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Abstract  
In this paper we present a multi-modal image and text dataset. The dataset is based on images 
from the Open Images dataset and text descriptions of the class names obtained from 
Wikipedia. We provide an exemplary model for labeling images trained on top of the dataset. 
Lastly, we explore the applicability of this or similarly compiled datasets for various computer 
vision tasks, in particular for image classification with aid of a natural language processing 
model. With the help of the compiled dataset, we construct an image tagging model. The model 
represents a typical example of multi-class multi-label classification task. Using a pretrained 
model, we fine-tune a neural network classifier for adding one-word tags to the images based 
on the objects depicted in the images. We explore the performance of the classifier and argue 
for the benefits of the multi-modal datasets for this task as well as other vision tasks. 
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1. Introduction 

Image classification is one of the typical tasks for computer vision algorithms. As such, many 
different approaches to the task have formed. In recent years, neural network-based approaches 
dominate the area. In particular, models using convolutions and attention mechanisms are popular and 
show great results. 

In this work, we suggest a novel approach to solving the image classification task by using the latest 
findings in the field of natural language processing and combining them with the conventional models 
for image classification. For this, we have assembled a multi-modal dataset. The structure and more 
details on the dataset are presented further in this paper. The dataset is available publicly on GitHub. 
We also theorize as to what kinds of models might be built on top of this dataset. 

Many multimodal datasets with text and images are built for the task of image description or for 
generating images from text. Such tasks require distinct and precise annotations for each image. Unlike 
those tasks, image classification works with a predefined set of ground truth labels. This gives us the 
ability to consider using general class descriptions as labels rather than individual image descriptions. 
Because of this simplification, we’re able to assemble the dataset with less effort. Practitioners who 
apply the results of this work will be able to amend the dataset just as easily without spending resources 
on human annotators. 

The end goal of this research is to come up with an approach to image classification that would be 
scalable, i.e., given a certain pretrained state, have an ability to receive new image classes with smaller 
amounts of extra training. By the virtue of being able to extract additional data from the class labels, 
rather than merely treating them as non-informative flags, we hope to achieve a better performance for 
the classes added after the main training stage (meta-training).  

Also, the smaller training stages for the added classes (fine-tuning) should benefit from the 
knowledge extracted from the class descriptions. Such a technique may improve the rate at which new 
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classes may be added to a trained model. Such an achievement will benefit many practitioners, who 
take advantage of pretrained models to solve narrower cases. 

This paper presents the preparatory yet important stage of the research, collecting and cleaning data 
for the models to learn upon. Our goal with this paper is to demonstrate the approach of data collection, 
present a complete usable and useful dataset, and illustrate the use of said dataset on a concrete problem. 
The demonstrative problem we have chosen is the image tagging task—generating multiple one-word 
tags that describe an image. Such an algorithm may prove useful for many practical scenarios, such as 
image search. 

2. Related works 

Currently, one can see significant progress in image classification using neural networks [1-3]. 
Including analysis of images with high spatial resolution [1], application of trending technologies of 
transfer learning and machine learning [2], use of multispectral data analysis [3]. In addition to these 
important areas of development, a number of private results have been obtained, which can significantly 
improve the efficiency of classification. 

Thus, in [4], a new combined transfer learning technique for image segmentation based on the 
combination of image weighting and kernel training is proposed to improve performance on 
heterogeneous data. In [5], an effective model of voice labeling of images using neural networks is 
proposed, the application of which can significantly improve the accuracy of neural network training 
when considering non-trivial data. In [6], an aggregate network with context-sensitive learning for 
hyperspectral image classification is proposed, which can effectively reduce the influence of initial 
graph error on the classification result. In [7], a model for semi-supervised classification of 
hyperspectral images using spatial-spectral information is proposed to improve classification efficiency 
under conditions of limited data sampling. In [8], features, models and algorithms for volumetric image 
classification using multisample learning and extreme value theorem are described. In [9], a deep 
learning platform for converting image reconstruction into pixel classification for efficient local 
processing of a digital image is presented. In [10], models and algorithms for kernel-based constrained 
energy minimization for hyperspectral classification of mixed pixels are described. In [11], an algorithm 
for iteratively increasing the training sample to improve the accuracy of image classification is 
proposed. 

At the same time, solutions for the classification task in NLP are being actively developed. Thus, 
the work [12] presents a unified understanding of deep NLP models for text classification at different 
levels of perception and detail. Work [13] proposes solutions in the sense of using deep learning 
architectures based on transducers for specific conditions of their application. In [14] a practically 
oriented model of automatic classification of sexism in social networks (Twitter network) is proposed. 
In [15], a mechanism for embedding user ID into pre-trained language models for document-level tone 
classification is proposed. In [16], a new method of MBTI classification based on the influence of class 
components is proposed. The method is used for subsequent prediction of personality type. In [17], the 
authors proposed a multitasking learning model based on multiscale CNN and LSTM for sentiment 
classification. In [18], the authors try to combine supervised machine learning and NLP algorithms into 
one method, which is called SECRET (Semantically Enhanced Classification of REal-world Tasks). 
This method does the classification by combining the semantic information of the labels with the 
available data. In [19] the state of the art of models and algorithms for classifying user-generated content 
from social networks in real time is described. Article [20] presents the results of an analysis of the 
application of text expansion methods combined with the latest data classification algorithms. Article 
[21] proposes an innovative method for the operation of a recommendation system for breast cancer 
diagnosis using patients' medical histories. The mechanism of machine learning and word embedding 
in the classification of the disease diagnosis is applied. In [22] the limitations of transducers for 
classification of clinical documents are presented and analyzed. 

State of the art image classification analysis suggests a potential for improvement in classification 
performance with the methodology suggested in this work. Combining the convolutional neural 
networks and attention-based neural networks with the NLP models allows to compensate for the 



drawbacks of the generally accepted approach of image enhancement [23, 24] with further application 
of a neural network classifier [25, 26]. 

Simplistic approaches to natural language processing, such as statistical models, for example, 
Markov chains, can lead to significant results when applied to texts of limited scope, as shown in [27]. 
For more complex texts, the text styles can provide a useful heuristic for selecting the appropriate light-
weight algorithm [28]. This ability to choose simpler NLP models allows us more flexibility to provide 
greater performance for many specific cases. Additionally, methods presented in [29, 30] for processing 
images of various sources provide a basis for a framework for heuristic-based and neural network-based 
approaches to the visual component of classification. 

Overall, by using heuristic approach to both NLP and vision, many specific examples can be solved 
without using the more performant yet more resource intensive neural network-based approaches. 
However, in the general case, as well as for situations where determining the correct heuristics-based 
solution  is impossible, neural network-based solutions are prevalent. 

Existing multimodal datasets involving text and image data typically consist of images annotated 
with text description of what is happening on the image. Such datasets include: 

• COCO (Microsoft Common Objects in Context) [31] 
• Flickr30k [32] 
• Conceptual Captions [33]. 
COCO (Microsoft Common Objects in Context) is a large-scale object detection, segmentation, and 

captioning dataset [31]. The dataset consists of images, polygon annotations for select objects, and a 
few statements about objects on the images in text form.  

Flickr30k is a dataset of over 30 thousand images from Flickr. Each image is annotated with five 
sentences written by human annotators. The images are limited to educational use only [32].  

Unlike in the COCO dataset, the five sentences are alternative descriptions of the image, not just 
class names. As seen from the example, some images have details that can be seen differently by 
different people. This feature of the dataset may infuse data with more variability. 

Conceptual Captions is, similarly to Flickr30k, a dataset with annotated images. However, this 
dataset provides captions generated automatically by correlating images with text at the data source 
[33]. The dataset includes over 3 million captioned images. 

However, when considering the image classification task, a typical dataset consists of images 
annotated with either one or several labels. Such datasets include ImageNet [34], MNIST [35], and 
CIFAR-10 and CIFAR-100 [36]. Each of the labels represent an object present on the image, or, 
sometimes, an action performed on the image by humans. At the core of these datasets are images. Even 
barring the text labels, classes, or action descriptions, the datasets may provide great value to 
researchers, e.g. in an unsupervised learning setting.  

With these and other datasets, the list of models built for image classification is vast. At the time of 
writing, some of the more efficient models include transformer-based models, such as CoCa [37] and 
ViT-G/14 [38], residual neural network-based models, such as FixResNet-101 [39], and EffNet-L2 
[40], which is based on the EfficientNet [41] scaling mechanism and the approach of minimizing 
training loss sharpness along with loss itself. 

CoCa and ViT models use approaches derived from the initial Transformer model [42]. The attention 
mechanism is applied to convolutions derived from the input image. Both models perform well in few-
shot scenarios and are suitable for fine-tuning. 

FixResNeXt-101 model derives from the ResNet model [43]. The model is capable of high results 
on the classification task, having a lower number of parameters than the transformer-based models. 

EffNet-L2 is a modification of other EfficientNet [41] models, that utilizes sharpness-aware 
minimization. Like all EfficientNet models, it is capable of scaling, thus may use less parameters than 
other model types. 

Some of the most used benchmarks for image classification are based on datasets ImageNet [34] and 
CIFAR-100 [36]. It is impractical to compare specific models to one another if they are fine-tuned for 
different benchmarks. Thus, we choose the top performers in the three categories of models, 
transformers, ResNets and EfficientNets. See table 1 for benchmark values the ImageNet and CIFAR-
100 values aggregates per model type with mentions of specific model names [42, 43]. For transformer-
based models, consider CoCa [37] and ViT-B-16 [38]. For ResNet-based models, consider 



FixResNeXt-101 [39] and BiT-L ResNet [44]. Finally, for EfficientNet-based models, consider 
EfficientNet-L2 [45] and EffNet-L2 SAM [40]. 

 
Table 1 
Performance of some classification models 

Model type ImageNet CIFAR-100 
Transformer 91.0 (CoCa) 94.2 (ViT-B-16) 

ResNet 86.4 (FixResNeXt-101) 93.51 (BiT-L ResNet) 
EfficientNet 90.2 (EfficientNet-L2) 96.08 (EffNet-L2 SAM) 

3. Methods and Materials 

In order to assemble such a dataset, we compiled several data sources. The choice of data sources is 
based on several factors, such as: 

• Images have to be of a relatively high resolution. Many datasets use low-resolution images. 
Such techniques work great for purposes of education, assembling proof-of-concept algorithms, 
basic demonstrations, etc. For purposes of solving real-world problems, we require high-resolution 
images. In the end, we settled on having images at least 360 by 480 pixels. This allows for fine 
details to be present on the images, as compared to low-resolution datasets, such as ImageNet [34], 
MNIST [35], and CIFAR-100 [36]. 
• Images have to be clearly labeled. Labels designate classes of objects on the image. There may 
be multiple object classes per image. There should not be any action labels, i.e. descriptions of 
actions, situations, etc. that are performed on the image. 
• Text descriptions of the image classes have to be as informative as possible. 
• Text descriptions are tokenized in order to simplify the preparation for NLP algorithms. 
• Text descriptions must contain from 400 to 512 tokens. The upper limit comes from the 
common size limit for many NLP models, such as BERT [47]. 
• All data collected for the dataset has to be distributed under permissive open-source licenses. 
Accounting for the listed requirements, we turned to the Open Images [48] dataset. The dataset 

provides 1.9 million images labeled with over 600 “boxable” classes, i.e. classes of objects present on 
an image that could be shown with a bounding box. However, the data we’re interested in for the 
purposes of our dataset is not the bounding boxes but the presence of a given class on an image. Class 
distribution is, while not uniform, is even enough to be sure that, given some thoughtful data sampling, 
the vision models will be able to learn all classes equally well. Figure 1 shows the histogram of 
occurrences of classes in the dataset. 

As seen on the graph, most classes tend to have between one hundred and ten thousand images. 
There are a few classes that have less than ten images. In the training process, those classes could be 
excluded to later serve as the few-shot examples. 

The boxable classes can also be used for bounding box labeling task.   
With that in mind, we borrow the labeled images from the Open Images dataset. 
For the purpose of obtaining class descriptions in text form, we fetch Wikipedia articles by the name 

of the class. If a total match exists, we use the article. If there is a redirected article, we use that article. 
In case of ambiguity, we manually select the article that fits the context of images the most. For 
example, the label “Stool” has more than one article matching the name. We manually select the one 
that describes a piece of furniture and proceed with it.  

Once the article is obtained, we fetch the first few paragraphs. The goal here is to at least have the 
definition of the word. The table of contents, citations, links, and other markup elements are ignored. 

Lastly, the definitions are tokenized, so that instead of working with whole texts, we are able to work 
with sequences of words that represent said text. 

The resulting definition for “Stool” reads: “A stool is a raised seat commonly supported by three or 
four legs but with neither armrests nor a backrest in early stools and typically built to accommodate one 
occupant As some of the earliest forms of seat stools are sometimes called backless chairs despite how 



some modern stools have backrests Folding stools can be collapsed into a flat compact form typically 
by rotating the seat in parallel with fold-up legs”. 

Note the absence of any punctuation in the example above. Some language models work with simple 
punctuation, such as commas, periods, etc. [39], while others don’t. For our dataset, we’re going with 
the simpler option of removing the punctuation. Partly, because we target the dataset to more simple 
language models, that may not need punctuation as they operate on words and word combinations, 
rather than whole sentences and text in general.  

 

 
Figure 1: Histogram of the numbers of images per class in the dataset. The x-axis represents the 
count of images. The y-axis represents the number of classes with roughly this number of images 
 

The resulting dataset is published on GitHub publicly [49]. Instructions on accessing the dataset are 
available on GitHub under the name “ImageD Dataset”. The repository contains all the text data 
mentioned in this paper. The image data can be accessed by downloading the images from the Open 
Images dataset. For convenience, the repository also contains scripts for downloading images that can 
be copied or used as Python libraries. We do not redistribute the images from the Open Images dataset, 
but merely access them. 

Models trained for vision tasks can be graded via several different metrics. In our research, we have 
developed a model for labeling images with several tags. This demonstration model is evaluated via the 
typical metrics, precision, recall, and the F-score. 

The metrics are calculated with the following formulas: 
 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑡𝑝
𝑝
, (1) 

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝
𝑎𝑝
, (2) 

 
𝐹 = 2

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 ⋅ 	𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 + 	𝑟𝑒𝑐𝑎𝑙𝑙

, 
(3) 

where tp—true positive answers, p—all positive answers, ap—actual positive examples. 



The metrics do not mean anything without the appropriate context.. Only attached to a certain 
dataset, in our case, ImageD, do the metrics receive any meaning. But, as a rule of thumb, greater is 
better. 

In binary classification problems, precision and recall must be adequately balanced, since random 
guessing would produce a high recall, nearly 1, and precision of nearly 0.5, resulting in F-score nearly 
0.75. In our case of multi-class classification, this issue does not manifest. 

For the tagging model, used to demonstrate the capabilities of the datasheet, we use a pre-trained 
ResNet 101 32x4d model [50]. The model is capped with a head which accepts the model’s output 
embedding as its input and generates the vector of probabilities. Each probability value corresponds to 
a single tag. Figure 2 illustrates the general architecture of the model. 

 

 
Figure 2: Structure of the tagging model. 

 
As seen on the diagram, the head consists of a single fully-connected layer with a sigmoid activation. 

The resulting vector is then treated as a probability vector for the tags. 

4. Experiment 

Example learning experiment: convert text annotations into tags and train a model to tag images. 
Given an integrated dataset of labeled images with text descriptions, we may build a variety of 

machine learning models. For the purposes of demonstrating the applicability of this dataset, we have 
developed a model that, given an image, tags it with several one-word tags. 



The process of experiment preparation goes as follows: 
1. Prepare one-word tags by tokenizing the class descriptions and selecting the rarely-occurring 
words. 
2. Digitize tags by transforming them into binary unit vectors. 
3. Assemble tag vectors for each image in the dataset. 
The preparation effectively converts sets of labels for each image into sets of tags encoded in such 

a way that a neural network can be trained on them. Such a model, when used, would take an image 
and mark it with a set of tags. This can be useful for, e.g. building a primitive search engine that looks 
up images by code words. 

In order to tokenize the class descriptions, we use the widely used “nltk” Python library. For each 
description, we receive the tokenized version that consists of word stems, endings, other grammatical 
parts, and punctuation. First, we remove the punctuation, as well as any non-word tokens, such as 
numbers. Then, we filter the tokens to remove those that occur too often. This is done by gathering the 
statistics of word occurrences in different class descriptions and only retaining a top P percentile. P is 
a hyperparameter of the model. For the purposes of demonstration, P was selected to be 0.2. This means 
that, if the word occurs in over 0.2% of the class definitions, we remove it from the list. All other words 
become the tags for the model to train upon. This gives us 10718 tags to train on, i.e. the output layer 
will have 10718 neurons. 

Next, the tags are digitized, i.e. turned from words into a digital representation. For this, we sort the 
tags alphabetically and build a vector for each of the tags. The vector has the length of N, where N is 
the total number of tags. The vector is filled with zeros, except for one value, which is set to one. The 
position of the unit value corresponds to the order of the tag and uniquely represents the tag. 

With the tags digitized, we now may label the images with them. To do so, we lookup all the classes 
associated with a given image and, given their descriptions as tags, find the set of digital representations 
of the tags. Then, we combine the tag vectors via the bitwise OR operation. This yields us vectors filled 
with ones and zeros, representing the tags associated with a given image. 

Now, we proceed to training the model. For this, we selected a pre-trained core model that will 
provide us the needed level of accuracy with a needed level of performance. The choice of such a model 
has a significant impact on the final accuracy of our model. For the needs of this research, we have 
selected a small yet quite powerful model ResNet 101 32x4d model [50]. The model accepts images of 
resolution 224 per 224 pixels as input.  

The process of enabling the model to solve our tagging task involves fine-tuning. In order to shorten 
training time and avoid pre-trained weights losing their efficiency, we substitute the final fully-
connected layer of the model and freeze the rest of the layers. This means that the error propagation 
process will not alter any parameters except for the last layer. 

The fresh fully-connected layer is shaped in such a way that it receives the output of the other layers 
of the ResNet model as the input and produces a vector of size N as the output, where N is the total 
number of tags. As calculated previously, N is equal to 10718. 

The outputs of the final layer are passed through a sigmoid function to determine the probability of 
a given class being selected. If the output is high enough, the image is labeled with the tag associated 
with the given output. 

To determine if the model considers the image to belong to a given class, we choose a threshold 
value for the output layer. All the outputs that are less than the threshold value are discarded and all the 
values that are equal to or greater than the threshold are considered to be confidence levels for the given 
class. Since the negative outcome (a zero value) is much more likely than a positive outcome (a one 
value) for any given output neuron, we take the threshold value quite low to be 0.3. This allows us to 
pick up on weak signals from the model when no confidence level is high enough. However, to avoid 
overselection, i.e. selecting too many classes per example, we also ignore all the values that are not in 
the top four classes per example, regardless of their confidence level. This is a tradeoff between the 
more extensive search for objects of the image and the accuracy. The more possible tags the model can 
find, the more false-positive errors it can make, and the more in-depth search for objects on the image 
can be performed. 

Then, the model was trained to output the tag vectors on the data we assembled. The loss change 
during the training process is depicted in the graph in figure 3. 

 



 

 
Figure 3: Change of the loss function value during the model training. The X axis represents the epoch 
number. The Y axis represents the MSE loss. For this graph, loss was sampled once per epoch every 
last batch of an epoch 
 

For training we used the SGD optimizer with the mean squared error (MSE) loss function. SDG is 
the optimizer used during the training of the initial ResNet model. MSE loss fits best because of its 
simplicity when working with multi-class multi-label classification. 

The fine-tuned model performs well enough on the test dataset, with the precision value of 71.11, 
the recall value of 74.2 and the F-score of 72.62. Note that, for calculating precision and recall, we used 
the following algorithm: 

• an example is considered true positive if the four or less classes produced by the model are 
present among the ground truth labels; 
• an example is considered false positive if the model produced at least one label that is not found 
among the ground truth labels; 
• an example is considered false negative if the model did not produce a class that was present 
among the ground truth; for calculating this value, we omit the four classes per example rule. 
This approach is known as micro-averaged precision and recall calculation, as opposed to macro-

averaged and example-based calculation, both of which consider precision and recall for each class 
individually. 

Note that in the process of training, there was a noticeable growth of loss after a certain number of 
iterations around epoch 64. This can be explained by the weight decay after a certain number of 
repetitions. For better performance, data augmentation could have been used. 

5. Results 

The trained model is able to tag images with some degree of accuracy. The performance of the model 
is defined by the several factors, such as: 

• learning hyperparameters; 
• data augmentation; 
• data shuffling; 
• number of tags to be learnt. 



For this demonstrative experiment, most learning hyperparameters were chosen empirically, with 
no prior cross validation. Exploring parameter hyperspace via simple validation or cross validation 
could enhance the training speed and resulting accuracy. 

The lack of data augmentation, as mentioned previously, limits the effective number of training 
epochs that could be run without unintentionally messing up parameters. Data augmentation is the next 
best thing after sourcing more data, which is the whole point of this research. Same could be said about 
data shuffling. 

The number of tags to be learnt in an important hyperparameter. As we took the P value to be 0.2, 
the number of tags became 10718. This is quite a large number of output values for a neural network. 
This means that there are much more negative cases for each output than positive ones. Thus, learning 
is complicated by the imbalance in the dataset. 

With this in mind, here are some of the examples of the model output. The examples are split into 
positive and negative not by comparing model output to the recorded tags, but by human evaluation of 
the tags selected by the model. Figure 4 demonstrates some positive examples where the model tagged 
the images in the expected way. 

 

 
                                  a)                                                                            b) 

 
                                  c)                                                                            d) 

Figure 4: Examples of well tagged images [48] 
 
Image a) in fig. 4. shows a bird standing in an artificial enclosure by a pond. The model produced 

the following tags: “animal”, “bird”, “water”, “street”. Here and later, tags are provided in the order of 
descending confidence. However, the confidence levels themselves do not have any special meaning 
beyond the model, thus we omit them. 

Image a) in fig. 4. shows a man making a speech in what appears to be a conference hall. The model 
produced the following tags: “person”, “gesture”, “hand”, “curtain”. 

Image c) shows a sportsman in a competition. The model produced the following tags: “key”, 
“sport”, “cowd”, “street”. 

Finally, image d) shows a group of people standing in an open area. The model produced the 
following tags: “person”, “theater”, “town”, “street”. 

Figure 5 demonstrates the negative examples of tagging. 
 



 
                                  a)                                                               b) 

 
                                                c)                                                           d) 

Figure 5: Examples of poorly tagged images [48] 
 
Image a) in fig. 5. shows a tennis player. The model tagged it with “soccer”, “ball”, “cup”, “open”. 

Note that “open” is probably related to tennis, but the other tags are not correct. 
Image b) in fig. 5. shows an aquarium. The model tagged it with “sea”, “ocean”, “fish”, “mammal”. 

Here, the model ignored more subtle clues like fragments of hands of people standing around the 
aquarium. 

Image c) shows a cat birthday card, which is an example of bad data. The model tagged it with “cat”, 
“animal”, “box”, “fur”. 

Image d) shows a woman drinking beer. The model tagged it with “person”, “glasses”, “barrel”, 
“street”. This is probably because of bad data from the definition of “beer”. 

After analyzing the results, we conclude that the dataset is generally acceptable, though some records 
still contain unwanted noise. To improve the quality of the data, some human supervision would be 
beneficial. 

6. Discussions 

The obtained results show the clear efficiency of the approach of enhancing image data with text 
information. For the simple, tagging task, we managed to obtain adequate performance by simply fine-
tuning an existing model on data generated by scraping Wikipedia. 

For the presented task, as well as for any other task, it would be beneficial to use human-generated 
annotations for class names instead of snippets of Wikipedia. However, it can be enough for many tasks. 



However, the presented experiment in training a labeling model only begins to explore the 
capabilities of the approach. Multi-modal data has many applications which, unlike the tagging task, 
cannot be solved by other means. However, multi-modal data is not always readily available, specially 
in more specialized domains. The approach of enhancing an image dataset with text data sourced from 
simple description of classes, rather than descriptions of each individual image, can bridge the gap 
between the required and the present datasets. 

We presume some advances can be made in the task of image classification with the use of multi-
modal datasets, such as the one presented in this paper. The approaches may include few-shot learning 
improvement based on similarities of text descriptions of the new and the existing classes, text 
generation from the images, which also can help with classification, using image labeling for the 
purposes of text classification, etc. 

The idea behind this approach is to gain as much usable information from given data as possible 
with little effort. The approach targets the situations where it is not feasible to obtain more image data 
for one reason or another. Along with few-shot learning situations, where data for some classes is not 
as abundant as for others, this is useful for domain-specific tasks, where any data may be scarce. 

Finally, the approach may be useful for achieving or beating state-of-the-art performance with fewer 
trainable parameters. 

The need for fewer parameters is dictated by the growing computational complexity of modern 
machine learning models. This, in turn, leads to longer training times, slower inference, and more 
expensive hardware requirements. Thus achieving, or even approaching, state-of-the-art performance 
on vision tasks with significantly less parameters is a necessity for all the researchers and commercial 
users who do not have prolonged access to high-cost computational facilities. 

When using two models, one for vision and another for NLP, which have fewer parameters 
combined than typical modern vision models, applying the multi-modal approach can turn out 
beneficial for the combined system performance. The potential benefits of the approach with image 
class descriptions lie in several factors: 

• Outputs of the NLP models can be cached and reused during training. If the NLP model is 
completely frozen and only performs inference with no error backpropagation, such outputs may be 
generated beforehand for all the possible classes and accessed as a simple read operation. This, in 
fact, transfers some of the load of learning to the preparation stage and thus speeds up both learning 
and inference. 
• If the NLP model is being trained along with the vision model, its outputs can still be  cached 
if the training is organized in such a manner that images of the same class are fed to the models in 
the same batch. In such a case, the batch size for the NLP model is effectively reduced to one. This 
speeds up the training process as well. 
• The two models can be trained in parallel on different devices. The overhead of combining the 
two outputs of the models could be less than the overhead of training a single model in a distributed 
cluster of devices. 
All the proposed approaches could be topics of further research in this sphere. For instance, 

providing a model ensemble that can run one of its key parts with a few times less resources, by the 
factor of the batch size, allows more flexibility for the researchers. Making the NLP model more lean 
can allow us to divert it to a CPU, while freeing costly GPU resources for the vision model. If the NLP 
model does require the GPU, we can easily split it onto a different machine and only combine the 
ensemble data after a pass is done. 

7. Conclusions 

In this paper we presented the ImageD dataset. The dataset combines the existing labeled images 
from the Open Images dataset with text descriptions for each of the classes of objects found in the 
images. The dataset can be used for a variety of research purposes, related to image classification, 
description, labeling, etc. 

We also present a simple experiment in generating labels for images with data built on top of the 
said dataset. The trained model shows adequate results in labeling never before seen images. This leads 



us to believe that, given enough effort, such an approach could be scaled for greater efficiency and 
performance. 

It is particularly interesting how the presented dataset may be used for image classification purposes 
to extract more data about the images at the training stage. Some techniques of combining text 
information with image data for the purpose of higher performance in classification already exist. One 
such  technique, NLP supervised learning, seems to yield great results and deserves more attention. 

As well as providing more information for the neural networks to train on, multimodal dataset also 
enable researchers to construct more complex and more scalable models. When combining the two 
factors of more data and more scalable models, this approach to gathering data has the power to optimize 
machine learning algorithms on several levels. 

Multimodal datasets assembled from different existing sources of information are a viable first step 
towards harvesting the listed benefits. However, with application of human moderation and manual 
data cleaning, the tool becomes yet more efficient. 
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