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Abstract
One of the issues data scientists run into the most frequently is the classification issue. We can separate the available data
into discrete values with the use of classification. Numerous algorithms exist that enable us to solve this issue effectively.
This article focuses on tree-based algorithms: Decision Tree Algorithm, and Random Forest Algorithm. The problem that
is going to be approached with these algorithms is cardiovascular disease prediction, using the kaggle dataset containing
records of patients data [1].
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1. Introduction
Artificial intelligence methods [2, 3, 4] play an increas-
ingly important role in various types of information
systems. The numerous applications of artificial intelli-
gence methods are based on several of its most important
branches. One of the most important are methods based
on fuzzy sets [5, 6]. In the papers [7, 8, 9] the authors
proposed a system based on the second type fuzzy in-
ference detecting anomalies on the roads. In the work
[10], artificial intelligence methods based on fuzzy sys-
tems are responsible for the proper airing of rooms. The
second very important branch of artificial intelligence
algorithms are the [11, 12] heuristic algorithms, which
are applicable wherever we strive to minimize or maxi-
mize functionals with different interpretations resulting
from the specificity of the issue under consideration. At
this point, it is worth paying attention to the work on
reducing energy consumption [13, 14]. A very important
group is the third branch of artificial intelligence meth-
ods based on neural networks [15, 16, 17, 18, 19]. They
are used in many areas of life, including the detection
of certain desirable features [20, 21], care for the elderly
[22, 23, 24], diagnostics [25, 26, 27].

1.1. Cardiovascular Diseases
Each year approximately 175000 people in Poland die
from cardiovascular diseases. The greatest cause of mor-
tality worldwide, according to the WHO, are cardiovas-
cular diseases, which claim approximately 17.9 million
lives every year.
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These numbers might go even higher in incoming
years. The ongoing COVID pandemic, widespread lock-
downs and the increase in people working from home
can lead to increased numbers of people living seden-
tary lifestyles – and these can increase the likelihood of
suffering from heart diseases.

Poor diet, inactivity, dangerous alcohol and tobacco
use - these are just a few examples of lifestyle choices
that can increase a person’s chance of developing heart
disease. Adult obesity is on the rise, and it’s getting worse
than ever. According to the CDC, US obesity prevalence
increased from 30% to roughly 42%. Because cardiovascu-
lar diseases are responsible for roughly a third of global
deaths, it is of the utmost importance to find a way to
cure and help people who are suffering from heart dis-
eases - but before such diseases can be treated properly,
we need a way to detect them, hopefully long before they
can do great harm.

Cardiovascular disease detection is a categorization
problem. The results can often be split into two groups:
healthy patients and patients with heart problems. Due
to the fact that there are only two major result classes
that can be simply defined using a binary system, such as
1 - a sick patient and 0 - a healthy patient, this particular
classification task is known as binary classification.

1.2. Corrado Gini
Italian statistician Corrado Gini was born in Treviso, Italy,
in 1884. Gini pursued his studies in law, mathematics,
economics, and biology at the University of Bologna’s
Faculty of Law. Gini started out by looking into the
connection between probability and population statistics.
Later in his life, Gini’s interest in demography studies
led to the development of the theory of dispersion in
"Variabilità e Mutabilità," which resulted in Gini’s most
well-known invention: the Gini coeficient, also known
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Figure 1: Example Decision Tree created using
https://app.diagrams.net/ (https://app.diagrams.net/).

as Gini’s Index, which is used to assess the degree of
dispersion in a concentration.

1.3. Leo Breiman
American statistician Leo Breiman was born in New
York, USA, in 1928. At the University of California, Leo
Breiman pursued his education. Breiman is primarily
recognized for his work on CART, Bootstrap Aggrega-
tion, which owes its name to him and is now known as
Bagging. Leo Breiman is also the inventor of Random
Forest method.

1.4. Binary Classification
The process of classifying the components of a set made
up of only two classes is known as binary classification.
The main applications of binary classification are in qual-
ity control and medical testing to check if a patient is ill
or not, and to assess whether a produced thing fulfills
the specification.

Some of the most common methods used for solving
the binary classification problems are Decision Trees,
Random Forests and Logistic Regression.

2. Proposed Classifiers

2.1. Decision Tree
Decision Trees are among the most commonly used mod-
els for classification and regression tasks. They can be
described as a model whose purpose is to ask a dataset a
list of if/else questions, and based on the responses the
decision can be then made.

Decision Trees are often divided into two categories:
classification and regression trees. Regression Trees pro-
duce numeric output, and classification trees produce
categorical output. The latter is the main interest of this
article, more specifically the CART implementation of
decision trees.

The CART algorithm builds decision trees utilizing
the Gini’s Impurity Index to create best possible splits of
data.

2.1.1. Gini’s Impurity Index

The Gini’s Ratio is a statistical dispersion metric that
is frequently used to assess income disparity between
countries. Gini’s Impurity is a measure of the likelihood
of choosing a certain feature that is incorrectly classified
in decision trees. If all element in a dataset are of a single
class, then Gini’s Index takes the value of 0, meaning
that that the dataset is pure. Similarly, if all elements of
dataset are of different classes, then Gini’s Index takes
the value of 1, which indicates that the dataset is fully
impure. If Gini’s Index is of value 0.5, then the dataset is
shows an equal distribution of elements over available
classes.

Gini Index can be represented as:

Gini Index = 1−
𝑛∑︁

𝑖=1

(𝑃𝑖)
2,

Where 𝑃𝑖 represents the probability of each element
being classified for its distinct class.

In CART decision trees Gini’s Index is used to calculate
the best possible split at each level of the tree.

2.1.2. Algorithm

The Decision Tree Algorithm makes use of a binary tree
data structure, where each node is either a decision node
that is divided based on the best potential Gini Index, or
a terminal node which does not further split, and decide
about the predictions made by the decision tree. Decision
Trees are often described using flowcharts.

The best possible split is calculated for each node in-
dividually, by checking all the possible values in each
available feature. The pair of value + feature for which
the best Gini’s Index gain was achieved is used for split-
ting the dataset further into two parts.

Decision Tree is built and read recursively, thanks to
the underlying data structure. Building the entire tree
for a classifier involves using the training data that has
been provided to determine the appropriate splits. It is
important to adequately adjust the classifier parameters,
such as maximum depth, or the minimum number of
samples required for performing a split.

The maximum depth parameter specifies how deep
the decision tree can get - it is the number of nodes from
the root down to the furthest leaf node - the height of
underlying tree structure.

Theoretically the maximum depth of the decision tree
could be almost as high as the number of training samples,
however it is not recommended to let the Decision Tree
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Input TR: Training Samples, MaxDepth: Maximum
Depth of the Decision Tree

Output Decision Tree built based on provided
training samples Building Decision Tree

1: if stopping conditions are met then
2: 𝑅𝑒𝑡𝑢𝑟𝑛 a leaf node with adequate class assigned

to it
3: else
4: 𝑔𝑎𝑖𝑛 = best possible Gini Gain
5: if 𝑔𝑎𝑖𝑛 > 0 then
6: recursively build left side of the current node
7: recursively build right side of the current

node
8: 𝑅𝑒𝑡𝑢𝑟𝑛 current node with both sides as-

signed to it

Predicting sample labels
Input xTest: testing samples
Output Predicted labels

1: for do
2: if currently checked node has a class value as-

signed to it then
3: 𝑅𝑒𝑡𝑢𝑟𝑛 assigned class value
4: else
5: if currently tested node has key feature value

greater than checked sample then
6: recursively check left child of node
7: recursively check right side of node

classifier grow to depth that high, because then it will
overfit.

Data scientists use the term "overfitting" to indicate
when the results of an analysis fit a set of data too closely.
Such algorithm can perform very well on training data,
but when exposed to an unknown sample, it will attempt
to categorize it using highly specific criteria that may
not be appropriate for classifying the unknown samples.
The depth parameter should not be set too high because
a model that has been trained too precisely on a given
dataset will be fitted to that dataset exactly, which means
it will learn not only how to make decisions based on the
important features and their values but also how to take
into account the existing "noise" - irrelevant information.

If there is more then a single sample present at a leaf
node, then the outcome is predicted using the Majority
Voting technique, where the class which has the highest
number of representing samples is chosen.

2.2. Random Forest
Random Forest is an ensemble classification algorithm
that performs classification using a predetermined num-

ber of decision trees. Random Forests rely on a lot of
relatively unrelated - thanks to the randomly choosing
of samples - trees, classifying the provided sample using
each one and performing a majority vote to get the best
possible result.

2.2.1. Ensemble Algorithms

The evaluation of the sample provided by ensemble algo-
rithms typically requires more computing resources than
it would for a single model, but the ’Wisdom of Crowds’
obtained by using multiple models leads to increased
accuracy.

2.2.2. Bagging

Bagging, also known as bootstrap aggregation, is an en-
semble learning technique that is used to improve stabil-
ity and accuracy, and to reduce variance within a dataset
- decreasing the chance of overfitting models.

Using bagging, Random Forests produce a variety of
trees by letting each one randomly select a sample from a
given dataset. Creating a large number of decision trees
helps in reducing overfitting.

2.2.3. Algorithm

Building a Random Forest
Input Training Samples, Number of trees
Output Random Forest built based on provided

samples

1: for range(Number of trees) do
2: choose random subsample
3: create a Decision Tree using the chosen subsam-

ple

Classifying using Random Forest
Input Test Samples
Output Classified sample labels

1: for Every test sample do
2: for Every built tree do
3: Classify sample using currently checked De-

cision Tree
4: Perform majority voting based on results of clas-

sifying the chosen sample using all decision trees
5: 𝑅𝑒𝑡𝑢𝑟𝑛 Classified samples

Each tree in Random Forest is built using randomly
chosen data from dataset. When predicting the outcome
of provided sample, the sample is provided to every avail-
able tree, and then the results from all the classifications
are subjected to the Majority Voting technique, where the
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Figure 2: Dataset description (https://www.kaggle.com/
datasets/sulianova/cardiovascular-disease-dataset).

most common outcome class is the output of the Random
Forest algorithm.

Thanks to the use of multiple Decision Trees, Random
Forest algorithms are usually highly effective,

3. The Cardiovascular Disease
Dataset

The Cardiovascular Disease Dataset consists of 70000
records of patients data, consisting of 11 features each:

1. Age
2. Height
3. Weight
4. Gender
5. Systolic blood pressure
6. Diastolic blood pressure
7. Cholesterol
8. Glucose
9. Smoking

10. Alcohol intake
11. Physical activity

3.1. Data Cleaning
The process of detecting and fixing even removing, cor-
rupted, duplicate, or incomplete data is known as data
cleaning.

In the used dataset there is a number of invalid records,
such as records of patients with systolic blood pressure
that is negative or exceding 16000. Removal of such
records allowed for reducing the total number of samples
by 1413 records.

3.2. Dimensionality reduction
Dimensionality reduction is the process of minimizing
the number of dimensions - features present in a dataset,
while preserving the greatest amount of variety. Reduc-
ing the number of features accessible can increase per-
formance, eliminate redundancy, and reduce overfitting.

Dimensionality reduction works by identifying and
deleting elements that have little to no impact on the
outcomes.

Figure 3: Correlation Matrix

Figure 4: Dataset after dimensionality reduction and data
cleaning

Figure 5: Normalized data

3.2.1. Correlation Matrix

The correlation coefficients for each variable in the
dataset are shown in a table called a correlation matrix.
Such a table displays the association between each pair
of attributes in each cell.

Correlation Matrix can be used to identify least impor-
tant features in dataset, allowing for easy dimensionality
reduction.

3.3. Normalization
Normalization is the process of scaling data to fit given
range.
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Figure 6: Ratio of classes in training portion of data set

Figure 7: Ratio of classes in testing portion of data set

4. Classification

4.1. Splitting data
Dataset needs to be split into the training data, and test-
ing data. Most of the data should be used for training
purposes.

After a model has been trained using the training set,
it’s accuracy can then be validated using data from testing
set. Because class values in testing set are already known,
the accuracy of classifiers can be correctly calculated.

5. Classifier Evaluation

5.1. Correctness measures
5.1.1. P

P is the number of real positive conditions

5.1.2. N

N is the number of real negative conditions

5.1.3. TP

TP is the number of correctly predicted presence of a
condition.

5.1.4. TN

TN is the number of correctly predicted absence of a
condition

5.1.5. FP

FP is the number of wrongly predicted presence of a
condition

5.1.6. FN

FN is the number of wrongly predicted absence of a
condition

These four correctness measure metrics are the pa-
rameters of confusion matrix, they are used to evaluate
specificity, sensitivity and accuracy of classifiers.

5.1.7. Accuracy

The simplest evaluation metric is accuracy. It measures
how accurately projected classes compare to the whole
testing dataset size. The number of labels that were suc-
cessfully assigned is known as accuracy.

ACC =
𝑇𝑃 + 𝑇𝑁

𝑃 +𝑁

5.1.8. Precision

Precision is defined as the ratio of true positives to the
sum of true positives and false positives. Precision de-
scribes how effectively the model predicts the positive
cases out of all the cases it predicts as being true.

PPV =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

5.1.9. Recall

The proportion of genuine positives to the total of true
positives and false negatives is known as recall. Recall
demonstrates how well the model separates out the posi-
tive cases from all the positive cases in the dataset.

TPR =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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5.1.10. F1

The harmonic mean of recall and precision is the 𝐹1

score.

𝐹1 = 2 *
𝑃𝑃𝑉 * 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅

5.1.11. Confusion Matrix

Confusion Matrix is a performance measurement tech-
nique, as the name suggests - it is a matrix, representing
four different combinations of predicted and actual val-
ues. Its name comes from the fact that using this matrix
makes it easier to determine whether the model is incor-
rectly classifying classes.(︂

𝑇𝑃 𝐹𝑃
𝐹𝑁 𝑇𝑁

)︂

6. Testing the Decision Tree
Classifier

The main deciding parameter in Decision Tree Classifier
that needs to be adjusted is the maximum depth. Correct-
ness measured for Decision Tree with maximum depth
of 5 were:

𝐴𝐶𝐶 = 0.66
𝑃𝑃𝑉 = 0.76
𝑇𝑃𝑅 = 0.65
Correctness measured for Decision Tree with maxi-

mum depth of 10 were:
𝐴𝐶𝐶 = 0.61
𝑃𝑃𝑉 = 0.62
𝑇𝑃𝑅 = 0.63
Correctness measured for Decision Tree with maxi-

mum depth of 50 were:
𝐴𝐶𝐶 = 0.61
𝑃𝑃𝑉 = 0.62
𝑇𝑃𝑅 = 0.63

6.0.1. Conclusions

Single Decision Trees quickly began to overfit, increasing
the maximum depth not only decreased the correctness of
it’s predictions, but also increased the total time needed
for building the tree. The problem of overfitting can be
fixed by utilizing the bagging technique.

7. Testing the Random Forest
Classifier

The main parameters in Random Forest Classifier that
needs to be adjusted are the total number of trees, as well
as the maximum depth of every single tree.

Figure 8: CM of Decision Tree Classifier, maximum depth =
5

Figure 9: CM of Decision Tree Classifier, maximum depth =
10

7.0.1. Testing various numbers of trees

Correctness measured for Random Forest Classifier with
total number of trees equal to 10, and the maximum depth
of trees equal to 10 were:

𝐴𝐶𝐶 = 0.65
𝑃𝑃𝑉 = 0.74
𝑇𝑃𝑅 = 0.62
Correctness measured for Random Forest Classifier

with total number of trees equal to 25, and the maximum
depth of trees equal to 10 were:

𝐴𝐶𝐶 = 0.67
𝑃𝑃𝑉 = 0.79
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Figure 10: CM of Decision Tree Classifier, maximum depth
= 50

Figure 11: Time needed for predictions in Decision Tree
Classifier

𝑇𝑃𝑅 = 0.63
Correctness measured for Random Forest Classifier

with total number of trees equal to 50, and the maximum
depth of trees equal to 10 were:

𝐴𝐶𝐶 = 0.66
𝑃𝑃𝑉 = 0.74
𝑇𝑃𝑅 = 0.63
Correctness measured for Random Forest Classifier

with total number of trees equal to 100, and the maximum
depth of trees equal to 10 were:

𝐴𝐶𝐶 = 0.68
𝑃𝑃𝑉 = 0.79
𝑇𝑃𝑅 = 0.64

7.0.2. Conclusions

Increasing the total number of trees increased the cor-
rectness of Random Forest classifier. Even with low total
amount of trees Random Forest classifier has better cor-
rectness than a single Decision Tree, bagging helps with
overfitting, the choosing of random samples helps the
classifier to learn the training dataset better.

Figure 12: CM of Random Forest Classifier, maximum depth
= 10, total number of trees = 10

Figure 13: CM of Random Forest Classifier, maximum depth
= 10, total number of trees = 25

7.0.3. Testing various maximum depth

Correctness measured for Random Forest Classifier with
total number of trees equal to 25, and the maximum depth
of trees equal to 2 were:

𝐴𝐶𝐶 = 0.66
𝑃𝑃𝑉 = 0.74
𝑇𝑃𝑅 = 0.64
Correctness measured for Random Forest Classifier

with total number of trees equal to 25, and the maximum
depth of trees equal to 4 were:

𝐴𝐶𝐶 = 0.67
𝑃𝑃𝑉 = 0.79
𝑇𝑃𝑅 = 0.63
Correctness measured for Random Forest Classifier
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Figure 14: CM of Random Forest Classifier, maximum depth
= 10, total number of trees = 50

Figure 15: CM of Random Forest Classifier, maximum depth
= 10, total number of trees = 100

Figure 16: Time needed for predictions in Random Forest
Classifier

with total number of trees equal to 25, and the maximum
depth of trees equal to 16 were:

𝐴𝐶𝐶 = 0.6
𝑃𝑃𝑉 = 0.61
𝑇𝑃𝑅 = 0.59
Correctness measured for Random Forest Classifier

with total number of trees equal to 25, and the maximum

Figure 17: CM of Random Forest Classifier, maximum depth
= 2, total number of trees = 25

Figure 18: CM of Random Forest Classifier, maximum depth
= 4, total number of trees = 25

depth of trees equal to 128 were:
𝐴𝐶𝐶 = 0.62
𝑃𝑃𝑉 = 0.61
𝑇𝑃𝑅 = 0.61

7.0.4. Conclusions

Changes in the maximum depth of individual trees did
not affect the Random Forest classifier as much as the
total amount of trees.
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Figure 19: CM of Random Forest Classifier, maximum depth
= 16, total number of trees = 25

Figure 20: CM of Random Forest Classifier, maximum depth
= 128, total number of trees = 25

8. Conclusions
The nature of disease prediction problem makes it suit-
able to use tree-based algorithms for patient classification.
The proposed algorithms show good correctness. The
presented tests have shown that the proper selection
of classifiers has a great effect on the classification re-
sults. Decision Trees alone can predict reasonably well,
however utilizing bagging algorithms such as Random
Forest can increase the correctness of acquired results,
sacrificing a little execution speed.
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