
Computational Technology and Software Tool for Translation of
Business Rules into Database Creation Scripts

Andrii Kopp and Dmytro Orlovskyi

National Technical University “Kharkiv Polytechnic Institute”, Kyrpychova str. 2, Kharkiv, 61002, Ukraine

Abstract
Almost all modern software systems from small mobile applications to large enterprise suites

are using databases and database management systems to store and manage data collections

and ensure their persistence and security. However, dominating Agile software development

methodologies do not assume engineers focus only on database design or any other specific

field. In Agile projects, database design usually belongs to the scope of software developers

responsible for server-side programming. Hence, a lack of specialized skills and experience

may lead to database design shortcomings or even errors causing time and money expenses at

the later stages of software development projects. When software requirements are elicited,

database entities and relations are captured in business rules – brief and precise descriptions

of a considered domain. Therefore, in this paper, we propose a computational technology and

a software tool for the translation of business rules into database creation scripts to reduce

time and cost expenses at the development or maintenance stages of software engineering

projects. In this study we use the finite-state machine based approach to parse business rules,

association rules learning, and naming conventions to detect data types using attribute names,

and the most widely-used database management systems to perform experiments.

Keywords 1
Business Rules, Database Design, Relational Model, Database Schema, Code Generation

1. Introduction

Today is hard to imagine software applications that do not use a database (DB) to keep user data.

In general, a database is the collection of raw facts (i.e. end-user data), which is stored in a structured

manner, and metadata that describes this structure and how end-user data is managed. Databases are

handled by the specialized system software called the Database Management System (DBMS). The

DBMS is responsible for controlling the database structure’s persistence and security [1].

Currently, software applications of different complexity and data storage requirements, from food

delivery mobile applications to large enterprise information systems (IS), keep their data collections

in databases managed by DBMS. As a result, database design is a crucial component of practically

any software engineering project and may call for specialized engineers with strong expertise in data

modeling and DB development. This approach may work for waterfall or iterative projects when task

delegation to various specialists or even teams and big project teams are common things [2].

However, according to Agile practices dominating in software engineering projects, DB design is

done by the same software engineers responsible for the back-end (i.e. server-side) development, or

even by full-stack developers responsible for both front-end and back-end programming [2].

This makes engineers responsible for DB design and development replaceable, while the whole

software engineering process is more flexible. Nevertheless, the lack of database design skills, proper

training, and experience, as well as the time and staff resources to focus more precisely on database

schema correspondence to a domain, may lead to design mistakes and further time and monetary

COLINS-2023: 7th International Conference on Computational Linguistics and Intelligent Systems, April 20–21, 2023, Kharkiv, Ukraine

EMAIL: kopp93@gmail.com (A. Kopp); orlovskyi.dm@gmail.com (D. Orlovskyi)

ORCID: 0000-0002-3189-5623 (A. Kopp); 0000-0002-8261-2988 (D. Orlovskyi)

©️ 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

expenses for fixing errors made at the DB design stage. It is well-known though, that the cost of error

fixing increases exponentially during the project and may be several times higher at the development

stage than at the design stage [3].

Business rules are used as sources of DB design requirements, helping to detect necessary entities,

attributes, and relationships. According to [1], business rules (BR) are textual explanations of policies,

procedures, and concepts within a certain organization that are compact, exact, and unambiguous. For

example, when the IS or its certain components are planned for development, or when the out-of-the-

box enterprise software is planned for customization, BR could be taken from company employees or

documents [1].

Database BR are definitions of data model components, including entities, attributes, relationships,

and constraints [1]. A similar definition of DB BR is given in Wiegers and Beatty’s book devoted to

software requirements elicitation [4]. According to their taxonomy, there are six types of BR, such as

facts, constraints, action enablers, inferences, computations, and terms. Whereas the other types of BR

describe the software system’s behavior in action, facts describe data model entities and relationships.

Thus, in the rest of the paper, we will consider BR as facts that describe the static structure of data

models according to Wiegers and Beatty [4].

Therefore, this paper aims at reducing time losses and related costs occurring at the late stages of

software engineering projects when the DB design is handled by inexperienced or untrained engineers

responsible for server-side or full-stack development. The goal could be achieved by developing the

computational technology and software tool for the translation of BR into DB creation scripts, such as

Data Definition Language (DDL) statements of Structured Query Language (SQL).

The rest of this paper is structured as follows: the state-of-the-art analysis is given in sub-section

1.1, the formal problem statement is given in 1.2, materials and methods for DB schema generation

from BR are outlined in section 2 and its respective sub-sections, while the software tool development

and usage to solve the considered problem is described in section 3. The analysis of obtained results

includes validation of SQL scripts generated from BR for compliance with the most popular DBMS.

In the last section conclusion and future work in this field are formulated.

2. Related Works

According to the “DB-Engines Ranking” website that ranks DBMSs according to their popularity,

the most widely used are relational database management systems: Oracle, MySQL, Microsoft SQL

Server, and PostgreSQL [5]. Even though these DBMSs also support other data models, they still use

relational models as their primary mechanisms. It is well-known, that relational databases consist of

tables, table columns, and relationships that link tables together [6]. Database tables represent entities

of a certain domain, table columns represent entity attributes, primary keys uniquely identify records

in tables, and foreign keys establish references between tables [7]. As can be seen, the main principles

of relational database design did not change much since they were introduced in the 1970s.

Existing studies in the field of automatic DB schema generation from business rules demonstrate

different approaches. In [8] authors proposed the automatic generation of an extended entity-

relationship (ER) diagram using natural language processing (NLP). This approach by Šuman et. al

[8] parses sentences and tags them as various parts of the speech by then mapping these words to ER

elements: entities, attributes, and relationships [8]. Another study [9] proposes an algorithm for the

ER diagram transformation into relational database schema, however, it uses ER models partitioning

into “ER-construct-units” to validate transformations but not to produce SQL code [9]. As for NLP-

based approaches, authors of [10] propose a system that detects and extracts necessary information

from a given natural language text scenario and builds the ER diagram and SQL queries. However,

the system proposed in [10] is focused on generating SQL queries for the data access (i.e. SELECT

statements), not database creation. Similarly, authors of [11] proposed a novel natural language

interface to databases named SQL Query Generation Engine, which is used to translate natural

language into SQL queries to read data from databases [11]. One more interesting paper [12], which is

focused on database creation, proposes a new method that uses NLP techniques for UML (Unified

Modeling Language) class diagram generation from requirement specifications to allow software

developers to analyze requirements in an efficient way [12].

3. Proposed Approach
3.1. Business Rules Processing and Formalization

Let us also represent fact business rules using controlled language structures of limited grammar

and complexity. Hence, the structure of fact business rules [1, 4] can be formally described using the

Extended Backus-Naur Form (EBNF) [13] as following:

._}{_}{:: nameattributehasnameentityeachfact (1)

Hence, a deterministic finite-state machine (DFSM) [14] is proposed to parse a sequence of tokens

Tokens included into each business rule:

 ,,,,, 0 FsSTokens (2)

where:

 Tokens is the finite non-empty set of tokens of each business rule;

 S is the finite non-empty set of states;

 0s is the initial state, Ss 0 ;

 STokensS : is the state-transition function;

 F is the set of final states, SF .

The proposed DFSM is given in Fig. 1 below using the UML state diagram.

Figure 1: The state diagram of proposed DFSM for business rules parsing

Besides the initial state Ss 0 , the set of states S includes the following ones:

 1s is the state to which the DFSM transfers after the “each” token is passed as input;

 2s is the state to which the DFSM transfers after the token, which corresponds the following

conditions, is passed as input:

,"has" StopWordstokentoken (3)

where StopWords is the set of stop words, which can be filtered using the NLTK (Natural Language

Toolkit) package [15];

 3s is the state to which the DFSM transfers after the “has” token is passed as input;

 4s is the state to which the DFSM transfers after the token, which corresponds the following

conditions, is passed as input:

;"." StopWordstokentoken (4)

 5s is the final state to which the DFSM transfers after the “.” is passed as input, Fs 5 .

Let us describe the additional behavior of the proposed DFSM:

 when the state machine transfers to 2s , the given token is added to a set that forms the name

of entity EntityName ;

 when the state machine transfers to 4s , the given token is added to a set that forms the name

of attribute ameAttributeN .

As given above, the proposed DFSM (Fig. 1) takes fact business rules given according to (1) and

produces ER model components: entity names and attribute names. The further problem includes the

detection of relationships between extracted entities, as well as data types assignment to attributes.

Let us formally describe a relational database structure using the following equations:

,

,,,:

,

,,,2,1,:

,,:,,2,1

,,,2,1,,:,,2,1

,,,2,1,

AttributesAttributes

EntitiesEntityEntitiesEntityEntityEntityAttributes

DataTypesypeAttributeT

mjDataTypeDataTypesAttributes

ypeAttributeTameAttributeNAttributeqi

qkAttributeEntityNameEntityni

niEntityEntities

FKPKFKPK

i
k

j

i
k

i
k

i
k

i
kii

i

 (5)

where:

 Entities is the set of entities;

 iEntity is the i -th entity of a database structure, ni ,,2,1 ;

 n is the number of entities in a database structure;

 Attributes is the set of attributes;

 iEntityName is the name of i -th entity, ni ,,2,1 ;

 i
kAttribute is the k -th attribute of i -th entity, qk ,,2,1 ;

 i
kameAttributeN is the name of k -th attribute of i -th entity, qk ,,2,1 ;

 i
kypeAttributeT , is the data type of k -th attribute of i -th entity, qk ,,2,1 ;

 q is the number of attributes in a database structure;

 DataTypes is the set of all data types that can be used in a database structure;

 jDataType is the j -th data type, mj ,,2,1 ;

 m is the number of data types used in a database structure;

 is the function that defines a data type jDataType , mj ,,2,1 for each attribute;

 Attributes is the sub-set of attributes that form relationships, AttributesAttributes ;

 FKPK EntityEntity , is the pair of entities that form a relationship;

 PKEntity is the parent entity;

 FKEntity is the child entity;

 is the function that defines a pair of parent and child entities for each common attribute

given in the sub-set Attributes .

Using the proposed formal description of a relational database structure (5), the input data in the

form of business rules (1) processed by the DFSM (Fig. 1) will be structured to generate SQL scripts.

3.2. Preliminary Extraction of Entities and Attributes Using DFSM

Let us consider the example of the following business rules describing a domain of students and

courses:

“Each student has a student ID. Each student has a full name. Each course has a course number.

Each course has a title. Each course has a number of credits. Each enrollment has a student ID. Each

enrollment has a course number. Each enrollment has a grade.”

Using the proposed DFSM, we obtain the following entities and their attributes. All input tokens

combined to obtain entity names and attribute names values should be merged using the underscore

(i.e., “_”) separator to simplify the further generation of syntactically correct SQL code. Stop words

should be removed according to equations (3) and (4).

The initial information on the database structure, which is extracted from the business rules given

above, is demonstrated in Table 1.

Table 1
Extracted entities and attributes from business rules

Entity name Attribute name

student student_id, full_name
course course_number, title, number_credits

enrollment student_id, course_number, grade

3.3. Relationships Detection

Relationships between entities should be created using common attributes – primary keys (PK) in

parent entities and foreign keys (FK) in child entities. To detect relationships, we propose to check all

pairs of entities and find intersections of their attributes. An entity that firstly mentions the common

attribute should be considered as parent, while other entities – as child (Fig. 2).

Figure 2: The algorithm for detecting relationships between entities

Using extracted entities and their respective attributes (Table 1), we can apply the algorithm given

above (Fig. 2) to detect relationships between entities (Table 2).

Table 2
Detected relationships, parent, and child entities

Common attribute Parent entity Child entity

course_number course enrollment
student_id student enrollment

Found common attributes should be used as PK in parent entities and as FK in child entities when

generating SQL code.

3.4. Attribute Data Types Suggestion using Apriori Algorithm

The following essential problem includes the data types suggestion for attributes using their names

only. In this study we use the “Spider 1.0 NLP Dataset” created and supported by Yale students. This

dataset includes 166 databases with various tables that cover 138 different domains [16].

Using the metadata descriptions of database tables from the “Spider” dataset, we prepared the set

of attribute names and corresponding data types. These pairs are used by the association rule learning

Apriori algorithm (Fig. 3) [17].

Figure 3: The Apriori association rule algorithm for processing of attribute name and data type pairs

Using the Apriori algorithm [17], the following metrics should be calculated:

,
#

,#

Pairs

DataTypeAttributePairs
DataTypeAttributeSupport (6)

,

AttributeSupport

DataTypeAttributeSupport
DataTypeAttributeConfidence

 (7)

,

DataTypeSupport

DataTypeAttributeConfidence
DataTypeAttributeLift

 (8)

where:

 DataTypeAttributeSupport is the probability of observing the attribute and the data type

together, DataTypeAttributePairs ,# is the number of pairs containing both the attribute and the

data type, and Pairs# is the number of all pairs;

 DataTypeAttributeConfidence is the probability of having the data type for attribute;

 DataTypeAttributeLift is the times probability of choosing the data type increases for a

given attribute.

Hence, 1Lift means the data type depends on the attribute and this association rule can be used

with a certain level of confidence. The data type suggestion algorithm is given in Fig. 4 below.

Figure 4: The data type suggestion algorithm based on association rules

According to the proposed algorithm, the data type of maximum lift value or the default data type
defaultDataType (if pairs with a given attribute do not exist) should be suggested:

 .max
,,2,1

max
j

mj
DataTypeAttributeLiftLift

 (9)

The suggested data type should be chosen if the following condition is satisfied:

 ,,,2,1,max mjLiftDataTypeAttributeLift j (10)

where is some tolerance limit or stopping criteria, let us use 610 .

The “Spider” dataset includes the following data types assigned to different database columns:

 .boolean"",text"",time"",number""DataTypes (11)

The default data type is chosen to be a text type, "text"defaultDataType .

Table 3 below demonstrates data types suggested for the entity attributes introduced in Table 1.

Table 3
Attribute data types suggested using association rules learning

Attribute Suggested data type Support Confidence Lift

student_id number 0.0068 0.97 2.08
full_name text 0.0002 1.00 2.06

course_number text 0 - -
title text 0.0047 1.00 2.06

number_credits text 0 - -
grade number 0.0006 0.50 1.03

As it is demonstrated in Table 3, attributes “course_number” and “number_credits” are not present

in the “Spider” data set. Therefore, an alternative technique should be proposed to augment the used

association rules learning algorithm.

3.5. Attribute Data Types Suggestion using Naming Conventions

Let us consider the following sets of keywords that will be used to augment the association rules

algorithm by checking how attribute names match naming conventions:

 ,,, booltimenum KKK (12)

where:

 numK is the set of keywords used to recognize number columns;

 timeK is the set of keywords used to recognize time columns;

 boolK is the set of keywords used to recognize boolean columns.

Each of the considered keyword sets may contain various tokens used as prefixes or suffixes when

naming entity attributes. Some examples of such keywords are given in Table 4.

Table 4
Examples of attribute name prefixes or suffixes

Keywords Prefix or suffix

numK “number”, “amount”, “value”, “count”, “quantity”, etc.

timeK “time”, “date”, “timestamp”, “created”, “updated”, “modified”, “recorded”, etc.

boolK “is”, “has”, “can”, “flag”, etc.

Therefore, the mapping between keywords and data types they describe can be formally described

as the following function:

.: DataTypesKKK booltimenum (13)

The data type suggestion algorithm based on attribute naming conventions is shown in Fig. 5.

Figure 5: The data type suggestion algorithm based on attribute naming conventions

Hence, the proposed algorithm (Fig, 5) allowed to suggest the “number” data type for attributes

“course_number” and “number_credits” previously identified as text attributes (see Table 3).

3.6. Proposed Computational Technology Design

The proposed computational technology includes steps described in sub-sections above and given

formally using the following IDEF0 diagram (Fig. 6).

Figure 6: The structural model of proposed computational technology

The final step shown in Fig. 6 includes SQL code generation using the developed software tool.

The proposed computational technology can be formally described as the following tuple:

,, AMDFSMCT (14)

where:

 DFSM is the deterministic finite-state machine introduced in equation (2) and Fig. 1 used for

business rules parsing;

 AM is the algorithmic model [18], which consists of the set of interacting algorithms.

The algorithmic model has the following structure:

 ,,,, 321 AARAAAAAM (15)

where:

 321 ,, AAAA is the set of interacting algorithms [18];

 1A is the relationships detection algorithm;

 2A is the attribute data types suggestion algorithm based on association rules;

 3A is the attribute data types suggestion algorithm based on naming conventions;

 AAR describes connections between algorithms [18].

To perform experiments and validate the proposed computational technology, the software tool for

business rules translation into SQL data definition scripts should be developed.

4. Results
4.1. Software Tool Development

The software tool should read a business rules text file as the input, when started by a user, and

generate the SQL scripts file as the output. Also users should be able to modify keywords depending

on used attributes naming convention (see Table 4).

The UML use case diagram demonstrating the main functional capabilities of the software tool for

business rules translation into database creation scripts is demonstrated in Fig. 7 below.

Figure 7: The use case diagram

As it is shown in the use case diagram (Fig. 7) above, some usage scenarios are gray-colored. This

means such activities are tightly related to the software tool but executed independently using other

software:

 the business rules text file is created using any third-party text editor;

 obtained SQL scripts are adjusted and deployed to DBMS using ant third-party client tool.

The developed computational technology in terms of software components is shown in Fig. 8.

Figure 8: The component diagram

The component diagram above (Fig. 8) demonstrates structural elements mentioned in equations

(14) and (15), as well as describes connections between DFSM, algorithms, and SQL code generation

software module (for better perception, these components are colored differently).

As for the SQL code generation module, this part of the software tool should solve two tasks:

 build statements according to the SQL syntax;

 substitute generic data types (11) by specific SQL data types.

According to the “DB-Engines Ranking” resource [5], the most popular relational DBMS are:

 Oracle – score: 1247.52;

 MySQL – score: 1195.45;

 Microsoft SQL Server – score: 929.09;

 PostgreSQL – score: 616.50.

Therefore, the corresponding data types used in these DBMS [19] are given in Table 5 below.

Table 5
Specific SQL data types of different DBMS

Data types from
the “Spider”
data set [16]

Oracle
data types

MySQL
data types

Microsoft SQL Server
data types

PostgreSQL
data types

number NUMBER(18,9) NUMERIC(18,9) NUMERIC(18,9) NUMERIC(18,9)
time TIMESTAMP DATETIME DATETIME TIMESTAMP
text CLOB TEXT TEXT TEXT

boolean NUMBER(1) BOOLEAN BIT(1) BOOLEAN

The software is created using the Python programming language and works as a command-line

tool, which takes several arguments, including the name of the business rules text file, the name of the

output SQL scripts file, and the name of the target DBMS. It also uses third-party Python modules:

Pandas [21] for data processing and Natural Language Toolkit (NLTK) [15] for sentence and word

tokenization, and stop-words filtering.

4.2. Software Tool Usage Analysis

Let us use business rules we introduced in sub-section 2.1 and put them into the input file (Fig. 9).

Figure 9: The business rules text file

As the result, the software produces the SQL scripts file. The sample output is shown in Fig. 10.

Figure 10: The sample SQL code generated from business rules

SQL code was produced for various DBMS and tested using “SQL Fiddle” service (Fig. 11) [20].

Figure 11: Database schemas successfully created for different DBMS

As it is demonstrated in Fig. 11 above, input business rules (see Fig. 9) were translated into SQL

scripts used to successfully create database schemas for Oracle 11g R2, MySQL 5.6, Microsoft SQL

Server 2017, and PostgreSQL 9.6. Obviously, obtained scripts require adjustments of data types and,

possibly some other constraints, before being deployed to DBMS servers.

The software tool performance was tested using different amounts of entities and attributes written

in business rules (Table 6).

Table 6
Performance testing results

Entities Attributes Lines of Code (LOC) Time, sec

3 8 22 0.04
6 16 44 0.05

15 40 110 0.14
30 80 220 0.28
60 160 440 0.58

150 400 1100 1.57
300 800 2200 3.98
600 1600 4400 6.50

1500 4000 11000 18.32
3000 8000 22000 39.13

These results were also depicted in a chart (Fig. 12) of processing time (in sec.) and SQL scripts

size (in LOC) growth as the number of attributes increases.

Figure 12: Processing time and LOC growth as the number of attributes increases

The exploratory data analysis measures [22] of performed experiments are given in Table 7 below.

It demonstrates minimum, first quartile (Q1), median, third quartile (Q3), and maximum measures of

entities, attributes, respective lines of code (LOC), and processing time.

Table 7
Statistical analysis results

Measure Entities Attributes LOC Time, sec

Minimum 3 8 22 0.04
First quartile 19 50 138 0.17

Median 105 280 770 1.08
Third quartile 525 1400 3850 5.87

Maximum 3000 8000 22000 39.13

The statistical results (see Table 7) demonstrate the minimum processing time of 3 entities and 8

attributes is 0.04 sec. with the produced 22 lines of SQL code. The maximum processing time of 3000

entities and 8000 attributes is 39.13 sec. with the produced 22000 lines of SQL code.

The obtained results (see Table 7) also show the processing time of 25% of business rules is below

0.17 sec. for the input data below 19 entities and 50 attributes, and the output data below 138 lines of

SQL code. The processing time of another 25% of business rules is above 5.87 sec. for the input data

above 525 entities and 1400 attributes, and the output data above 3850 lines of SQL code.

The remaining 50% of business rules have the median processing time of 1.08 sec. for the input

data of 105 entities and 280 attributes, and the output data of 770 lines of SQL code.

The statistical analysis of performed experiments proves the proposed computational technology

and software tool are capable of processing large volumes of business rules and generate SQL DDL

statements for various popular DBMS in reasonable time. The performance measurements were done

on the medium-tier workstation with the Intel Core i5-10210U processing unit of 1.60GHz frequency,

16 GB memory, and 64-bit Windows 10 operating system.

5. Discussion

The software tool is developed as the command-line utility, which takes the input business rules

from a text file and generates the output database schema creation scripts according to the proposed

computational technology (Fig. 6). The developed software tool is capable of generating SQL scripts

compatible with different popular DBMS using various SQL data types supported by these database

management systems (see Table 5).

In this study, we considered the most popular relational DBMS: Oracle, Microsoft SQL Server,

MySQL, and PostgreSQL [5]. The experimental results (Fig. 9) outline the sample business rules used

as the input for the software tool were successfully translated into corresponding DDL code, including

table and column definitions, and primary and foreign keys (Fig. 10). The obtained DDL script was

successfully tested for database schema generation using the mentioned database engines (Fig. 11).

The performance testing of the created software tool demonstrates the capability of solving the large

computational problems of SQL code generation from business rules in a reasonable time (Fig. 12).

The proposed technique has several limitations. The current implementation of the proposed idea

assumes the usage of only controlled language statements with a restricted structure, defined for fact

business rules by equation (1). Also, the detection of relationships between entities could fail if do not

mention primary and foreign keys as common entity attributes explicitly. However, it is a common

practice to name key attributes as we consider in our approach – among 166 databases present in the

“Spider” dataset [16], 163 databases (98%) are using shared names for primary and foreign keys.

6. Conclusion

In this study, we considered the problem of database script generation from natural language text

descriptions given as controlled language structures – fact business rules. Fact business rules are brief

and precise statements that describe entities of a certain domain. Thus, we formalized their processing

using the approach based on a deterministic finite-state machine (Fig. 1). However, extracted entities

and attributes are still not sufficient for database design. Therefore, we have proposed an algorithm

for relationship detection using the identification of common attributes among different entities (Fig.

2). This algorithm is based on basic concepts of relational databases – primary and foreign keys. To

suggest data types for each of the detected attributes, we used the algorithm based on association rules

learning (Fig. 4). In addition, we used the other algorithm (Fig. 5) based on naming conventions of

attributes to cover those attribute names did not mentioned in the training data set for association rules

learning. The proposed computational technology includes the DFSM, proposed algorithms, and the

SQL code generation toolkit, and describes the interaction of all of the mentioned components.

In the future, the proposed computational technology should be augmented by algorithms that can

detect constraints in business rules (such as null arguments, unique indexes, allowed value ranges for

columns, etc.). Also, a web-based software solution should be developed for a better user experience.

7. References

[1] C. Coronel, S. Morris, Database Systems: Design, Implementation, & Management, Cengage

Learning, 2018.

[2] F. Tsui, O. Karam, B. Bernal, Essentials of software engineering, Jones & Bartlett Learning,

2022.

[3] D. M. Anderson, Design for manufacturability: How to use concurrent engineering to rapidly

develop low-cost, high-quality products for lean production, CRC Press, 2020.

[4] B. Meyer, J.-M. Bruel, S. Ebersold, F. Galinier, A. Naumchev, Towards an Anatomy of Software

Requirements, volume 11771 of Lecture Notes in Computer Science, Springer, 2019, pp. 10–40.

doi:10.1007/978-3-030-29852-4_2

[5] DB-Engines Ranking, February 2023. URL: https://db-engines.com/en/ranking.

[6] T. Bressoud, D. White, Introduction to Data Systems: Building from Python, Springer Nature,

2020.

[7] M. Javed, Y. Lin, iMER: Iterative process of entity relationship and business process model

extraction from the requirements, Information and Software Technology 135 (2021) 106558.

doi:10.1016/j.infsof.2021.106558

[8] S. Šuman, S. Candrlic, A. Jakupovic, A Corpus-Based Sentence Classifier for Entity–

Relationship Modelling, Electronics 11(6) (2022) 1–22. doi:10.3390/electronics11060889

[9] D. Pieris, M. C. Wijegunesekera, N. G. J. Dias, ER model Partitioning: Towards Trustworthy

Automated Systems Development, arXiv (2020). URL: https://arxiv.org/abs/2007.00999.

doi:10.48550/arXiv.2007.00999.

[10] S. Hettiarachchi, C. Sugandhika, A. Kathriarachchi, S. Ahangama, G. T. Weerasuriya, A

Scenario-based ER Diagram and Query Generation Engine, In 2019 4th International Conference

on Information Technology Research (ICITR), IEEE, 2019, pp. 1–5.

doi:10.1109/ICITR49409.2019.9407793.

[11] C. Sugandhika, S. Ahangama, Heuristics-Based SQL Query Generation Engine, in: 2021 6th

International Conference on Information Technology Research (ICITR), IEEE, 2021, pp. 1–7.

doi:10.1109/ICITR54349.2021.9657317.

[12] A. A. Almazroi, L. Abualigah, M. A. Alqarni, E. H. Houssein, A. Q. M. AlHamad, M. A. Elaziz,

Class Diagram Generation from Text Requirements: An Application of Natural Language

Processing, in: Deep Learning Approaches for Spoken and Natural Language Processing,

Springer, 2022, pp. 55–79. doi:10.1007/978-3-030-79778-2_4.

[13] V. Tietz, B. Annighoefer, A formally defined and formally provable EBNF-based constraint

language for use in qualifiable software, in: Proceedings of the 25th International Conference on

Model Driven Engineering Languages and Systems: Companion Proceedings, 2022, pp. 862–

871. doi:10.1145/3550356.3561552.

[14] G. O’Regan, Guide to Discrete Mathematics An Accessible Introduction to the History, Theory,

Logic and Applications, Springer International Publishing, 2021.

[15] NLTK – Natural Language Toolkit. URL: https://www.nltk.org/index.html.

[16] Yale University’s Spider 1.0 NLP Dataset. URL:

https://www.kaggle.com/datasets/jeromeblanchet/yale-universitys-spider-10-nlp-dataset.

[17] T. A. Kumbhare, S. V. Chobe, An overview of association rule mining algorithms, International

Journal of Computer Science and Information Technologies 5(1) (2014) 927–930.

[18] V. L. Lysytskyi, Y. Y. Morhun, Development of software for effective enterprise product policy

creation, Bulletin of National Technical University KhPI Series System Analysis Control and

Information Technologies 21 (2018) 59–64. doi:10.20998/2079-0023.2018.21.11.

[19] B. Brumm, SQL Data Types: Oracle, SQL Server, MySQL, PostgreSQL, 2022. URL:

https://www.databasestar.com/sql-data-types/.

[20] SQL Fiddle. URL: http://sqlfiddle.com/.

[21] pandas – Python Data Analysis Library. URL: https://pandas.pydata.org/.

[22] D. T. Bennett, N. M. Scala, P. L. Goethals, Mathematics in Cyber Research, CRC Press, 2022.

