

Ontology Mapping to Support Semantic
Interoperability in Product Design and Manufacture

N. Chungoora1 and R.I.M. Young1
1 Wolfson School of Mechanical and Manufacturing Engineering, Loughborough

University, Loughborough, LE11 3TU, UK
 {N.Chungoora, R.I.Young}@lboro.ac.uk

Abstract. Ontological engineering is currently being used by a range of
functional domains to support the capture and sharing of information and
knowledge. It has long been recognised that ontologies provide a basis for
sharing meaning. However, several reasons explain how the management of
knowledge contained in ontologies can be biased in a number of ways, which
inevitably leads to the creation and use of heterogeneous ontologies. This
situation is being witnessed in the design and manufacture stages of the product
lifecycle, and raises an issue whenever disparate ontologies have to be made
interoperable with each other to promote design and manufacturing knowledge
sharing among stakeholders. Ontology mapping provides a convenient direction
to overcome the problem of ontology heterogeneity. This paper identifies the
nature of semantic mismatches and essential elements that need to be taken into
account for ontology mapping. Simple examples are provided at various stages
to support arguments.

Keywords: Semantic Mismatches, Ontology Mapping, Semantic
Interoperability, Manufacturing Knowledge Sharing.

1 Introduction

In the field of product design and manufacture, due to the dispersibility of product and
manufacturing knowledge at various stages of the product lifecycle, different
functional domains inevitably construct their product and manufacturing ontologies
tailored to their needs. The continuing diversity of ontologies is also partly related to
ontologies being aligned with particular views of the world, hence resulting in biases
and subjective features [1]. Since the definition of concepts in design and manufacture
is dependent of the context or view being taken, this clearly identifies that an all-
embracing common basis for ontology construction to be adopted by all parties can
prove to be very difficult and time-consuming to realise. These incommensurate
views of the same functional domain imply incompatible systems, and incompatible
systems imply no data sharing, no knowledge transfer, and a necessary duplication of
effort [2].

2 Proceedings of MDISIS 2008

Adopting an all-embracing ontology as a basis for sharing meaning, and as a
foundation over which to build up information and knowledge exchanges, remains a
very unlikely scenario [1], since in practice, multiple ontologies and schemas will be
developed by independent entities [3]. Furthermore, with the widespread distributed
use of ontologies, different parties inevitably develop ontologies with overlapping
content [4]. These factors, although targeted at the more general problem of ontology
heterogeneity, bring evidence of the existence of multiple ontologies developed to suit
different functional domains and this is very likely to happen in the design and
manufacture stages of the product lifecycle.

In the field of product design and manufacturing engineering, a number of efforts
has been sought towards the development of new ontology-based methodologies to
capture knowledge behind product geometries, assemblies and process planning
among others. For example, in the AIM@SHAPE project [5] many conceptualisations
have been pursued, some of which include product design and shape ontologies. Kim
et al. [6] have realised an ontology to describe assembly design attuned to the
requirements of their domain. On the other hand, the Process Specification Language
(PSL) ontology, which explicitly and clearly defines the concepts intrinsic to
manufacturing process information, has been developed [7]. The growing use of
ontologies is also witnessed in manufacturing enterprises adopting formal
conceptualisations for knowledge representation such as at DaimlerChrysler to
support a range of design activities [8]. This brief insight provides an awareness of the
extent to which heterogeneous ontologies are currently being developed and this
accounts for the difficulties associated to seamless knowledge sharing. Therefore,
ontology heterogeneity is the primary obstacle for interoperation of ontologies [9].
Hence it becomes of paramount significance to reconcile multiple ontologies.

This paper reveals a spectrum of semantic mismatches that can occur in design and
manufacture ontologies. Next, the relevance of ontology mapping as a leap to
promote ontology and semantic interoperability is elaborated. We also examine one
possible mapping scenario, more specifically concerned with ontology merging
through a domain ontology. From this investigation, we reinforce the verity behind
semantic mismatches and finally, discussions and conclusions are provided.

2 Semantic Mismatches between Heterogeneous Ontologies

As previously seen, widespread multiple ontologies across a large number of
functional domains within design and manufacture make interoperability of
knowledge a difficult and perennial task. As a prerequisite to solving the ontology
interoperability issue, it is first vital to understand how varied ontological concepts
can be and in which ways ontology and semantic mismatches take place, which
impede onto achieving seamless interoperability. Semantic mismatches can be
interpreted from perspectives such as knowledge elicitation, databases and knowledge
representation [1]. For the purpose of this paper, these mismatches are being
considered from the knowledge representation side since it is probably the most wide-
ranging direction to be taken for understanding them. Appropriate examples are given
from perspectives such as design for function, design for manufacture and

 Proceedings of MDISIS 2008 3

manufacturing planning. Some of these examples are related to standard features on
parts such as holes. Protégé 3.3 tool has also been used for the simple definition of
sample classes and relations in certain cases. From the knowledge representation
perspective, a comprehensive classification of semantic mismatches to explain
semantic heterogeneity in systems has been proposed ([1], [10]). Two main
categorisations of semantic mismatches have been identified, namely
conceptualisation mismatches and explication mismatches, which are explained next.

2.1 Conceptualisation Mismatches

Conceptualisation mismatches occur as a consequence of having two or more
conceptualisations of a certain domain. These conceptualisations can potentially differ
in the way they are defined as ontological entities or in the way they are related within
ontologies. Conceptualisation mismatches involve:

Class Mismatches. i.e. the different classes and subclasses present in ontologies.

Categorisation Mismatch. This takes place when in two ontologies the same class has
been defined but the class possesses different subclasses. In the following example,
both ontologies X and Y identify the concept “Hole_Feature” but in each
conceptualisation, different subclasses have been defined (Fig. 1).

Fig. 1. Conceptual Mismatch

Aggregation-Level Mismatch. This takes place if in both ontologies the same class has
been defined but the latter has varying levels of abstraction.

Fig. 2. Aggregation-Level Mismatch

In Fig. 2, the concept of a “Hole” is present in both ontologies X and Y. In
ontology X, the concepts “Diameter”, “Depth” and “Tip_Angle” are aggregated
through the “hasDimension” property in order to define the class “Hole”. In ontology
Y, only the “Diameter” and “Depth” concepts have been aggregated through the
“hasDimension” relation to define the same class “Hole”. This clearly shows that the
notion of “Hole” in Ontology X is broader than that in Ontology Y.

 Ontology X Ontology Y

Ontology X Ontology Y

4 Proceedings of MDISIS 2008

Relation Mismatches. This type of mismatch is concerned with relations or
properties present in ontologies. They involve, for instance, the hierarchical relations
between two classes or the assignment of attributes to classes [1].

Structure Mismatch. This is likely to happen when in two ontologies, experts have
used the same set of classes but have structured the classes differently using
relations/properties. Fig. 3 depicts this structure mismatch and also reveals varying
domain semantics as a result of dissimilar levels of granularity. In this example, the
“requiresSequence” relation illustrates a range of hole machining processes before a
reaming operation can be realised. The “U” symbol refers to the union of the classes.
In Ontology Y, the “hasPredecessor” relation is used to identify the necessary
preconditions of having “Centre Drilling” U “Drilling” before “Reaming” can be
performed. The intent from both parties is almost the same, and can surely be
reconciled, but the structure mismatch present leads to potential problems.

Fig. 3. Structure Mismatch

Attribute-Assignment Mismatch. This form of mismatch is found when the same
relation is defined in two separate ontologies, but differ in the way the particular
relation is attributed to classes in both conceptualisations. In Fig. 4, the two
ontologies do not bear resemblance in the way that the “belongsTo” property has been
attributed to the intended classes and/or subclasses.

Fig. 4. Attribute-Assignment Mismatch

Attribute-Type Mismatch. This takes place when in two ontologies, the same relation
has been defined, but has varying value types, which consequently affects the range of
possible values for the instances in both ontologies, for example, a same relation
“hasDimension” can be defined as an object property in one ontology and as a
datatype property in another ontology, hence resulting in attribute-type conflicts.

Reaming requiresSequence Centre
Drilling

Drilling Boring Reaming
U U U

Reaming hasPredecessor Centre
Drilling

Drilling
U

Ontology X

Ontology Y

belongsTo Part

belongsTo

belongsTo

Ontology X Ontology Y

Bolt Hole

Dimension

Part

Bolt Hole

Dimension

belongsTo

 Proceedings of MDISIS 2008 5

2.2 Explication Mismatches

In addition to conceptualisation mismatches, explication mismatches can also occur.
Three components are used in order to refer to a definition namely: a term (T) for
denoting a particular concept; definiens (D) which provide the building blocks for a
definition in the form of aggregated statements; and concept (C) which constitutes the
underlying notion to be defined. Examples are provided in each case and expressions
used are based around the Semantic Web Rule Language (SWRL) which uses a high-
level abstract syntax for Horn-like rules. The → symbol denotes that elements of the
expression on the left hand side (i.e. definiens) describe the expression on the right
hand side (i.e. the term denoting a concept) after the arrow. The ^ symbol is used to
aggregate various definiens. Namespace prefixes are used to relate expressions to
their respective ontologies e.g. (X: expression) refers to an expression used in
Ontology X.

Concept (C) Mismatch. This occurs when the definitions possess the same terms and
definiens but vary in their intent at conceptual level. In other words, the definitions in
both cases appear to be identical, when in reality different concepts are being targeted.

X: Hole(?a) ^ hasPlacementFace(?a, ?b) ^ Boss(?b) → Hole_Through_Boss(?c, true)
Y: Hole(?a) ^ hasPlacementFace(?a, ?b) ^ Boss(?b) → Hole_Through_Boss(?c, true)

The first statement says that if a hole (?a) has a placement face (?b) such that (?b)

is a boss feature, then the situation of having a “Hole_Through_Boss” (?c) arises. In
Ontology X, a “Hole_Through_Boss” refers to a simple hole going through a boss
feature. In Ontology Y, a “Hole_Through_Boss” refers exclusively to a tapped hole
through a boss feature. In both cases, identical terms and definiens have been used but
the concept of a “Hole_Through_Boss” from both domains differ due to the different
contexts in which the definitions of “Hole_Through_Boss” are perceived.

Concept and Definiens (CD) Mismatch. This type of mismatch happens when the
same term is used by different parties to refer to different “things”, and where
different concepts and definiens have been specified.

X: Part_Name(?a) ^ Description(?b) ^ Material(?c) → Part_Spec (?d, true)
Y: Part_Number(?a) ^ Quantity(?b) ^ Despatch_Date(?c) → Part_Spec(?d, true)

The first statement states that if there exist a “Part_Name” (?a), a “Description”

(?b) and “Material” (?c), then a “Part_Spec”, i.e. a part specification, is present
relating to the characteristics of a particular part. In Ontology Y, for a “Part_Spec” to
stand true, the entities “Part_Number”, “Quantity”, and “Despatch_Date” need to be
concatenated, where “Part_Spec” reflects the necessary parameters to ship the given
part. In both ontologies the “Part_Spec” term is being defined, where the definition is
biased to the context, hence the concept of “Part_Spec” being different in both cases,
as well as through the definiens specified.

6 Proceedings of MDISIS 2008

Definiens (D) Mismatch. This occurs when definitions refer to exactly the same
concept but differ in the way definiens have been used as a body for the definitions.
Consider the next example (Fig. 5) where in both ontologies X and Y, a counterbore
hole is being considered. The “hasOverallDepth” (i.e. the total depth of the compound
hole feature) has the same concept and the same term in both conceptualisations, but
differs in the way definiens have been used to define it.

X: Counterbored_Hole(?a) ^ hasPrimaryDepth(?a, ?b) ^ hasSecondaryDepth(?a, ?c) ^
swrlb:add(?overallDepth, ?b, ?c) → hasOverallDepth(?a, overallDepth)
Y: Cbore_Hole(?a) ^ hasHoleDepth(?a, ?b) ^ hasCboreDepth(?a, ?c) ^
swrlb:add(?depth, ?b, ?c) → hasOverallDepth(?a, ?depth)

The expression for X simply states that the “Counterbored_Hole” has an overall

depth “hasOverallDepth”, which is equal to the algebraic sum (denoted by the SWRL
built-in “swrlb:add”) of dimensions labelled (3) and (4). In the second expression, the
same concept and term “hasOverallDepth” is being defined and is equal to the
algebraic sum of dimensions labelled (3) and (4). These two examples clearly depict a
situation which can be classified under the definiens mismatch category, since the
same concept and term is used in two separate ontologies to refer to the same “thing”,
but where different definiens have been used.

Fig. 5. Definiens Mismatch

Term (T) Mismatch. This form of explication mismatch occurs when definitions
share the same concept and definiens, but employ different terms.

X: Cutting_Fluid(?a) ^ Cutting_Speed(?b) ^ Feed(?c) →
Min_Process_Requirement(?d, true)
Y: Cutting_Fluid(?a) ^ Cutting_Speed(?b) ^ Feed(?c) →
Sufficient_Operation_Parameter(?d, true)

In X, the necessary process parameters that make up a minimum process

requirement “Min_Process_Requirement” are “Cutting_Fluid”, “Cutting_Speed” and
“Feed”. In Y, again the necessary process parameters for having a
“Sufficient_Operation_Parameter” are “Cutting_Fluid”, “Cutting_Speed” and “Feed”.
The only discrepancy from these two statements lies in the variation in term (T).

Counterbored_Hole

• hasPrimaryDiameter (1)
• hasSecondaryDiameter (2)
• hasPrimaryDepth (3)
• hasSecondaryDepth (4)
• hasOverallDepth (i.e. 3+4)

Cbore_Hole

• hasDiameter (1)
• hasCboreDiameter (2)
• hasHoleDepth (3)
• hasCboreDepth (4)
• hasOverallDepth (i.e. 3+4)

Ontology X Ontology Y

 1

2

3

4

 Proceedings of MDISIS 2008 7

Concept and Term (CT) mismatch. This situation arises when dissimilar concepts
and terms are identified in ontologies, but where the definitions have the same
definiens. In other words, the same “item” is being defined by the same body of
definition (definiens) but the concepts and terms used in both cases vary.

X: Engineer(?a) ^ External_Department(?b) ^ collaboratesWith(?a, ?b) →
Concurrent_Engineering(?c, true)
Y: Engineer(?a) ^ External_Department(?b) ^ collaboratesWith(?a, ?b) →
Subcontracted_Engineer(?c, true)

In Ontology X, it is specified that if an “Engineer” “collaboratesWith” an

“External_Department”, then “Concurrent_Engineering” practice exists. On the other
hand, in Y, it is said that if an “Engineer” “collaboratesWith” an
“External_Department” then the “Engineer” is a “Subcontracted_Engineer”. Clearly,
from the two expressions depicted, the same definiens have been used to refer to an
“Engineer” who “collaboratesWith” some “External_Department”. However, the
concepts “Concurrent_Engineering” and “Subcontracted_Engineer” do not reflect the
same underlying concept, and in addition, they use different terms to refer to these.

Term and Definiens (TD) Mismatch. In this form of explication mismatch, which is
the converse of the C mismatch, only the term and the definiens vary, whereas the
concept stays the same in all distinct cases. The example next is taken from Kim et al.
[6] who have devised an ontology to capture knowledge in assembly design. One of
their rules is concerned with the definition of assembly/joining relations, and two
constraints expressed using SWRL to explain assembly/joining have been identified.
Quoted next are the implied constraints and the SWRL rule representing
assembly/joining relations in the assembly ontology. Implied constraints are: (1) The
associated form features must belong to two non-equivalent parts, (2) The associated
form features must be a joining pair. The SWRL rule [6] used to cover the two
constraints appear as the first expression below.

X: FormFeature(?x) ^ FormFeature(?y) ^ Part(?z) ^ Part(?a) ^ belongTo(?x, ?z) ^
belongTo(?y, ?a) ^ differentFrom(?z, ?a) ^ isJointPair(?x, ?y) →
assemblyJoiningRelationship(?x, ?y)
Y: Object_Feature(?a) ^ Object(?b) ^ formsPartOf(?a, ?b) ^ Object_Feature(?d) ^
Object(?e) ^ formsPartOf(?d, ?e) ^ dissimilarTo(?b, ?d) ^ matesWith(?a, ?d) →
matingAssociation(?x, ?y)

In Y, the same constraints form part of the underlying concept but almost

completely different definiens and terms are used in the definition. It can be deduced
from the two expressions provided that albeit the use of different definiens and terms,
exactly the same concept is being referred, i.e. that of defining assembly/joining
relations between form features belonging to different parts.

8 Proceedings of MDISIS 2008

3 An Ontology Mapping Method for Manufacturing Features

In order to support ontology interoperability, it becomes obvious that ontology and
semantic mismatches need to be overcome. Interoperability of ontologies and the
approaches to solve it remain a core question, and the interoperation process cannot
rely on manual input due to the complexity, size and number of ontologies being
developed [11]. It is thus clear that there is a need for automatic or at least semi-
automatic ways of interoperating ontologies in order to relieve the inconveniences of
manually creating and maintaining ontology mappings. Three ways in which
heterogeneous ontologies can be made interoperable have been recognised [9] and
they are identified as: (1) building inclusion relations between ontologies, (2) building
mapping relations between ontologies and (3) building a common ontology from local
ontologies.

Out of those three ways to enable the interoperability of heterogeneous ontologies,
the most effective method for solving ontology heterogeneity is ontology mapping
[9]. Mapping provides a common layer from which several ontologies can be
accessed and hence could exchange information in semantically sound manners [12].
With the intention of overcoming problems related to the interoperability of
ontologies, effort has been fostered from different groups in order to improve the
process of ontology mapping. Several frameworks such as ([13], [14], [15]), methods
like ([4], [16], [17]) and theoretical work have been proposed and are still evolving to
achieve more promising results of mapping. Fundamental to the task of interoperating
ontologies, are a number of commonly adopted ontology interoperability paradigms,
where ontology mapping is central to. These are shown in Fig. 6 below.

Fig. 6. Ontology Interoperability Methods Involving Mapping (based on [4]).

In this paper our approach to ontology interoperability focuses on the merging
process, but the process also conceptually covers some ideas behind other methods
such as articulation, namely through the development of a well-defined domain
ontology. The concepts present in this domain ontology serve as a reference point for
comparing concepts from external ontologies sharing a common context.

X Y

Merged (X, Y)

X Y

X Y

Merging

Alignment

Articulation Ontology

X Y

Transformation

Articulation

 Proceedings of MDISIS 2008 9

3.1 An Ontology Mapping and Merging Example

This section focuses on a simple investigation to understand the key factors behind
ontology reconciliation, an essential step prior to achieving ontological and semantic
interoperability. Work identified here partly builds up on our understanding of
semantic interoperability requirements for manufacturing knowledge sharing [18].
The OWL Plugin of Protégé 3.3 environment has been used for ontology development
and we have based our conceptualisation around the definitions and descriptions of
holes occurring in design and manufacture. The four main levels involved in the
approach consist of: (1) the construction of a domain ontology of design and
manufacture hole features whose definitions have been formalised in OWL DL, (2)
the identification and definition of two disparate hole feature ontologies which to
some degree share a common context, (3) manually mapping and merging the two
ontologies into the domain ontology, and (4) using the DL inference engine (FaCT++)
in Protégé OWL as a basis to extract knowledge that has not been directly asserted.
Fig. 7 below identifies the four-step process and relevant mechanisms, namely the
user and the ontology framework, interacting with the process.

Fig. 7. Interaction of User and Ontology Framework with the Mapping Process

The formalised domain ontology acts as an ontology where external ontologies can
be articulated to before mapping. Apart from defining hole concepts from a
geometrical context, the domain ontology also captures other contexts such as a hole
machining process context and a manufacturing resource context, both pertinent to
hole machining processes. The recognition of the need to include different but
interlinked contexts during ontology construction has been made [18] and the domain
ontology in this example also uses inclusion properties defined to relate the different
contexts together to enrich the semantics of concepts in the ontology. The formalised
domain ontology on one side describes hole feature concepts from a geometrical
viewpoint and clearly depicts all the “necessary” and “necessary and sufficient”
conditions for the description of these concepts, e.g. a “Counterbore_Hole” from the

Inclusion
properties

between contexts

Formalised
Domain Ontology

Protégé
Environment

FaCT++
Reasoner

User

+

+

Hole
Geometry
Context

Resource
Context

Machining
Context

Ontology X Ontology Y

Map & Merge

Four-Step Process Mechanisms

10 Proceedings of MDISIS 2008

domain ontology has a set of “necessary” and “necessary and sufficient” conditions.
A formal definition of “Counterbore_Hole” in the ontology is as shown in Fig. 8.

Fig. 8. From Informal to Formal Definition of a Counterbore Hole in the Domain Ontology

What is actually being implied through the various asserted conditions is that if
there exists a random class that satisfies any of the “necessary and sufficient”
conditions in line with those of a “Counterbore_Hole”, then that random class can be
inferred by the DL reasoner as being a “kind of” “Counterbore_Hole”. Conversely,
having a random class satisfying all the “necessary” conditions alone without
satisfying “necessary and sufficient” conditions does not imply that the random class
is a “kind of” “Counterbore_Hole”. This type of reasoning is key behind the inference
engine for the deduction of new knowledge and is used after the merging process is
completed for finding commonalities between the two disparate ontologies based on
the merged ontology.

3.2 The Mapping and Merging Process

As previously seen, each hole concept present in the ontology possesses a set of
asserted “necessary” and “necessary and sufficient” conditions, which brings higher
formality to definitions. In order to reconcile two disparate ontologies sharing a
similar context to that of the domain ontology, a number of steps has to be considered

 1

 2

3

4

 •Diameter (1)
• Secondary_Diameter (2)
• Depth (3)
• Secondary_Depth (4)

hasDimension

Knowledge Representation Level

In
fo

rm
al

 D
ef

in
it

io
n

F
or

m
al

 D
ef

in
it

io
n

Conceptual Level

Counterbore_Hole

 Proceedings of MDISIS 2008 11

for manually being able to map concepts from ontologies X and Y to the domain
ontology. First, the external ontologies have to be normalised to the representation
language of the domain ontology. It is of fundamental importance that during
comparison and mapping from an external ontology to the domain ontology, all
entities from the external ontology find their correct match in the domain ontology,
implying that the latter has to be sufficiently broad to capture large domain
knowledge. Fig. 9 depicts an example where essentially the same hole concept
appears in the two disparate ontologies but different terms and definiens have been
used to describe the concept (see TD Mismatch). The mismatch between “C-Bore”
and “Counterbored_Hole” also overlaps onto aggregation-level mismatch and
structure mismatch. Reconciliation of the two concepts has to be done using the
formalised definitions present in the domain ontology.

Fig. 9. Example of Classes and Properties for Mapping to the Domain Ontology

The methodology adopted for manual mapping is based around the decisions and
actions input by the user to ensure consistent ontology reconciliation. In other words,
the methodology depicts the knowledge that is required to carry out the mapping
process and subsequent merging of concepts from ontologies X and Y to the domain
ontology. The most important mapping and merging steps are identified next and take
into account the examples shown in Fig. 9.

• For each class from the external ontologies to be mapped and merged, create the

same class in the domain ontology in the most obvious hierarchy of concepts
where that class fits, e.g. the “C-Bore” class is created as a child in the
“Hole_Concepts” parent class from the domain ontology. Naming clashes can
simply be resolved by prefixing concepts.

In Ontology X,

In Ontology Y,

12 Proceedings of MDISIS 2008

• Each external attribute is matched and replaced by a best-fit property in the domain
ontology, e.g. the “hasAttribute” property of “C-Bore” is substituted by the
“hasDimension” property from the domain ontology. Although “hasAttribute” as a
textual statement does not directly indicate its connection to “hasDimension”, it
becomes feasible to suggest the link between the two properties based on the fact
that in Ontology X, “hasAttribute” is used to aggregate a set of dimensional
parameters implying equivalence to “hasDimension”. Ontology Y, on the other
hand, identifies two levels to relate dimensions to holes namely through
“hasPrimaryDimension” and “hasSecondaryDimension”. These properties in
Ontology Y do not carry any formal semantics and are interpreted as being
equivalent to the more general “hasDimension” property. Embedding more formal
semantics to distinguish “hasPrimaryDimension” from “hasSecondaryDimension”
would require the consideration of more expressive logic with rules.

• A “filler” class used in a restriction for describing and defining a concept is
matched with the appropriate class in the ontology based on lexical and structural
similarity as well as intent, e.g. “Hole_Diameter” of a “C-Bore” hole is a type of
“Hole_Dimension_Parameter” but more specifically a type of
“Diameter_Parameter” in the domain ontology. Hence, the class “Hole_Diameter”
is recreated as a child of the “Diameter_Parameter” class. This matching and
merging step has to be completed for all filler classes used in both external
ontologies.

• Having created all necessary classes, synonymy among classes is specified within
the domain ontology using the “hasSynonym” property which is symmetric and
transitive in nature, e.g. it can be specified that “Hole_Diameter” and
“Primary_Diameter” now present in the domain ontology are synonymous
concepts.

3.3 Performing Inferences Based on the Merged Ontology

After mapping and merging concepts form the external ontologies to the domain
ontology, the next step consists of performing an inference on the main merged
ontology by using the DL reasoner. One simple inference consists of a reclassification
of the taxonomy to identify subsumptions not explicitly asserted in the first instance.
On running the inference engine, the individually defined hole concepts of “C-Bore”
and “Counterbored_Hole”, now present in the domain ontology, appear as subclasses
of the formally defined “Counterbore_Hole”. Furthermore, even after computing the
taxonomy, “C-Bore” and “Counterbored_Hole” still appear as individual non-
equivalent concepts, thereby preserving initial semantics.

Fig. 9. Inference-Based Taxonomy Classification for “Counterbore_Hole” Class

 Proceedings of MDISIS 2008 13

4 Discussions and Conclusions

The four-step approach used to reconcile heterogeneous ontologies with the help of a
domain ontology with inclusion properties among various contexts is interesting since
it explores the possibility of having an ontology mapping and merging model which is
a hybrid of different techniques for ontology interoperability. Capturing the
knowledge that leads to the mapping and merging process can be very useful to
support the interoperability of heterogeneous ontologies in the design and
manufacture domains. One of the reasons why only manual mapping and merging of
the ontologies have been done at this stage is because of the necessity to develop a
good understanding of the knowledge that the user has to employ during the process.
Manual mapping can be a labour-intensive task [19] that requires careful analysis of
ontologies in order to understand all the entities present, but it can prove to be
accurate for dealing with small ontologies and can also help resolve missing
knowledge behind concepts that are not well-defined. Manual mapping loses its
feasibility when large ontologies need to be reconciled. For convenience in this
investigation, only small ontologies consisting of a taxonomy of classes, properties
and definitions based on restrictions have been considered.

In Section 3.2, a mapping methodology has been proposed, the latter being based
on the thought process and decisions made during mapping and merging. It is
necessary to build up and formalise this mapping knowledge so that it can effectively
be applied as an algorithm to enable automatic/semi-automatic implementations,
thereby saving an enormous amount of time, while making an ontology mapping
system more robust and extensible. In this paper, the mapping investigation
predominantly revolves around the reconciliation of classes, properties, relations and
restrictions. Ontologies may also include instances carrying particular knowledge and
axioms which bring semantic enrichment and at the same time restrict the
interpretations of concepts in an ontology. Therefore, it is also important that
ontology interoperability involves the mapping of instances and axioms as well.

On the other hand, the experiment performed shows that during the mapping
process, individual entities in separate ontologies do need to find corresponding
equivalent matches in the domain ontology. However, it should not be forgotten that
small segments of knowledge around a given entity also play a crucial role in
enabling a feasible mapping decision to be made by reducing semantic ambiguities.
Observations made during the four-step approach has allowed the specification of a
number of factors that need to be accounted for in the quest for ontology and semantic
interoperability in the design and manufacture domains. These factors are:

• Individual external ontologies requiring mapping need to be normalised to a

standard ontology representation language, which formally captures semantics of
domain models.

• A mapping environment should emphasise on the identification of synonymous
concepts and similarity among entities from two ontologies sharing a similar
domain. Similarities can, for example, be related to lexical similarity or similarity
through embedded rules.

14 Proceedings of MDISIS 2008

• It is necessary to identify ontology and semantic mismatches early in the process
and the user needs to be able to view and understand the nature of these
mismatches before mapping can be performed. Hence, appropriate actions can be
taken to overcome semantic mismatches between ontologies and improve
interoperability.

• A formal algorithm has to be defined as a basis for automating a mapping process.
The algorithm, therefore, needs to work hand in hand with identifying semantic
mismatches while at the same time pursuing the correct actions for ontology
reconciliation.

• Knowledge inference should not be limited to taxonomical classification alone.
Instead, a user should be able to query the mapped ontologies in order to derive
maximum constructive knowledge from the system.

• It is important to set up a framework with an appropriate user interface (UI), which
facilitates user-system interaction.

The task of designing, implementing and maintaining ontology-based systems

requires adequate support for ontology matching [20]. Ontology matching and
reconciliation is an essential step to achieve semantic interoperability for promoting
manufacturing knowledge sharing. Several frameworks, methods and tools are present
in order to deal with ontology interoperability. However, these techniques do not
encompass sufficient potential to resolve interoperability in design and manufacture,
since the latter is an expert domain with very specific content and issues. It is
intended that our future work shall address further issues in regard to ontology and
semantic interoperability in product design and manufacture and shall also explore
richer semantic structuring through more expressive representation formalisms such
as Common Logic (CL) [21] and the Process Specification Language (PSL) [22].

Acknowledgements. The work presented herein was funded through the Research
Studentship in the Wolfson School of Mechanical and Manufacturing Engineering of
Loughborough University and undertaken in conjunction with the Knowledge and
Information Management (KIM) Through-Life Grand Challenge Project
(www.kimproject.org) funded primarily by the Engineering and Physical Research
Council (EPSRC – Grant No. EP/C534220/1), the Economic and Social Research
Council (ESRC – Grant No. RES-331-27-0006) and Loughborough University’s
Innovative Manufacturing and Construction Research Centre (IMCRC – Grant No.
EP/E002323/1).

References

1. Hameed, A., Preece, A., Sleeman, D.: Ontology Reconciliation. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 231--
250. Springer, ISBN 3-54040834-7 (2004)

2. Hovy, E.: Combining and Standardising Large-Scale, Practical Ontologies for Machine
Translation and Other Uses. In: 1st International Conference on Language Resources and
Evaluation (LREC), pp. 535--542. Granada, Spain (1998)

 Proceedings of MDISIS 2008 15

3. Madhavan, J., Bernstein, P.A., Domingos, P., Halevy, A.: Representing and Reasoning
about Mappings between Domain Models. In: 18th National Conference on Artificial
Intelligence (AAAI’02). Edmonton, Alberta, Canada (2002)

4. Noy, N.F., Musen, M.A.: The PROMPT Suite: Interactive Tools for Ontology Merging and
Mapping. International Journal of Human-Computer Studies 59, 983--1024 (2003)

5. Advanced and Innovative Models and Tools for the development of Semantic-based systems
for Handling, Acquiring and Processing knowledge Embedded in multidimensional digital
objects, http://www.aimatshape.net/

6. Kim, K.-Y., Manley, D.G., Yang, H.: Ontology-based Assembly Design and Information
Sharing for Collaborative Product Development. Computer-Aided Design 38, 1233--1250
(2006)

7. Schlenoff, C., Gruninger, M., Ciocoiu, M., Lee, J.: The Essence of the Process Specification
Language. In: Special Issue on Modeling and Simulation of Manufacturing Systems in the
Transactions of the Society for Computer Simulation International (1999)

8. Lukibanov, O.: Use of Ontologies to Support Design Activities at DaimlerChrysler. In: 8th
International Protégé Conference. Madrid, Spain (2005)

9. Liping, Z., Guangyao, L., Yongquan, L., Jing, S.: Design of Ontology Mapping Framework
and Improvement of Similarity Computation. Journal of Systems Engineering and
Electronics 18(3), 641--645 (2007)

10. Visser, P.R.S, Jones, D.M, Bench-Capon, T.J.M, Shave, M.J.R.: An Analysis of Ontology
Mismatches: Heterogeneity vs. Interoperability. In: AAAI 1997 Spring Symposium on
Ontological Engineering. Stanford, USA (1997)

11. Ehrig, M., Sure, Y.: Ontology Mapping: An Integrated Approach. In: 1st European Semantic
Web Symposium. LNCS , vol. 3053, pp. 76--91. Springer, Heraklion, Greece (2004)

12. Kalfoglou, Y., Schorlemmer, M.: Ontology Mapping: The State of the Art. Knowledge
Engineering Review 18(1), 1--31 (2003)

13. Maedche, A., Motik, B., Silva, N., Volz, R.: A MApping FRAmework for Distributed
Ontologies. In: 13th International Conference on Knowledge Engineering and Knowledge
Management: Ontologies and the Semantic Web. LNCS, vol. 2473, pp. 235--250. Springer,
Siguenza, Spain (2002)

14. Kiryakov, A.K., Simov, K. Iv., Dimitrov, M.: OntoMap: Portal for Upper-Level Ontologies.
In: 2nd International Conference on Formal Ontology in Information Systems (FOIS’01).
Ogunquit, Maine, USA (2001)

15. Fernández-Breis, J.T., Martínez-Béjar, R.: A Cooperative Framework for Integrating
Ontologies. International Journal of Human-Computer Studies 56, 665--720 (2002)

16. McGuinness, D., Fikes, R., Rice, J., Wilder, S.: An Environment for Merging and Testing
Large Ontologies. In: 17th International Conference on Principles of Knowledge
Representation and Reasoning (KR-2000). Colorado, USA (2000)

17. Stumme, G., Maedche, A.: FCA-Merge: Bottom-up Merging of Ontologies. In: 7th
International Conference on Artificial Intelligence (IJCAI’01), pp. 225--230. Seattle,
Washington, USA (2001)

18. Chungoora, N., Young, R.I.M.: Semantic Interoperability Requirements for Manufacturing
Knowledge Sharing. In: Mertins, K., Ruggaber, R., Popplewell, K., Xu, X. (eds.) Enterprise
Interoperability III: New Challenges and Industrial Approaches. pp. 411--422. Springer-
Verlag London Ltd. (2008)

19. Mitra, P., Wiederhold, G.: Resolving Terminological Heterogeneity in Ontologies. In: 15th
European Conference on Artificial Intelligence: Workshop on Ontologies and Semantic
Interoperability. Lyon, France (2002)

20. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer-Verlag New-York Inc., Secaucus,
NJ, USA (2007)

21. Common Logic (CL), http://cl.tamu.edu/
22. Process Specification Language (PSL), http://www/mel.nist.gov/psl/

