
Algorithms for an Integrated Disease Database
Management
Kamil Kowalczyk1, Grzegorz Koperwas1

1Faculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44100 Gliwice, Poland

Abstract
The project goal was to make a comparison between different types of algorithms to prove what will be the best in similar
cases. Aditional we were looking at which one will be the best for frontend use. A simple classification of diseases according
to symptoms. We use 2 files from the data set, first with diseases and symptoms and the other with the symptoms themselves
and their weights. I use the first set fully. It contains 41 different diseases and 132 symptoms. In this setup, we will use 2
KNN algorithms, a soft classifier, and a decision tree. We compare their performance and execution time. The results were
predictable, KNN has the best accuracy but was the slowest, and the decision tree was a little bit worst accuracy but very
fast.

Keywords
Prediction model, Classification algorithms, Disease prediction, Python

1. Introduction
Modern computer science is heading towards the creation
of intelligent systems that facilitate control, management
or optimization of certain user processes [1, 2, 3, 4, 5].
Artificial neural networks [6] play a key role here, which
form the basis of machine learning [7, 8] as well as pro-
vide a number of useful tools for detecting certain fea-
tures [9, 10, 11, 12, 13]. Optimization processes often re-
quire the use of very effective tools which, thanks to the
efficiency of modern computers, allow to imitate the be-
havior of the animal community that most often aims to
obtain food [14, 15, 16] and proper healthcare [17, 18, 19].
An interesting and extremely useful task at the moment
with the use of heuristic algorithms is the reduction of en-
ergy consumption [20]. Contemporary IT solutions com-
bining IoT and artificial intelligence methods increase
the quality of life [21, 22] facilitate care for the elderly
[23] and are also used to detect road damage [24, 25].

The government and health insurance providers might
gain from disease prediction, among other stakeholders.
Patients who are at risk for certain illnesses or disorders
can be identified. The quality of treatment can be im-
proved and possible hospital admissions can be avoided
if clinicians take the necessary steps to avoid or minimize
the risk. Also in the age of Covid and virtual contact with
doctors, it can be a good alternative for the first quick
diagnosis.

ICYRIME 2022: International Conference of Yearly Reports on Infor-
matics, Mathematics, and Engineering. Catania, August 26-29, 2022
" kamikow@.polsl.pl (K. Kowalczyk); grzekop@polsl.pl
(G. Koperwas)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

2. Assumptions for the algorithms
Each of the algorithms should be prepared to meet the
following criteria:

1. Prepared according to the mathematical descrip-
tion of the algorithm;

2. Optimized for the performance on our data set;
3. Returns the most likely disease;
4. Should be used easy to implement or use in the

front-end site;

3. Dataset and Data processing
The data was taken from the Kaggle platform from a
database called "Disease Symptom Prediction"[26]. At
the very beginning, We started to "clean up" and wrote a
script that removed duplicates from almost 5,000 records
in the database and managed to extract 442 unique ones!
Therefore, even the most stupid and bad solutions on the
Kaggle platform gave 100% or very close to this result.
That is why in the end We also tested manually/visually
to be sure that the results are not just empty percentages.

• The data were stored as strings. 18 columns where
the first is Disease, which is our class, and the oth-
ers contain symptoms or NaN.

• We then counted the number of times NaN occurs
and replaced it with 0.

• We count the unique symptoms (132).
• Now clear the spaces so that the data matches the

second file, which contains all the symptoms.
• We create a graph (fig. 1) to illustrate the fre-

quency of symptoms in the database.
• The next graph (fig 2) shows how many records

we have for each disease.

66

mailto:kamikow@.polsl.pl
mailto:grzekop@polsl.pl
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Kamil Kowalczyk et al. CEUR Workshop Proceedings 66–72

Figure 1: Frequency of symptoms

Figure 2: Frequency of disease

• We replace the symptoms with the corresponding
numbers which are the indexes of the 2nd file so
there is no risk of mixing things up.

• The last and most difficult step (after the first KNN
clusterization which will be discussed below) is
to change the data frames so that the columns
become symptoms and the values are 0 when
there is no symptom and 1 when there is.

• The graph on fig. 4 shows how symptoms are
distributed according to disease.

4. K Nearest Neighbors Algorithm
The K Nearest Neighbors (KNN) algorithm is the sim-
plest and slowest classification algorithm. classification.
This becomes a problem when dealing with large data
sets. Find the k nearest elements (neighbors) to a new
element and assign this element to the group to which
most of its neighbors. To improve the performance of the
KNN algorithm a common technique is to standardize or
normalize the data. Its application causes all dimensions
for which the distance is calculated to have equal sig-

67

Kamil Kowalczyk et al. CEUR Workshop Proceedings 66–72

Figure 3: Distribution of symptoms for a given disease

nificance. Otherwise, a situation could arise in which a
single dimension would dominate the other dimensions.
measures. In this case, we have data that is based on
symptoms and there is no strength of their or time of
occurrence, so we don’t have to worry about that. The
KNN algorithm uses metrics to determine the nearest
neighbors. In this case, I used the Minkowski distance.

𝑑(𝑎, 𝑏) =

(︃
𝑛∑︁

𝑖=1

| 𝑎𝑖 − 𝑏𝑖 |𝑚
)︃ 1

𝑚

, (1)

5. Soft classifier
In order to build a soft classifier we first need to take
care of a suitable data format. Then, we create a dictio-
nary from the columns with 0-1 values. The dictionary
building itself is done as follows: the algorithm calculates
average values for the given column and then checks how
many values in the column are below and above the aver-
age for the given disease. Based on this data, it completes
the dictionary with values. The static method which is
responsible for this is group class.

68

Kamil Kowalczyk et al. CEUR Workshop Proceedings 66–72

6. Decision tree
A decision tree is a supervised machine learning tool that
may be used to classify or predict data based on how
queries from the past have been answered. The model
is supervised learning in nature, which means that it is
trained and evaluated using data sets that include the re-
quired categorisation. The decision tree might not always
offer a simple solution or choice. Instead, it may provide
the data scientist choices so they can choose wisely on
their own. Decision trees mimic human thought pro-
cesses, making it typically simple for data scientists to
comprehend and evaluate the findings. A decision tree
is drawn upside down with its root at the top. Each tree
node can be split into branches. The end of the branch
that doesn’t split anymore is the leaf.

7. Support Vector Machine
Support Vector Machine, or SVM, is a prominent Super-
vised Learning technique that is used for both classifica-
tion and regression issues. However, it is mostly utilized
in Machine Learning for Classification difficulties. The
SVM algorithm’s purpose is to find the optimum line or
decision boundary for categorizing n-dimensional space
so that we may simply place fresh data points in the
proper category in the future. A hyperplane is the opti-
mal choice boundary. SVM selects the extreme vectors
that aid in the creation of the hyperplane. These ex-
treme examples are referred to as support vectors, and
the method is known as the Support Vector Machine.

8. Algorithms

8.1. KNN algorithm pseudocodes

Algorithm 1: Data clustering algorithm.
Data: Input data set sample
Data: Input data set data
Data: Input k number of classifications
Data: Input m Minkowski distance
Result: Class

1 Create classes from zeros dictionary ;
2 Create distances with an empty list ;
3 foreach x in range (0, len (data), 1) do
4 distances.append (minkowskiDistance

(sample, data.iloc [x], m))
5 end
6 data = data.assign (dist = distances) ;
7 data = data.sort_values(by=["dist"]) ;
8 data = data.drop (["dist"], axis = 1) ;
9 foreach i in range (0, k, 1) do
10 classes [data.iloc [i] ["Disease"]] + = 1
11 end
12 return max (classes, key = classes.get)

Algorithm 2: Algorithm returning the accuracy
of the kNN classifier.
Data: Test input
Data: Train input
Data: Input k number of classifications
Data: Input m Minkowski distance
Result: Accuracy

1 Create correct with the value 0 ;
2 foreach i in range (0, len (test), 1) do
3 if clustering (test.iloc [i], train, k, m) ==

test.iloc [i] .Disease then
4 correct + = 1 ;
5 end
6 return str (correct / len (test) * 100) + % ;

8.2. soft classifier pseudocodes

69

Kamil Kowalczyk et al. CEUR Workshop Proceedings 66–72

Algorithm 3: Algorithm for building a soft set.
Data: Input data set data
Data: Input symptoms dataset
Result: groupByClass soft dictionary

1 Create columnNames with column list from 𝑑𝑎𝑡𝑎 ;
2 Create uniqueClasses with a list of unique classes

from 𝑑𝑎𝑡𝑎 ;
3 Create groupByClass with dictionary ;
4 Create a size with number of columns from 𝑑𝑎𝑡𝑎 ;
5 Create i ranging from 0 to the length of the

unique classes ;
6 Create count with a value of 0 ;
7 Create a type with the dictionary ;
8 Create a cell from 0 to length 𝑑𝑎𝑡𝑎 ;
9 Create j ranging from 1 to the length of the

columns of 𝑑𝑎𝑡𝑎 ;
10 foreach i in range (0, len (uniqueClasses), 1) do
11 count = 0 ;
12 type = symptoms [i]: 0 for i in range (len

(symptoms)) foreach cell in range (0, len
(data), 1) do

13 if data.at [cell, columnNames [0]] ==
uniqueClasses [i] then

14 count + = 1 ;
15 foreach j in range (1, size, 1) do
16 type [columnNames [j]] + =

data.at [cell, columnNames [j]] ;
17 end
18 end
19 if count == 0 then
20 continue ;
21 type = k: v / count for k, v in type.items () ;
22 ProcessingData.toOneOrZeroDict (type) ;
23 groupByClass [i] = type ;
24 end
25 return groupByClass ;

8.3. Decision tree
For the decision tree, we use DecisionTreeClassifier from
sklearn. The params were: nodes=40, criterion=’entropy’,
random state=0, max depth=6, min samples leaf=1.

8.4. Support Vector Machine
For SVM we choose the SVC implementation for C-Support
vector classification also from sklearn. The input params
were: kernel=’linear’, C=1

9. Select the best algorithm
Table with average time and average Accuracy.

Algorithm 4: Algorithm for converting dictio-
nary values to 1 or 0.
Data: Dictionary input dict
Result: Dictionary with values 1 or 0

1 foreach key in dict.keys () do
2 if dict [key]> 0.1 then
3 dict [key] = 1 ;
4 else
5 dict [key] = 0 ;
6 end
7 end
8 return dict

Algorithm 5: Data classification algorithm.
Data: Weights weight input
Data: Input requirements demands
Result: Classification Index

1 Create res with list of zeros ;
2 Create i ranging from 0 to the length of weights ;
3 Create a trait ranging from 0 to the length of

weights [i] ;
4 foreach i in range (0, len (weights), 1) do
5 foreach trait in weights [i] do
6 if trait in demands then
7 res [i] + = weights [i] [trait] *

demands [trait] ;
8 end
9 end

10 return res.index (max (res))

Figure 4: Decision tree graph

Algorithm Accuracy Time
KNN v1 82.2% 10.4s
KNN v2 100% 31.2s
Soft classifier 97.74% 4.4s
Decision tree 84,96% 0.7s
SVM 87.22% 0.6s

KNN v1 was KNN with dataset with orginal shape.
KNN v2 was KNN with rashaped dataset.
Each classifier was tested 30 times to ensure that the

70

Kamil Kowalczyk et al. CEUR Workshop Proceedings 66–72

results we obtained were as near to their true accuracy
as possible. KNN on a well-shaped data set was, in our
opinion, the best of the tested algorithms. It has the
best accuracy but takes a lot of time. The compromise
between speed and accuracy was a decision tree. It has a
near 100% score and also good performance, we can also
easily save weights for future use in the front-end. The
quickest was SVM and the accuracy was not the worst
so if we need really quick classification we need to take
SVM into consideration.

10. Conclusion and future work
To sum it all up, we have a wide range of algorithms to
choose and the proven algorithms performed well on the
dataset. Further testing with more algorithms, or con-
necting fast algorithms with some simple decision model,
should be undertaken to increase their performance. Ex-
panding the collection with new features and situations
would be another way to improve the utility of our ef-
fort. For mobile phones, performance is very important.
For example, we are not able to use KNN in some health
realeted applications but we can use weights from soft
classifier or SVM.

References
[1] Q.-b. Zhang, P. Wang, Z.-h. Chen, An improved

particle filter for mobile robot localization based on
particle swarm optimization, Expert Systems with
Applications 135 (2019) 181–193.

[2] S. Illari, S. Russo, R. Avanzato, C. Napoli, A cloud-
oriented architecture for the remote assessment
and follow-up of hospitalized patients, in: CEUR
Workshop Proceedings, volume 2694, 2020, pp. 29–
35.

[3] M. A. Sanchez, O. Castillo, J. R. Castro, Generalized
type-2 fuzzy systems for controlling a mobile robot
and a performance comparison with interval type-
2 and type-1 fuzzy systems, Expert Systems with
Applications 42 (2015) 5904–5914.

[4] G. Lo Sciuto, G. Susi, G. Cammarata, G. Capizzi, A
spiking neural network-based model for anaerobic
digestion process, in: 2016 International Sympo-
sium on Power Electronics, Electrical Drives, Au-
tomation and Motion (SPEEDAM), IEEE, 2016, pp.
996–1003.

[5] C. Napoli, F. Bonanno, G. Capizzi, Exploiting solar
wind time series correlation with magnetospheric
response by using an hybrid neuro-wavelet ap-
proach, Proceedings of the International astronom-
ical union 6 (2010) 156–158.

[6] V. S. Dhaka, S. V. Meena, G. Rani, D. Sinwar, M. F.
Ijaz, M. Woźniak, A survey of deep convolutional

neural networks applied for prediction of plant leaf
diseases, Sensors 21 (2021) 4749.

[7] A. T. Özdemir, B. Barshan, Detecting falls with
wearable sensors using machine learning tech-
niques, Sensors 14 (2014) 10691–10708.

[8] K. G. Liakos, P. Busato, D. Moshou, S. Pearson,
D. Bochtis, Machine learning in agriculture: A
review, Sensors 18 (2018) 2674.

[9] O. Dehzangi, M. Taherisadr, R. ChangalVala, Imu-
based gait recognition using convolutional neural
networks and multi-sensor fusion, Sensors 17 (2017)
2735.

[10] C. Napoli, G. De Magistris, C. Ciancarelli, F. Corallo,
F. Russo, D. Nardi, Exploiting wavelet recur-
rent neural networks for satellite telemetry data
modeling, prediction and control, Expert Sys-
tems with Applications 206 (2022). doi:10.1016/
j.eswa.2022.117831.

[11] H. G. Hong, M. B. Lee, K. R. Park, Convolutional
neural network-based finger-vein recognition using
nir image sensors, Sensors 17 (2017) 1297.

[12] C. Ciancarelli, G. De Magistris, S. Cognetta,
D. Appetito, C. Napoli, D. Nardi, A gan ap-
proach for anomaly detection in spacecraft teleme-
tries, Lecture Notes in Networks and Sys-
tems 531 LNNS (2023) 393–402. doi:10.1007/
978-3-031-18050-7_38.

[13] G. Capizzi, G. Lo Sciuto, C. Napoli, E. Tramontana,
M. Woźniak, A novel neural networks-based tex-
ture image processing algorithm for orange defects
classification, International Journal of Computer
Science and Applications 13 (2016) 45 – 60.

[14] T. Qiu, B. Li, X. Zhou, H. Song, I. Lee, J. Lloret,
A novel shortcut addition algorithm with particle
swarm for multisink internet of things, IEEE Trans-
actions on Industrial Informatics 16 (2019) 3566–
3577.

[15] V. Marcotrigiano, G. Stingi, S. Fregnan, P. Maga-
relli, P. Pasquale, S. Russo, G. Orsi, M. Montagna,
C. Napoli, C. Napoli, An integrated control plan
in primary schools: Results of a field investiga-
tion on nutritional and hygienic features in the
apulia region (southern italy), Nutrients 13 (2021).
doi:10.3390/nu13093006.

[16] M. Ren, Y. Song, W. Chu, An improved locally
weighted pls based on particle swarm optimization
for industrial soft sensor modeling, Sensors 19
(2019) 4099.

[17] S. Russo, S. Illari, R. Avanzato, C. Napoli, Reduc-
ing the psychological burden of isolated oncological
patients by means of decision trees, in: CEUR Work-
shop Proceedings, volume 2768, 2020, pp. 46–53.

[18] G. Lo Sciuto, S. Russo, C. Napoli, A cloud-based
flexible solution for psychometric tests validation,
administration and evaluation, in: CEUR Workshop

71

http://dx.doi.org/10.1016/j.eswa.2022.117831
http://dx.doi.org/10.1016/j.eswa.2022.117831
http://dx.doi.org/10.1007/978-3-031-18050-7_38
http://dx.doi.org/10.1007/978-3-031-18050-7_38
http://dx.doi.org/10.3390/nu13093006

Kamil Kowalczyk et al. CEUR Workshop Proceedings 66–72

Proceedings, volume 2468, 2019, pp. 16–21.
[19] S. Russo, C. Napoli, A comprehensive solution for

psychological treatment and therapeutic path plan-
ning based on knowledge base and expertise shar-
ing, in: CEUR Workshop Proceedings, volume 2472,
2019, pp. 41–47.

[20] M. Woźniak, A. Sikora, A. Zielonka, K. Kaur, M. S.
Hossain, M. Shorfuzzaman, Heuristic optimization
of multipulse rectifier for reduced energy consump-
tion, IEEE Transactions on Industrial Informatics
18 (2021) 5515–5526.

[21] M. Woźniak, A. Zielonka, A. Sikora, M. J. Piran,
A. Alamri, 6g-enabled iot home environment con-
trol using fuzzy rules, IEEE Internet of Things
Journal 8 (2020) 5442–5452.

[22] G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Gi-
ardino, M. Re, A. Ricci, S. Spanò, An fpga-based
multi-agent reinforcement learning timing synchro-
nizer, Computers and Electrical Engineering 99
(2022) 107749.

[23] M. Woźniak, M. Wieczorek, J. Siłka, D. Połap, Body
pose prediction based on motion sensor data and
recurrent neural network, IEEE Transactions on
Industrial Informatics 17 (2020) 2101–2111.

[24] M. Woźniak, A. Zielonka, A. Sikora, Driving sup-
port by type-2 fuzzy logic control model, Expert
Systems with Applications 207 (2022) 117798.

[25] L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari,
H. Famil Ghadakchi, M. Re, S. Spanò, Sensing and
detection of traffic signs using cnns: an assessment
on their performance, Sensors 22 (2022) 8830.

[26] P. Patil, Disease symptom prediction, 2020. URL:
https://www.kaggle.com/datasets/itachi9604/
disease-symptom-description-dataset?select=
dataset.csv.

72

https://www.kaggle.com/datasets/itachi9604/disease-symptom-description-dataset?select=dataset.csv
https://www.kaggle.com/datasets/itachi9604/disease-symptom-description-dataset?select=dataset.csv
https://www.kaggle.com/datasets/itachi9604/disease-symptom-description-dataset?select=dataset.csv

	1 Introduction
	2 Assumptions for the algorithms
	3 Dataset and Data processing
	4 K Nearest Neighbors Algorithm
	5 Soft classifier
	6 Decision tree
	7 Support Vector Machine
	8 Algorithms
	8.1 KNN algorithm pseudocodes
	8.2 soft classifier pseudocodes
	8.3 Decision tree
	8.4 Support Vector Machine

	9 Select the best algorithm
	10 Conclusion and future work

