 13")

barplot(turn_points_value(k7, length(k7)), col = "lightpink", names.arg = c(1:p_t[7]), main = "Turned points diagram, w = 15")
p_r_xy <- vector()# correlation coefficients when smoothing according to formulas from Pollard
for (i in 1:7){ p_r_xy[i] <- correlation_coeficient(dataset$NATO, pollardSmoothing[, i + 1], dim(pollardSmoothing)[1])}
k <- c(3, 5, 7, 9, 11, 13, 15) # displaying on the screen the number of turning points and correlation coefficients at different w
plrd_matrix <- cbind(k, p_t, p_r_xy)
colnames(plrd_matrix) <- c("Smoothing parameter", "Amount of turned points", "Correlation coefficient")
cat("\nPollard smoothing criteria:\n")
print(plrd_matrix)
cat("\n\t\tRepeated Pollard smoothing")# re-smoothing according to formulas from Pollard
k1 <- pol_m(dataset$NATO, 3, a3)
k2 <- pol_m(k1, 5, a5)
k3 <- pol_m(k2, 7, a7)
k4 <- pol_m(k3, 9, a9)
k5 <- pol_m(k4, 11, a11)
k6 <- pol_m(k5, 13, a13)
k7 <- pol_m(k6, 15, a15)
plot.ts(dataset$NATO, main = "Repeated Pollard Smoothing", ylab = '#NATO') # image of re-smoothing using formulas from Pollard on graph
lines(k1, col='2')
lines(k2, col='3')
lines(k3, col='4')
lines(k4, col='5')
lines(k5, col='6')
lines(k6, col='7')
lines(k7, col='8')
legend(170, 150000,col = c('1', '2','3','4','5','6', '7', '8'),
 legend = c('original', 'PLR3', 'PLR5','PLR7', 'PLR9', 'PLR11', 'PLR13', 'PLR15'),lty = 1,cex = 0.8)
pollardSmoothing <- cbind(dataset$NATO, k1, k2, k3, k4, k5, k6, k7) # construction of a generalized correlation table
colnames(pollardSmoothing) <- c("Y", "Y'n, w = 3", "Y'n, w = 5", "Y'n, w = 7","Y'n, w = 9", "Y'n, w = 11", "Y'n, w = 13", "Y'n, w = 15")
View(pollardSmoothing)
rep_p_t <- vector()# the number of turning points during re-smoothing according to formulas from Pollard
for (i in 1:7){
 rep_p_t[i] <- turn_points(pollardSmoothing[, i + 1], dim(pollardSmoothing)[1])
}# construction of diagrams of turning points for re-smoothing according to formulas from Pollard
barplot(turn_points_value(k1, length(k1)), col = "lightpink", names.arg = c(1:rep_p_t[1]), main = "Turned points diagram, w = 3")
barplot(turn_points_value(k2, length(k2)), col = "lightpink", names.arg = c(1:rep_p_t[2]), main = "Turned points diagram, w = 5")
barplot(turn_points_value(k3, length(k3)), col = "lightpink", names.arg = c(1:rep_p_t[3]), main = "Turned points diagram, w = 7")
barplot(turn_points_value(k4, length(k4)), col = "lightpink", names.arg = c(1:rep_p_t[4]), main = "Turned points diagram, w = 9")
barplot(turn_points_value(k5, length(k5)), col = "lightpink", names.arg = c(1:rep_p_t[5]), main = "Turned points diagram, w = 11")
barplot(turn_points_value(k6, length(k6)), col = "lightpink", names.arg = c(1:rep_p_t[6]), main = "Turned points diagram, w = 13")
barplot(turn_points_value(k7, length(k7)), col = "lightpink", names.arg = c(1:rep_p_t[7]), main = "Turned points diagram, w = 15")
rep_p_r_xy <- vector()# correlation coefficients with repeated smoothing according to formulas from Pollard
for (i in 1:7){ rep_p_r_xy[i] <- correlation_coeficient(dataset$NATO, pollardSmoothing[, i + 1], dim(pollardSmoothing)[1])}
k <- c(3, 5, 7, 9, 11, 13, 15) # displaying on the screen the number of turning points and correlation coefficients at different w
rep_plrd_matrix <- cbind(k, rep_p_t, rep_p_r_xy)
colnames(rep_plrd_matrix) <- c("Smoothing parameter", "Amount of turned points", "Correlation coefficient")
cat("\nRepeated Pollard smoothing criteria:\n")
print(rep_plrd_matrix)

Exponential smoothing - the smoothed value is determined by only two values - the current and the

last smoothed level and the ratio of their weights. Series for analysis: the share of #Ukraine hashtags
among the total number of tweets. Carrying out exponential smoothing for different weights - α (0.1,

0.15, 0.2, 0.25, 0.3):

Figure 34: Exponential smoothing (α = 0.1, 0.15, 0.2, 0.25, 0.3) for #Ukraine hashtag share in all tweets

Figure 35: Exponential smoothing (α = [0.1;0.3]) for #Ukraine hashtag share in all tweets

Therefore, the smaller the α indicator is, the more the levels in the analyzed series are smoothed. We
will conduct studies similar to those conducted for the Kendall and Pollard methods. Construction of a

correlation table for all smoothing intervals, including a number of original values:

Figure 36: A fragment of the generalized correlation table for all intervals of exponential smoothing

Plotting pivot points for all smoothing intervals:

Figure 37: Turned points diagram, α = 0.1, 0.15, 0.2, 0.25, 0.3

Determination of performance criteria for exponential smoothing:

Table 5
Table of efficiency criteria of exponential smoothing

Parameter α 0,1 ≤ α ≤ 0,3 Number of turning points Correlation coefficient 𝑟𝑥𝑦

0.1 57 0.4009399
0.15 65 0.5053544
0.2 71 0.5937667

0.25 71 0.6687464
0.3 71 0.7317945

Figure 38: The result of software finding the efficiency criteria of exponential smoothing

This table differs from the ones we observed before, because now it is the opposite: the smaller the
parameter, the more the function is smoothed (the smaller the number of turning points and the

correlation coefficient).
cat("\t\tExponential smoothing")# exponential smoothing
exp_1 <- HoltWinters(dataset$Ukraine/dataset$daily_tweets, alpha = 0.1, beta = FALSE, gamma = FALSE) # exponential smoothing at a = 0.1
t1 <- turn_points(exp_1$fitted[, 1], n - 1) # number of turning points at а = 0.1
r1_xy <- correlation_coeficient(dataset$Ukraine[1:(n-1)]/dataset$daily_tweets[1:(n-1)], exp_1$fitted[, 1], n - 1) # coefficient at a = 0.1
exp_2 <- HoltWinters(dataset$Ukraine/dataset$daily_tweets, alpha = 0.15, beta = FALSE, gamma = FALSE) # smoothing at a = 0.15
t2 <- turn_points(exp_2$fitted[, 1], n - 1) # the number of turning points at а = 0.15
r2_xy <- correlation_coeficient(dataset$Ukraine[1:(n-1)]/dataset$daily_tweets[1:(n-1)], exp_2$fitted[, 1], n - 1) # coefficient at a = 0.15
exp_3 <- HoltWinters(dataset$Ukraine/dataset$daily_tweets, alpha = 0.2, beta = FALSE, gamma = FALSE) # exponential smoothing at a = 0.2
t3 <- turn_points(exp_3$fitted[, 1], n - 1) # the number of turning points at а = 0.2
r3_xy <- correlation_coeficient(dataset$Ukraine[1:(n-1)]/dataset$daily_tweets[1:(n-1)], exp_3$fitted[, 1], n - 1) # coefficient at a = 0.2
exp_4 <- HoltWinters(dataset$Ukraine/dataset$daily_tweets, alpha = 0.25, beta = FALSE, gamma = FALSE) # smoothing at a = 0.25
t4 <- turn_points(exp_4$fitted[, 1], n - 1) # the number of turning points at а = 0.25
r4_xy <- correlation_coeficient(dataset$Ukraine[1:(n-1)]/dataset$daily_tweets[1:(n-1)], exp_4$fitted[, 1], n - 1) # coefficient at a = 0.25
exp_5 <- HoltWinters(dataset$Ukraine/dataset$daily_tweets, alpha = 0.3, beta = FALSE, gamma = FALSE) # exponential smoothing at a = 0.3
t5 <- turn_points(exp_5$fitted[, 1], n - 1) # the number of turning points at а = 0.3
r5_xy <- correlation_coeficient(dataset$Ukraine[1:(n-1)]/dataset$daily_tweets[1:(n-1)], exp_5$fitted[, 1], n - 1) # coefficient at a = 0.3
plot.ts(dataset$Ukraine/dataset$daily_tweets, xlab = "Day of war", # an image of exponential smoothing on a graph
 ylab = "The share of #Ukraine hashtag in all tweets", main = "Exponential smoothing")
lines(exp_1$fitted[, 1], col = "lightskyblue", lwd = 2)
lines(exp_2$fitted[, 1], col = "deepskyblue1", lwd = 2)
lines(exp_3$fitted[, 1], col = "deepskyblue2", lwd = 2)
lines(exp_4$fitted[, 1], col = "deepskyblue3", lwd = 2)
lines(exp_5$fitted[, 1], col = "deepskyblue4", lwd = 2)
legend(170,0.43,col=c('black', 'lightskyblue','deepskyblue1','deepskyblue3','deepskyblue4'),
 legend=c('original', 'α = 0.1', 'α = 0.15','α = 0.2', 'α = 0.25','α = 0.3'),lty=1,cex=0.7)
exp_cor_table <- cbind(dataset$Ukraine[1:(n-1)]/dataset$daily_tweets[1:(n-1)], exp_1$fitted[, 1], exp_2$fitted[, 1], exp_3$fitted[, 1],
 exp_4$fitted[, 1], exp_5$fitted[, 1]) # construction of a generalized correlation table
colnames(exp_cor_table) <- c("Y", "Yn, α = 0.1", "Yn, α = 0.15", "Yn, α = 0.2", "Yn, α = 0.25", "Yn, α = 0.3")
View(exp_cor_table) # plotting pivot points for exponential smoothing
barplot(turn_points_value(exp_cor_table[, 2], n - 1), col = "aquamarine3", names.arg = c(1:t1), main = "Turned points diagram, α = 0.1")
barplot(turn_points_value(exp_cor_table[, 3], n - 1), col = "aquamarine3", names.arg = c(1:t2), main = "Turned points diagram, α = 0.15")
barplot(turn_points_value(exp_cor_table[, 4], n - 1), col = "aquamarine3", names.arg = c(1:t3), main = "Turned points diagram, α = 0.2")
barplot(turn_points_value(exp_cor_table[, 5], n - 1), col = "aquamarine3", names.arg = c(1:t4), main = "Turned points diagram, α = 0.25")
barplot(turn_points_value(exp_cor_table[, 6], n - 1), col = "aquamarine3", names.arg = c(1:t5), main = "Turned points diagram, α = 0.3")
виведення на екран кількості поворотних точок та коефіцієнтів кореляції при різних a
a <- c(0.1, 0.15, 0.2, 0.25, 0.3)
exp_r_xy <- c(r1_xy, r2_xy, r3_xy, r4_xy, r5_xy)
exp_t <- c(t1, t2, t3, t4, t5)
exp_matrix <- cbind(a, exp_t, exp_r_xy)
colnames(exp_matrix) <- c("Smoothing parameter", "Amount of turned points", "Correlation coefficient")
cat("\n Exponential smoothing criteria:\n")
print(exp_matrix)

Median smoothing is a type of smoothing based on the distributed average, which instead of the
arithmetic mean (depending on the indicator) takes the value corresponding to the median of the interval

(depends on the indicator). Performing median smoothing for different w (3, 5, 7, 9, 11, 13, 15), data

for analysis: number of hashtags #NATO:

Figure 39: Moving median for w = 3, 5, 7, 9, 11, 13, 15 and w =[3;15] (x – time, y – #NATO)

Construction of a correlation table for all smoothing intervals, including a number of original values:

Figure 40: A fragment of the generalized correlation table for all median smoothing intervals

Plotting pivot points for all smoothing intervals:

Figure 41: Turned points diagram, w=3, 5, 7, 9, 11, 13, 15

Determination of efficiency criteria for performed median smoothing:

Table 6
Table of criteria for efficiency of median smoothing

Smoothing interval w Number of turning points Correlation coefficient 𝑟𝑥𝑦

3 18 0.8384473
5 13 0.5863781
7 12 0.4542598
9 12 0.3784868

11 4 0.2784487
13 8 0.1790616
15 10 0.1166237

Figure 42: The result of software finding criteria for the efficiency of median smoothing

As a conclusion: the larger the parameter, the more the function is smoothed. Given the given data,

we can observe a slight deviation from the rule at parameter "15". We will consider this as an error of

this method given the given input data.

Performing repeated median smoothing for different w (3, 5, 7, 9, 11, 15):

Figure 43: Repeated moving median for w=3, 5, 7, 9, 11, 13, 15 and Turned points diagram, w=3

Construction of a correlation table for all intervals of repeated median smoothing:

Figure 44: A fragment of the generalized correlation table for all repeated median smoothing intervals

Figure 45: Repeated moving median for w =[3;15]

Determination of efficiency criteria for repeated median smoothing:

Table 7
Table of criteria for the efficiency of repeated median smoothing

Smoothing interval w Number of turning points Correlation coefficient 𝑟𝑥𝑦

3 18 0.83844726
5 0 0.53877313
7 0 0.37528145
9 0 0.21193231

11 0 0.08120878
13 0 - 0.01236933
15 0 - 0.08042950

Figure 46: The result of the software finding criteria for the effectiveness of repeated median
smoothing

The repeated median smoothing method, as we can see, like the Pollard method, was not very
effective against our data, as the number of turning points variously fell to zero and the correlation

coefficient became negative.

library("zoo")# median smoothing
cat("\t\tMedian smoothing")
my_movingMedian1 <- rollmedian(dataset$NATO, k = 3, fill= 0, align = "right")
my_movingMedian2 <- rollmedian(dataset$NATO, k = 5, fill = 0, align = "right")
my_movingMedian3 <- rollmedian(dataset$NATO, k = 7, fill = 0, align = "right")
my_movingMedian4 <- rollmedian(dataset$NATO, k = 9, fill = 0, align = "right")
my_movingMedian5 <- rollmedian(dataset$NATO, k = 11, fill = 0, align = "right")
my_movingMedian6 <- rollmedian(dataset$NATO, k = 13, fill = 0, align = "right")
my_movingMedian7 <- rollmedian(dataset$NATO, k = 15, fill = 0, align = "right")
plot.ts(dataset$NATO, main = "Moving median", ylab = "#NATO")# an image of median smoothing on a graph
lines(my_movingMedian1, col = "2")
lines(my_movingMedian2, col = "3")
lines(my_movingMedian3, col = "4")
lines(my_movingMedian4, col = "5")
lines(my_movingMedian5, col = "6")
lines(my_movingMedian6, col = "7")
lines(my_movingMedian7, col = "8")
legend(180,150000, col = c('1','2','3','4','5','6','7'),
 legend = c('original', 'MM3', 'MM5','MM7', 'MM9','MM11', 'MM13','MM15'),lty = 1, cex = 0.8)
movingMedian<- cbind(dataset$NATO, my_movingMedian1, my_movingMedian2, my_movingMedian3, my_movingMedian4,
 my_movingMedian5, my_movingMedian6, my_movingMedian7) # generalized correlation table from sliding medians
colnames(movingMedian) <- c("Y", "Yn, w = 3", "Yn, w = 5", "Yn, w = 7", "Yn, w = 9", "Yn, w = 11", "Yn, w = 13", "Yn, w = 15")
View(movingMedian)
m_t <- vector()# the number of turning points with median smoothing
for (i in 1:7){
 m_t[i] <- turn_points(movingMedian[, i + 1], dim(movingMedian)[1])
}# plotting pivot points for median smoothing
barplot(turn_points_value(my_movingMedian1, length(my_movingMedian1)), col = "lightsalmon",
 names.arg = c(1:m_t[1]), main = "Turned points diagram, w = 3")
barplot(turn_points_value(my_movingMedian2, length(my_movingMedian2)), col = "lightsalmon",
 names.arg = c(1:m_t[2]), main = "Turned points diagram, w = 5")
barplot(turn_points_value(my_movingMedian3, length(my_movingMedian3)), col = "lightsalmon",
 names.arg = c(1:m_t[3]), main = "Turned points diagram, w = 7")
barplot(turn_points_value(my_movingMedian4, length(my_movingMedian4)), col = "lightsalmon",
 names.arg = c(1:m_t[4]), main = "Turned points diagram, w = 9")
barplot(turn_points_value(my_movingMedian5, length(my_movingMedian5)), col = "lightsalmon",
 names.arg = c(1:m_t[5]), main = "Turned points diagram, w = 11")
barplot(turn_points_value(my_movingMedian6, length(my_movingMedian6)), col = "lightsalmon",
 names.arg = c(1:m_t[6]), main = "Turned points diagram, w = 13")
barplot(turn_points_value(my_movingMedian7, length(my_movingMedian7)), col = "lightsalmon",
 names.arg = c(1:m_t[7]), main = "Turned points diagram, w = 15")
m_r_xy <- vector()# correlation coefficients with median smoothing
for (i in 1:7){
 m_r_xy[i] <- correlation_coeficient(dataset$NATO, movingMedian[, i + 1], dim(movingMedian)[1])
}
k <- c(3, 5, 7, 9, 11, 13, 15) # displaying on the screen the number of turning points and correlation coefficients at different w
mdn_matrix <- cbind(k, m_t, m_r_xy)
colnames(mdn_matrix) <- c("Smoothing parameter", "Amount of turned points", "Correlation coefficient")
cat("\nMedian smoothing criteria:\n")
print(mdn_matrix)
cat("\n\t\tRepeated median smoothing")# repeated median smoothing
my_movingMedian1 <- rollmedian(dataset$NATO, k = 3, fill = 0,align = "right")
my_movingMedian2 <- rollmedian(my_movingMedian1, k = 5, fill = 0,align = "right")
my_movingMedian3 <- rollmedian(my_movingMedian2, k = 7, fill = 0,align = "right")
my_movingMedian4 <- rollmedian(my_movingMedian3, k = 9, fill = 0,align = "right")
my_movingMedian5 <- rollmedian(my_movingMedian4, k = 11, fill = 0,align = "right")
my_movingMedian6 <- rollmedian(my_movingMedian5, k = 13, fill = 0,align = "right")
my_movingMedian7 <- rollmedian(my_movingMedian6, k = 15, fill = 0,align = "right")
plot.ts(dataset$NATO,main="Repeated moving median",ylab="#NATO")# an image of repeated median smoothing on a graph
lines(my_movingMedian1, col = "2")
lines(my_movingMedian2, col = "3")
lines(my_movingMedian3, col = "4")
lines(my_movingMedian4, col = "5")
lines(my_movingMedian5, col = "6")
lines(my_movingMedian6, col = "7")
lines(my_movingMedian7, col = "8")

legend(180,150000,col = c('1','2','3','4','5','6','7'),legend =
 c('original', 'MM3', 'MM5','MM7', 'MM9','MM11', 'MM13','MM15'),lty = 1,cex = 0.8)
movingMedian<- cbind(dataset$NATO,my_movingMedian1,my_movingMedian2, my_movingMedian3,my_movingMedian4
 ,my_movingMedian5,my_movingMedian6,my_movingMedian7) # generalized correlation table from sliding repeated medians
colnames(movingMedian) <- c("Y", "Y'n, w = 3", "Y'n, w = 5", "Y'n, w = 7", "Y'n, w = 9", "Y'n, w = 11", "Y'n, w = 13", "Y'n, w = 15")
View(movingMedian)
rep_m_t <- vector()# the number of turning points during repeated median smoothing
for (i in 1:7){
 rep_m_t[i] <- turn_points(movingMedian[, i + 1], dim(movingMedian)[1])
}
barplot(turn_points_value(my_movingMedian1, length(my_movingMedian1)), col = "lightsalmon",
 names.arg = c(1:rep_m_t[1]), main = "Turned points diagram, w = 3")# plotting pivot points for repeated median smoothing
rep_m_r_xy <- vector()# коефіцієнти кореляції при повторному медіанному згладжуванні
for (i in 1:7){
 rep_m_r_xy[i] <- correlation_coeficient(dataset$NATO, movingMedian[, i + 1], dim(movingMedian)[1])
}
k <- c(3, 5, 7, 9, 11, 13, 15) # displaying on the screen the number of turning points and correlation coefficients at different w
rep_mdn_matrix <- cbind(k, rep_m_t, rep_m_r_xy)
colnames(rep_mdn_matrix) <- c("Smoothing parameter", "Amount of turned points", "Correlation coefficient")
cat("\nRepeated median smoothing criteria:\n")
print(rep_mdn_matrix)

Hierarchical agglomerative cluster analysis of multivariate data:

- solves the problem of group homogeneity of data, ensures the selection of compact, distant groups
of objects, that is, looks for a "natural" division of the population into areas of accumulation of

objects;

- allows dividing objects not by one parameter, but by a whole set of features;
- allows you to view fairly significant volumes of data, sharply shorten and compress them, make

them compact and clear.

For the method is necessary:

- normalize the data (so that the variance is equal to 1);
- make a matrix of closeness (relationship of the form "indicator-indicator");

- choose a strategy of unification.

Let's build the "operator-individual indicators" table. Dimensions: 𝑛 𝑚, where 𝑛 = 1,9̅̅ ̅̅ is the

number of hashtags, and𝑚 = 1,11̅̅ ̅̅ ̅̅ is the number of descriptive statistics indicators used. For cluster

analysis: the set G , which includes m objects, each of which is characterized by n features.

Figure 47: Table "operator - indicator" - values of indicators of objects according to descriptive
statistics

Normalization of the object-property table:

Figure 48: Normalized table "operator - indicator"

Choosing a metric for building a proximity matrix at Euclidean metric:

𝐷𝐸(�⃗�1, �⃗�2) = √∑ (𝑥1𝑗 − 𝑥2𝑗)2
𝑁
𝑖=1 .

Figure 49: The "original table" was built

Figure 50: Built "copy table"

Formation of the proximity table according to the defined metric:

Figure 51: Proximity table built according to the Euclidean metric

General view of any strategy:

.

For our data, we chose the nearest neighbor strategy: distance between groups - the distance between

the two most distant elements of the groups. For her, the parameters acquire the following values: 𝛼𝑖 =
𝛼𝑗 = 0.5, 𝛽 = 0, 𝛾 = 0.5. Features of the strategy: monotonous, greatly stretches the space.

Carrying out cluster analysis. Finding the smallest value in the proximity matrix and combining the
objects it corresponds to into one group.

Table 8
Finding the smallest element in the proximity matrix

№ 1 2 3 4 5 6 7 8 9
 Ukraine russia StandWithUkraine putin UkraineRussiaWar NATO StopRussia russian StopPutin

Ukraine 0.000000 2.0129736 2.4462875 2.4910462 2.8881866 2.8909688 2.9114586 2.9272550 2.9686466
russia 2.012974 0.0000000 1.1426592 0.5920176 1.7624964 1.0991498 1.3189270 1.2993285 1.5115275

StandWithUkraine 2.446287 1.1426592 0.0000000 0.8434325 0.7016520 0.9115220 0.5405982 0.5601943 0.5295263
putin 2.491046 0.5920176 0.8434325 0.0000000 1.4223876 0.6294907 0.8258859 0.8114353 1.0453304

UkraineRussiaWar 2.888187 1.7624964 0.7016520 1.4223876 0.0000000 1.4376388 0.8880631 0.8602348 0.5600772
NATO 2.890969 1.0991498 0.9115220 0.6294907 1.4376388 0.0000000 0.5741790 0.6127830 0.9269777

StopRussia 2.911459 1.3189270 0.5405982 0.8258859 0.8880631 0.5741790 0.0000000 0.1701307 0.3619027
russian 2.927255 1.2993285 0.5601943 0.8114353 0.8602348 0.6127830 0.1701307 0.0000000 0.3608628

StopPutin 2.968647 1.5115275 0.5295263 1.0453304 0.5600772 0.9269777 0.3619027 0.3608628 0.0000000

Extracting columns belonging to these objects. Eliminate empty space by shifting all columns to the

left and rows up.

Table 9
Elimination of an empty space in the proximity matrix

№ 1 2 3 4 5 6 9 №

 Ukraine russia StandWithUkraine putin UkraineRussiaWar NATO StopRussia &
russian

StopPutin

Ukraine 0.000000 2.0129736 2.4462875 2.4910462 2.8881866 2.8909688 2.9686466 Ukraine
russia 2.012974 0.0000000 1.1426592 0.5920176 1.7624964 1.0991498 1.5115275 Russia

StandWithUkraine 2.446287 1.1426592 0.0000000 0.8434325 0.7016520 0.9115220 0.5295263 StandWithUkraine
putin 2.491046 0.5920176 0.8434325 0.0000000 1.4223876 0.6294907 1.0453304 Putin

UkraineRussiaWar 2.888187 1.7624964 0.7016520 1.4223876 0.0000000 1.4376388 0.5600772 UkraineRussiaWar
NATO 2.890969 1.0991498 0.9115220 0.6294907 1.4376388 0.0000000 0.9269777 NATO

StopRussia &
russian

 StopRussia &
Russian

StopPutin 2.968647 1.5115275 0.5295263 1.0453304 0.5600772 0.9269777 0.0000000 StopPutin

Enumeration of the value of the extracted columns according to the selected strategy:

𝑑ℎ𝑘 = 𝛼𝑖𝑑ℎ𝑖 + 𝛼𝑗𝑑ℎ𝑗 + 𝛽𝑑𝑖𝑗 + 𝛾|𝑑ℎ𝑖 − 𝑑ℎ𝑗|.

The nearest neighbor strategy: 𝛼𝑖 = 𝛼𝑗 = 0.5, 𝛽 = 0, 𝛾 = 0.5.

Table 10
Columns whose elements are to be enumerated

StopRussia russian

2.9114586 2.9272550
1.3189270 1.2993285
0.5405982 0.5601943
0.8258859 0.8114353
0.8880631 0.8602348
0.5741790 0.6127830
0.0000000 0.1701307
0.1701307 0.0000000
0.3619027 0.3608628

𝑑ℎ𝑘 = 0.5 ∗ 𝑑ℎ𝑖 + 0.5 ∗ 𝑑ℎ𝑗 + 0 ∗ 𝑑𝑖𝑗 + 0.5 ∗ |𝑑ℎ𝑖 − 𝑑ℎ𝑗|.

𝑑ℎ1 = 0.5 ∗ 2.9114586 + 0.5 ∗ 2.9272550 + 0.5 ∗ |2.9114586 − 2.9272550| = 2.927255.

𝑑ℎ2 = 0.5 ∗ 1.3189270 + 0.5 ∗ 1.2993285 + 0.5 ∗ |1.3189270 − 1.2993285| = 1.318927.

𝑑ℎ3 = 0.5 ∗ 0.5405982 + 0.5 ∗ 0.5601943 + 0.5 ∗ |0.5405982 − 0.5601943| = 0.5601943.

𝑑ℎ4 = 0.5 ∗ 0.8258859 + 0.5 ∗ 0.8114353 + 0.5 ∗ |0.8258859 − 0.8114353| = 0.8258859.

𝑑ℎ5 = 0.5 ∗ 0.8880631 + 0.5 ∗ 0.8602348 + 0.5 ∗ |0.8880631 − 0.8602348| = 0.8880631.

𝑑ℎ6 = 0.5 ∗ 0.5741790 + 0.5 ∗ 0.6127830 + 0.5 ∗ |0.5741790 − 0.6127830| = 0.612783.

𝑑ℎ7 = 0.5 ∗ 0.0000000 + 0.5 ∗ 0.1701307 + 0.5 ∗ |0.0000000 − 0.1701307| = 0.1701307.

𝑑ℎ8 = 0.5 ∗ 0.1701307 + 0.5 ∗ 0.1701307 + 0.5 ∗ |0.1701307 − 0.0000000| = 0.1701307.

𝑑ℎ8 = 0.5 ∗ 0.3619027 + 0.5 ∗ 0.3608628 + 0.5 ∗ |0.3619027 − 0.3608628| = 0.3619027.

Search for the two smallest values in the listed column. Replacement of the upper minimum with

zero, elimination of the lower by shifting up all the lower cells in these columns.

Table 11
The results of applying the selected strategy to the removed columns

StopRussia & russian
2.9272550
1.3189270
0.5601943
0.8258859
0.8880631
0.6127830
0.1701307
0.1701307
0.3619027

Table 12
Forming a null element in the listed column

StopRussia & russian

2.9272550
1.3189270
0.5601943
0.8258859
0.8880631
0.6127830
0.0000000
0.3619027

Insertion of the listed column in the place (empty) of the first removed column. Checking whether

its zero lies on the main diagonal.

Table 13
Proximity matrix after inserting an enumerated column in place of an empty column

№ 1 2 3 4 5 6 9

 Ukraine russia StandWithUkraine putin UkraineRussiaWar NATO StopRussia &
russian

StopPutin

Ukraine 0.000000 2.0129736 2.4462875 2.4910462 2.8881866 2.8909688 2.9272550 2.9686466
russia 2.012974 0.0000000 1.1426592 0.5920176 1.7624964 1.0991498 1.3189270 1.5115275

StandWithUkraine 2.446287 1.1426592 0.0000000 0.8434325 0.7016520 0.9115220 0.5601943 0.5295263
putin 2.491046 0.5920176 0.8434325 0.0000000 1.4223876 0.6294907 0.8258859 1.0453304

UkraineRussiaWar 2.888187 1.7624964 0.7016520 1.4223876 0.0000000 1.4376388 0.8880631 0.5600772
NATO 2.890969 1.0991498 0.9115220 0.6294907 1.4376388 0.0000000 0.6127830 0.9269777

StopRussia &
russian

 0.0000000

StopPutin 2.968647 1.5115275 0.5295263 1.0453304 0.5600772 0.9269777 0.3619027 0.0000000

Copying the values of this column, transposing them into a ribbon and replacing it with the ribbon

of the first removed column.

Table 14
Proximity matrix after empty row filling

№ 1 2 3 4 5 6 9

 Ukraine russia StandWithUkraine putin UkraineRussiaWar NATO StopRussia &
russian

StopPutin

Ukraine 0.000000 2.0129736 2.4462875 2.4910462 2.8881866 2.8909688 2.9272550 2.9686466
russia 2.012974 0.0000000 1.1426592 0.5920176 1.7624964 1.0991498 1.3189270 1.5115275

StandWithUkraine 2.446287 1.1426592 0.0000000 0.8434325 0.7016520 0.9115220 0.5601943 0.5295263
putin 2.491046 0.5920176 0.8434325 0.0000000 1.4223876 0.6294907 0.8258859 1.0453304

UkraineRussiaWar 2.888187 1.7624964 0.7016520 1.4223876 0.0000000 1.4376388 0.8880631 0.5600772
NATO 2.890969 1.0991498 0.9115220 0.6294907 1.4376388 0.0000000 0.6127830 0.9269777

StopRussia &
russian

2.9272550 1.3189270 0.5601943 0.8258859 0.8880631 0.6127830 0.0000000 0.3619027

StopPutin 2.968647 1.5115275 0.5295263 1.0453304 0.5600772 0.9269777 0.3619027 0.0000000

Assignment to the new object formed as a result of merging the removed objects, next in order of

number.

Table 15
Assigning the next sequence number to the new proximity matrix object

№ 1 2 3 4 5 6 10 9

 Ukraine russia StandWithUkraine putin UkraineRussiaWar NATO StopRussia
& russian

StopPutin

Ukraine 0.000000 2.0129736 2.4462875 2.4910462 2.8881866 2.8909688 2.9272550 2.9686466
russia 2.012974 0.0000000 1.1426592 0.5920176 1.7624964 1.0991498 1.3189270 1.5115275

StandWithUkraine 2.446287 1.1426592 0.0000000 0.8434325 0.7016520 0.9115220 0.5601943 0.5295263
putin 2.491046 0.5920176 0.8434325 0.0000000 1.4223876 0.6294907 0.8258859 1.0453304

UkraineRussiaWar 2.888187 1.7624964 0.7016520 1.4223876 0.0000000 1.4376388 0.8880631 0.5600772
NATO 2.890969 1.0991498 0.9115220 0.6294907 1.4376388 0.0000000 0.6127830 0.9269777

StopRussia &
russian

2.9272550 1.3189270 0.5601943 0.8258859 0.8880631 0.6127830 0.0000000 0.3619027

StopPutin 2.968647 1.5115275 0.5295263 1.0453304 0.5600772 0.9269777 0.3619027 0.0000000

Repeating the procedure until the matrix is reduced to size 2 2.

Table 16

К Step #2: proximity matrix by size 8 8
№ 1 2 3 4 5 6 10 9

 Ukraine russia StandWithUkraine putin UkraineRussiaWar NATO StopRussia &
russian

StopPutin

Ukraine 0.000000 2.0129736 2.4462875 2.4910462 2.8881866 2.8909688 2.9272550 2.9686466
russia 2.012974 0.0000000 1.1426592 0.5920176 1.7624964 1.0991498 1.3189270 1.5115275

StandWithUkraine 2.446287 1.1426592 0.0000000 0.8434325 0.7016520 0.9115220 0.5601943 0.5295263
putin 2.491046 0.5920176 0.8434325 0.0000000 1.4223876 0.6294907 0.8258859 1.0453304

UkraineRussiaWar 2.888187 1.7624964 0.7016520 1.4223876 0.0000000 1.4376388 0.8880631 0.5600772
NATO 2.890969 1.0991498 0.9115220 0.6294907 1.4376388 0.0000000 0.6127830 0.9269777

StopRussia &
russian

2.9272550 1.3189270 0.5601943 0.8258859 0.8880631 0.6127830 0.0000000 0.3619027

StopPutin 2.968647 1.5115275 0.5295263 1.0453304 0.5600772 0.9269777 0.3619027 0.0000000

Table 17

Step #3: proximity matrix by size 7 7
№ 1 2 3 4 5 6 11

 Ukraine russia StandWithUkraine putin UkraineRussiaWar NATO StopRussia & russian
& StopPutin

Ukraine 0.000000 2.0129736 2.4462875 2.4910462 2.8881866 2.8909688 2.9686466
russia 2.012974 0.0000000 1.1426592 0.5920176 1.7624964 1.0991498 1.5115275

StandWithUkraine 2.446287 1.1426592 0.0000000 0.8434325 0.7016520 0.9115220 0.5601943
putin 2.491046 0.5920176 0.8434325 0.0000000 1.4223876 0.6294907 1.0453304

UkraineRussiaWar 2.888187 1.7624964 0.7016520 1.4223876 0.0000000 1.4376388 0.8880631
NATO 2.890969 1.0991498 0.9115220 0.6294907 1.4376388 0.0000000 0.9269777

StopRussia & russian &
StopPutin

2.9686466 1.5115275 0.5601943 1.0453304 0.8880631 0.9269777 0.0000000

Table 18

Step #4: proximity matrix by size 6 6
№ 1 2 12 4 5 6

 Ukraine russia StandWithUkraine & StopRussia &
russian & StopPutin

putin UkraineRussiaWar NATO

Ukraine 0.000000 2.0129736 2.9686466 2.4910462 2.8881866 2.8909688
russia 2.012974 0.0000000 1.5115275 0.5920176 1.7624964 1.0991498

StandWithUkraine & StopRussia &
russian & StopPutin

2.968647 1.5115275 0.0000000 1.0453304 0.8880631 0.9269777

putin 2.491046 0.5920176 1.0453304 0.0000000 1.4223876 0.6294907
UkraineRussiaWar 2.888187 1.7624964 0.8880631 1.4223876 0.0000000 1.4376388

NATO 2.890969 1.0991498 0.9269777 0.6294907 1.4376388 0.0000000

Table 19

Step #5: proximity matrix by size 5 5
№ 1 13 12 5 6

 Ukraine russia &
putin

StandWithUkraine & StopRussia &
russian & StopPutin

UkraineRussiaWar NATO

Ukraine 0.000000 2.491046 2.9686466 2.8881866 2.8909688
russia & putin 2.491046 0.000000 1.511528 1.762496 1.099150

StandWithUkraine & StopRussia &
russian & StopPutin

2.968647 1.511528 0.0000000 0.8880631 0.9269777

UkraineRussiaWar 2.888187 1.762496 0.8880631 0.0000000 1.4376388
NATO 2.890969 1.099150 0.9269777 1.4376388 0.0000000

Table 20

Step #6: proximity matrix by size 4 4
№ 1 13 14 6

 Ukraine russia &
putin

StandWithUkraine & StopRussia & russian &
StopPutin & UkraineRussiaWar

NATO

Ukraine 0.000000 2.491046 2.968647 2.8909688
russia & putin 2.491046 0.000000 1.762496 1.099150

StandWithUkraine & StopRussia & russian &
StopPutin & UkraineRussiaWar

2.968647 1.762496 0.000000 1.437639

NATO 2.890969 1.099150 1.437639 0.0000000

Table 21

Step #7: proximity matrix by size 3 3
№ 1 15 14

 Ukraine russia & putin &
NATO

StandWithUkraine & StopRussia & russian &
StopPutin & UkraineRussiaWar

Ukraine 0.000000 2.890969 2.968647
russia & putin & NATO 2.890969 0.000000 1.762496

StandWithUkraine & StopRussia & russian &
StopPutin & UkraineRussiaWar

2.968647 1.762496 0.000000

Table 22

Step #8: proximity matrix by size 2 2
№ 1 16

 Ukraine russia & putin & NATO & StandWithUkraine & StopRussia &
russian & StopPutin & UkraineRussiaWar

Ukraine 0.000000 2.968647
russia & putin & NATO & StandWithUkraine & StopRussia &

russian & StopPutin & UkraineRussiaWar
2.968647 0.000000

Table 23
Results of cluster analysis - table "union - node - metric"

Step Association Node Metrics

1 7 + 8 d10 0.1701307
2 10 + 9 d11 0.3619027
3 2 + 4 d12 0.5601943
4 3 + 11 d13 0.5920176
5 13 + 5 d14 0.8880631
6 12 + 6 d15 1.099150
7 15 + d14 d16 1.762496
8 1 + 16 d17 2.968647

Figure 52: The result of the software construction of the "union - node - metric" table

The dimensionality of the matrix 2 2 => STOP. Construction of a dendrogram:

Figure 53: Cluster dendrogram for formed clusters and clusters at level 0.6

Interpretation of the result of cluster analysis at level 0.6, 6 clusters are formed: 1 cluster – object
Ukraine; 2nd cluster – object Russia; cluster 3 – objects StandWithUkraine, StopPutin, StopRussia,

russian; cluster 4 – putin facility; 5th cluster – object UkraineRussiaWar; cluster 6 is a NATO facility.

Figure 54: Cluster dendrogram for clusters at level 1.0 and 1.4

At level 1.0, 4 clusters are formed: 1 cluster – object Ukraine; 2nd cluster – objects russia, putin;

cluster 3 – objects UkraineRussiaWar, StandWithUkraine, StopPutin, StopRussia, russian; cluster 4 is

a NATO facility. At level 1.4, 3 clusters are formed: 1 cluster – object Ukraine; cluster 2 – NATO,
russia, putin facilities; 3rd cluster - objects of UkraineRussiaWar, StandWithUkraine, StopPutin,

StopRussia, russian.

Figure 55: Cluster dendrogram for clusters at three levels simultaneously (0.6, 1.0, 1.4)

Figure 56: The result of the software implementation of the interpretation of the cluster analysis result

As a general conclusion of the results of the cluster analysis, the following can be defined: the largest

share of all hashtags was occupied by #Ukraine, followed by #NATO and #UkraineRussiaWar,

respectively. Detailed information about which indicators apply to which clusters at which level is
provided above.

cat("\tCluster analysis\n")# cluster analysis of multivariate data
operator_property <- describe(dataset[3:11])[3:13] # formation of the "object-property" table
norm_operator_property <- matrix(NA, dim(operator_property)[1], dim(operator_property)[2]) # object-property table normalization
View(operator_property)
for (j in 1:dim(operator_property)[2])
 norm_operator_property[, j] <- norm_sequence(operator_property[, j])
colnames(norm_operator_property) <- colnames(operator_property)
row.names(norm_operator_property) <- row.names(operator_property)
View(norm_operator_property)
norm_op_pr_1 <- norm_operator_property # creation of "original table" and "copy table"
norm_op_pr_2 <- norm_operator_property
View(norm_op_pr_1)
View(norm_op_pr_2)
proximity_matrix <- matrix(NA, dim(operator_property)[1], dim(operator_property)[1]) # building the proximity matrix
colnames(proximity_matrix) <- row.names(operator_property)
rownames(proximity_matrix) <- row.names(operator_property)
for (i in 1:dim(operator_property)[1]){ # cycle through the rows of the original table
 # цикл по рядках таблиці-копії
 for(j in 1:dim(operator_property)[1]){
 S <- 0
 for(k in 1:dim(operator_property)[2]){ # cycle through stacks of tables
 S <- S + (norm_op_pr_1[i, k] - norm_op_pr_2[j, k])^2 # definition of the Euclidean metric
 }
 proximity_matrix[j, i] <- sqrt(S)
 }
}
View(proximity_matrix) # conducting cluster analysis
t <- vector()# the position of the smallest element
l <- vector()# table of future clusters
cluster_matrix <- proximity_matrix
while(dim(cluster_matrix)[1] != 2){ # combining elements into clusters until the dimension of the matrix is 2 x 2
 for(i in 1:dim(cluster_matrix)[1]){
 for(j in 1:dim(cluster_matrix)[1])
 if(cluster_matrix[i, j] == min(as.dist(cluster_matrix))){ # finding the smallest value in the proximity matrix
 t <- c(i, j)
 break
 }
 }
 a <- t[1] # ensuring the shift of columns (rows) to the left (up)
 t[1] <- min(t)
 t[2] <- a # formation of a new column name of the proximity matrix (based on the names of the combined elements)
 colnames(cluster_matrix)[t[1]] <- paste(colnames(cluster_matrix)[t[1]], colnames(cluster_matrix)[t[2]], sep=" & ")
 row.names(cluster_matrix)[t[1]] <- colnames(cluster_matrix)[t[1]] # forming a new row name of the proximity matrix
 l <- rbind(l, c(colnames(cluster_matrix)[t[1]], cluster_matrix[t[1], t[2]])) # adding generated nodes and corresponding metrics to the table
 # enumeration of the values in the removed columns by the nearest neighbor strategy
 cluster_matrix[, t[1]] <- 0.5*cluster_matrix[, t[1]] + 0.5*cluster_matrix[, t[2]] +
 0.5*abs(cluster_matrix[, t[1]] - cluster_matrix[, t[2]])
 cluster_matrix[t[1],] <- t(cluster_matrix[, t[1]]) # filling an empty row (transposing a calculated column)
 cluster_matrix[t[1], t[1]] <- 0 # replacing the minimum value with 0
 cluster_matrix <- cluster_matrix[, -t[2]] # reducing the dimensionality of the matrix (removing empty rows and columns)
 cluster_matrix <- cluster_matrix[-t[2],]
}
View(cluster_matrix)
creation of the "union - node - metric" table, adding the last combination of elements to the cluster table
l <- rbind(l, c(paste(colnames(cluster_matrix)[1], colnames(cluster_matrix)[2], sep = "&"), cluster_matrix[1, 2]))
n <- vector()# creating a column of nodes
for (i in 1:dim(l)[1])
 n[i] <- paste("d", dim(proximity_matrix)[1] + i, sep = "")
l <- cbind(c(1:dim(l)[1]), l[, 1], n, l[, 2])
colnames(l) <- c("Step", "Unification", "Node", "Metric")
cluster_groups <- as.matrix(l)
View(cluster_groups)
cat("Created clusters:\n")
print(as.character(cluster_groups[, 2]))
library(cluster) # construction of a dendrogram
clust <- hclust(as.dist(proximity_matrix), method = "complete")
plot(clust, xlab = "Hashtags")
interpretation <- vector() # interpretation of cluster analysis
cl <- c(6, 4, 3)
cl_level <- c(0.6, 1.0, 1.4)

for(i in 1:3){
 rect.hclust(clust, cl[i], border = i + 1)
 cluster <- cutree(clust, cl[i])
 interpretation <- cbind(interpretation, colnames(as.dist(proximity_matrix)), cluster)
 colnames(interpretation)[i] <- paste("cluster division on level ", "'", cl_level[i], "'", sep = "")
}
cat("\nInterpretation of cluster analysis:\n")
print(interpretation)

5. Conclusions

Summing up, it can be stated that the hypothesis put forward at the beginning is confirmed. Having

analyzed the appearance of graphs of functions, correlations between time-quantity values, we can

confirm the opinion that at the beginning of the war (the first week), information about the situation in
Ukraine became a kind of explosion in the media space of the world. The number of comments, posts,

"tweets" on this topic reached a record high of 4,000,000. After a week, this trend changed dramatically

- the number of discussions decreased significantly. This is due in particular to the fact that the crisis
stage has passed (there has been a lot of information, it is no longer so "interesting" for the world).

Although it is also worth saying that this decrease continued to a specific mark. For 50 days from the

start of the invasion, the number of publications decreased from 4,000 thousand to 500 thousand. At
the level of 500 thousand, the number is maintained until now (with insignificant deviations during

certain military events). We can assume that under constant circumstances, without significant changes,

this trend will take on a downward trend. At the same time, if the circumstances change, it is impossible

to make objective assumptions. Another interesting conclusion can be that during the cluster analysis,
it was found that the world focuses more on Ukraine, as a victim of the war, than on russia, as the

aggressor. Also, a large share of foreigners supports the initiative to help Ukraine (in particular, the

issue of joining NATO). On the contrary, it should not be forgotten that the assumptions "support" -
"do not support" are not objective, since people tagging the NATO hashtag can also write negative

posts. A fair statement would be the following: foreigners are concerned about the situation in Ukraine

and its request for protection from NATO. In addition, the last conclusion is that, although interest in
Ukraine decreases over time, it still does not fall lower than before the war. It can be said that the war

drew attention to our country, foreigners heard about us and will not forget our name or location. The

conducted analysis demonstrated the dynamics of changes in the activity of discussing the war and

confirmed the previously put forward assumptions.

6. References

[1] O. Snopok, We watch, read, listen: how the media consumption of Ukrainians changed in the

conditions of a full-scale war. URL: https://www.pravda.com.ua/columns/2022/06/22/7353987/

[2] Media consumption of Ukrainians in conditions of full-scale war. URL:
https://www.oporaua.org/report/polit_ad/24068-mediaspozhivannia-ukrayintsiv-v-umovakh-

povnomasshtabnoyi-viini-opituvannia-opori

[3] M. Ulyanovska, The Russian information war in Ukraine is failing - Nina Yankovich. Interview.
URL: https://ukrainian.voanews.com/a/jankowicz-russian-disinformation-failing/6961072.html

[4] E. Musk: https://twitter.com/elonmusk/status/1526834598935949312?cxt=HHwWgMDTxc3-

s7AqAAAA
[5] S. McSweeney. Our current approach to the war in Ukraine. URL:

https://help.twitter.com/uk/safety-and-security/our-ongoing-approach-to-the-war-in-ukraine

[6] MediaSapiens, Twitter will warn about disinformation about the war in Ukraine. URL:

https://ms.detector.media/sotsmerezhi/post/29536/2022-05-20-twitter-poperedzhatyme-pro-
dezinformatsiyu-shchodo-viyny-v-ukraini/

[7] MediaSapiens, Musk announced how many bots he had on Twitter. URL:

https://ms.detector.media/it-kompanii/post/29532/2022-05-20-mask-povidomyv-skilky-botiv-
narakhuvav-u-twitter/

https://www.pravda.com.ua/columns/2022/06/22/7353987/

[8] https://twitter.com/elonmusk/status/1526465624326782976?ref_src=twsrc%5Etfw%7Ctwcamp
%5Etweetembed%7Ctwterm%5E1526465624326782976%7Ctwgr%5E%7Ctwcon%5Es1_&ref_

url=https%3A%2F%2Fwww.bloomberg.com%2Fnews%2Farticles%2F2022-05-17%2Felon-

musk-says-twitter-must-prove-bot-claims-for-deal-to-proceed

[9] MediaSapiens, Musk said he was accused of violating an NDA when he bought Twitter. URL:
https://ms.detector.media/trendi/post/29509/2022-05-16-mask-povidomyv-shcho-yogo-

zvynuvatyly-v-porushenni-nda-pid-chas-kupivli-twitter/

[10] Y. Rorh. Introducing our crisis misinformation policy. URL:
https://blog.twitter.com/en_us/topics/company/2022/introducing-our-crisis-misinformation-

policy

[11] Y. Rorh. URL: https://twitter.com/yoyoel/status/1527320114072195072
[12] MediaSapiens, Twitter has blocked the ability to register accounts in Russia. URL:

https://ms.detector.media/sotsmerezhi/post/29049/2022-02-26-twitter-zablokuvav-mozhlyvist-

reiestruvaty-akaunty-v-rosii-fedorov/

[13] MediaSapiens, Twitter started flagging the accounts of state media in Belarus. URL:
https://ms.detector.media/sotsmerezhi/post/29162/2022-03-11-twitter-pochav-markuvaty-

akaunty-derzhavnykh-zmi-bilorusi/

[14] MediaSapiens, Twitter deleted over 50,000 false tweets about the war in Ukraine. URL:
https://ms.detector.media/sotsmerezhi/post/29198/2022-03-17-twitter-vydalyv-ponad-50-

tysyach-brekhlyvykh-tvitiv-pro-viynu-v-ukraini/

[15] V. Vysotska, S. Mazepa, L. Chyrun, O. Brodyak, I. Shakleina, V. Schuchmann, NLP Tool for
Extracting Relevant Information from Criminal Reports or Fakes/Propaganda Content, in IEEE

17th International Conference on Computer Sciences and Information Technologies (CSIT), 2022,

pp. 93-98, doi: 10.1109/CSIT56902.2022.10000563.

[16] O. Darwish, et al, Identifying Fake News in the Russian-Ukrainian Conflict Using Machine
Learning, in Advanced Information Networking and Applications: Proceedings of the 37th

International Conference on Advanced Information Networking and Applications (AINA-2023),

2023, Volume 3 (pp. 546-557). Cham: Springer International Publishing.
[17] W. Tao, Y. Peng, Differentiation and unity: A Cross-platform Comparison Analysis of Online

Posts’ Semantics of the Russian–Ukrainian War Based on Weibo and Twitter, Communication and

the Public 2023, 20570473231165563.

[18] M. Mazza, G. Cola, M. Tesconi, Ready-to-(ab) use: From fake account trafficking to coordinated
inauthentic behavior on Twitter. Online Social Networks and Media, 31 (2022) 100224.

[19] D. Weinberg, J. Dawson, A. Edwards, How the Russian Influence Operation on Twitter

Weaponized Military Narratives, in International Conference on Cyber Warfare and Security 18(1)
(2023) 431-439.

[20] S. Velichety, U. Shrivastava, Quantifying the impacts of online fake news on the equity value of

social media platforms–Evidence from Twitter, International Journal of Information Management
64 (2022) 102474.

[21] B., Smart, J., Watt, S., Benedetti, L., Mitchell, M. Roughan, # IStandWithPutin versus#

IStandWithUkraine: The interaction of bots and humans in discussion of the Russia/Ukraine war,

in Social Informatics: 13th International Conference, SocInfo 2022, Glasgow, UK, October 19–
21, 2022, Proceedings (pp. 34-53). Cham: Springer International Publishing.

	1. Introduction
	2. Related works
	3. Methods and materials
	4. Experiments, results and discussions
	5. Conclusions
	6. References

