
Adaptable Visualization Service: through
Uniformity towards Sustainability

Tomáš Dymáček1 and Petra Hocová2 and Miroslav Kintr3

1 Mycroft Mind a.s., Lidicka 28, 602 Brno, Czech Republic
2 Knowledge and Information Robots Laboratory,Faculty of Informatics, Masaryk

University, Botanicka 68a, 602 00 Brno, Czech Republic
3 Institute of Computer Science, Masaryk University, Botanicka 68a, 602 00 Brno,

Czech Republic
dym@mycroftmind.com,petra.hocova@fi.muni.cz,mirek.kintr@mail.muni.cz

http://kirlab.fi.muni.cz/en:homepage

Abstract. This paper presents a design of Adaptable Visualization Ser-
vice which supports automatic generation of visualizations and GUIs.
Adaptable Visualization Service is able to perform a wide range of visu-
alization tasks. The advantage of presented service lays in its ability to
combine various visualization methods and easiness of adding new ones.
When adding a new visualization method the degree of changes made
in Adaptable Visualization Service itself needs to be minimized. We as-
sert that the desired minimization of changes can be reached thanks to
uniformity of the proposed solution, adoption and extension of Model-
View-Controller pattern, language independency of solution and division
of service into three separate layers: language layer, visualization meth-
ods layer and transformation layer. Then the necessary changes can be
limited to a small and isolated part of the visualization methods layer.
We state that current solutions dealing with automatic GUI generation
are difficult and costly to extend.

Key words: model-based user interface development, conceptual model,
GUI design, Model-View-Controller

1 Introduction

Nowadays the information society suffers from information overload. Users look-
ing for their answers in information systems can easily get lost, confused and
disoriented. There are various kinds of information and these can be found in
various data sources. After users input their queries into any information system
there are usually two phases to be proceeded; the data retrieval and the data
visualization, i. e. first appropriate data need to be searched out and obtained by
the information system and second results of the search need to be visualized in
a such way to be easily readable and understandable by the user. Every visual-
ization method brings its own added value in expressing the information within
the data. For given set of data the adequacy of used visualization method differs

60 Proceedings of MDISIS 2008

within the scope of effective presentation. In some cases visualizing information
as a list could be more appropriate than in the graph representation and vice
versa. Described situation is more or less the same in most of the domains (i.e.
information overload, need of effective visualization).

To explain it more properly some examples from the network security field
follows. The domain of the network security field was chosen because of authors
work in development of a system which provides support in this domain (e.g.
[16]). The WhoIs information (information about internet domain details) might
be visualized in a form because of its simple structure and its qualitative char-
acteristics. A topology of a guarded network would be preferably visualized as
a graph. Another example here is information about particular flows (i.e. record
of network communication between two IP addresses). It is a quantitative infor-
mation and could be visualized either as a list or a statistical diagram.

What particular visualization method for displaying certain kind of infor-
mation is going to be used in real situation is specified in cooperation with a
(potential) user. Every professional working above the data from the network
security domain need to see the data in different visualization structure. Within
the data on one hand security managers are looking for attacks done in/towards
the guarded network and on the other hand network administrators are more
interested in amount of transferred data. Every profession requires different high-
lighting of information at the first look.

Also requirements on the visualization service were evolving through time
and more visualization methods were demanded to satisfy a system operator
(i.e. security manager or network administrator) needs. The operator prefer-
ences were changing–a wider set of information needed to be computed from the
network traffic data (process of data retrieval) and therefore a visualization of
the new set had to be adjusted to the new kind of content. E.g. WhoIs infor-
mation should be visualized together with information from databases of known
attacks and the information about the physical location of devices.

To be able to visualize the all complexity of incoming information into the
visualization service of the information system a new visualization technique so-
called Nested Visualization was developed. The Nested Visualization approach
is based on the principle of combining various visualization techniques. Is means
that any of implemented visualization methods (a table, a mind map, a form)
can be inserted into any element of implemented visualization method (a cell of
the table, a node of the mind map, a cell of the form). Precisely, this approach
allows to display the information within the whole complexity, in one window
and by adequate visualization method. It also means that visualization of the
result of some query can be adapted to the content of the result itself. The
sample of such output can be seen the figure 1, where the mind map technique
and the form visualization is combined in one workspace.

Moreover, to fulfill continuously changing requirements on the visualization
service of the system and to be able easily handle the Nested Visualization
approach a new architecture for the visualization service was developed and
implemented, it is so-called Adaptable Visualization Service (AVS). The core of

Proceedings of MDISIS 2008 61

Fig. 1. The sample Nested Visualization, an output of AVS

the AVS serves as a platform into which desired visualization techniques can be
plugged and then combined in by the Nested Visualization approach. This paper
focus on important aspects of conceptual design and architecture of the AVS.

The regular job of a common visualization service is to render visualization
of data according to a description, the description is prepared by other parts
of the system (in process of data retrieval). Every visualization service accepts
input in some defined input format, then it transforms this input into a GUI
instance assembled from components provided by the visualization service. When
adding a new visualization method the visualization service itself has to usually
be reprogrammed. The phase of implementation of a new visualization method
into existing visualization service must be performed quickly. The delay between
identifying new requirements and their satisfaction must be as short as possible.
Unfortunately, reprogramming the service and implementing new methods into it
is very time consuming. Ideal situation for such task would be when the changes
necessary for adding a new visualization method would be well defined, isolated
and small. And the changes made within the visualization service because of
adding new method would not propagate through the whole visualization service.

When the authors were designing the AVS they kept in their minds mentioned
problems. Therefore they focused on narrowing the interfacial area between the
core of the AVS platform and a possible new visualization method. To isolate
and define such parts of the service that are necessarily going to be changed
when adding new method the Adaptable Visualization Service is divided into
three layers:

i) language layer – it is about the language (or format) of the input, spec-
ifies the elements of the language accepted and understood by other layers, it

62 Proceedings of MDISIS 2008

contains and is built upon the conceptual model of abstract entities of Nested
Visualization and other entities of the AVS, existence of this layer is important
for the ability of the AVS to generate the GUI automatically from formalized
description (language) (see section 2);
ii) visualization methods layer – the set of components implementing the vi-
sualization methods from which the resulting GUI can be built (these are ei-
ther components or libraries of third parties or components implemented by our
team); this layer also contains some more abstract entities, their role is to serve
as uniform interface to the transformation layer;
iii) transformation layer – the engine for creating the GUI from the available
components (from visualization methods layer) according to given input (coming
from the language layer), this layer can be seen as a core of the visualization
platform, but of course both other layers embody some elements of the platform
too.

Fig. 2. The three layers of the AVS

The scheme of the layers is shown on the figure 2. The visualization methods
layer offers the uniform interface across all implemented visualization meth-
ods to the transformation layer and transformation layer works with absence of
knowledge above what visualization method is actually working. It means when
implementing (adding) new visualization method into the AVS, it is necessary to
work only within the visualization methods layer. The new visualization method
is wrapped to fit with the interface of transformation layer properly. In a re-
sult such decomposition of the visualization service brings saving of time for
implementation and limit the percentage of new bugs.

The duration of the implementation phase is shortened even more. It comes
from the following concept. A set of methods implementing every particular
visualization component (in sense of component itself, not the implementation
into the visualization service) can be divided into three categories: i) data layer

Proceedings of MDISIS 2008 63

- methods handling the data (i.e. the content of the visualization), ii) form layer
- methods setting the form of the visualization (e.g. table), and iii) behaviour
layer - methods determining the behaviour of the visualization component (e.g.
sorting columns). The methods handling the data and the methods determining
the behaviour of the elements are quite similar for any visualization component.
So when implementing a new method into the AVS, it is possible to deal with
these methods quite similarly across all visualization methods. Only the imple-
mentation of the methods setting the form of the visualization is necessary when
adding the new visualization method into the AVS.

Described classification of the methods is known as the Model–View–Controller
design pattern (MVC). The Model represents the data layer, the View is the form
layer and Controller plays the role of the behaviour layer. In these days, there
are implementations of many visualization methods available in the form of pro-
gram libraries written in various programming languages. It is advantageous
to use these libraries instead of programming it. As the desired visualization
method might not be implemented in our preferred programming language the
visualization service must be language independent. The problem of language
independency is solved by the concept of three layers (language-transformation-
visualization methods) where the added visualization is wrapped within the vi-
sualization methods layer.

2 Related Work

There exist several approaches which deal with automated GUI generation from
formalized description.

XUL – XML User Interface Language is an XML user interface markup
language developed by the Mozilla project for use in its cross-platform applica-
tions, such as Firefox. The only complete implementation of XUL is the Gecko
layout engine. XUL relies on multiple existing web standards and technologies,
including CSS, JavaScript and DOM [15].

JFCML – JFC/Swing XML Markup Language is a markup language for Java,
which specifically targets the creation of AWT/Swing Graphical User Interfaces.
More formally, JFCML is an XML User Interface Language (XUL) for Java.
JFCML has been designed to be easy to use, yet powerful enough to write a
complete application [11].

XAML – Extensible Application Markup Language is a declarative XML-
based language used to initialize structured values and objects. XAML is used
extensively in the .NET Framework 3.0 technologies, particularly in Windows
Presentation Foundation (WPF). It is used as a user interface markup language
to define UI elements, data binding, eventing and other features [6].

UsiXML – USer Interface eXtensible Markup Language is a XML-compliant
markup language that describes the UI for multiple contexts of use. UsiXML
supports platform and device independence [23].

UIML – User Interface Markup Language is an XML language for defining
user interfaces. It allows to describe the user interface in declarative terms (i.e.

64 Proceedings of MDISIS 2008

as text) and abstract it. Abstraction means that it is not necessary to specify
exactly how the user interface is going to look but what elements are going to
be displayed and their behaviour [18].

Let us have a look at how these approaches are prepared for extension by new
visualization methods.The problem of solutions built on XUL, XAML, JFCML
and UsiXML lies in their non-uniformity. Each GUI element described by its
XML definition has its own XML tag in these solutions. To add a new GUI
element into existing solution requires: i) to add a new tag description to their
DTD – i.e. modification of the language layer, ii) to adapt the interpreter – i.e.
transformation layer. Especially point i) is a problem for sustainability and later
compatibility (e.g. when local user defines his own extension of DTD).

UIML is the most promising solution from our point of view. But its drawback
lies in its lack of support for the MVC pattern. Using this approach would require
to implement the whole visualization method from scratch without the possibility
to reuse models and controllers from other visualization methods.

As none of the approaches known to us suits the requirement of easy exten-
sionability AVS has been developed.

3 AVS – The Adaptable Visualization Service

AVS is an implementation of a visualization service which meets the requirement
of extensibility.

3.1 Architecture

AVS consists of three layers: i) language layer, ii) visualization methods layer iii)
transformation layer. The language layer provides an apparatus for a conceptual
description of GUI, the visualization methods layer provides components from
which a GUI can be built and the transformation layer can transform given input
(GUI instance description) into the output (instance of GUI).

Language Layer: The language layer plays the role of the conceptual back-
ground of the whole AVS and it is described by the conceptual model (see Fig. 3
- in a Entity-Relationship diagram notation). The entities from the conceptual
model are also elements of the description language. As it is visible from the
model, they are all on quite high level of abstraction.

This helps to the transformation layer works uniformly with any visualiza-
tion method without knowing unnecessary details about it. From this approach
the main advantage of the language layer results- it is not necessary to change
the conceptual model if one wants to add a new visualization method imple-
mentation, only a new instance of the existing model entity called Visualization
has to be inserted (from the viewpoint of the mention layer). This solution is
sustainable because the structure of the language layer does not change over
time.

Proceedings of MDISIS 2008 65

co
nn

ec
te

d_
w

ith
_g

iv
en

ha
s_

giv
en

ha
s_

gi
ve

n

of
_g

iv
en

is_w rapped_by_given

used_by_given
used_by_given

of
_g

iv
en

ob
se

rv
ed

_b
y_

gi
ve

n

observed_by_given

of_
giv

en

composed_of_given

vi
su

al
iz

es
_g

iv
en

composed_of_given

vi
su

al
iz

es
_g

iv
en

composed_of_given

of_give
n

connection

Property

Consumer

RecognizerVisualizationElement

ModelElement

View Element

Model

View

Visualization

Fig. 3. The conceptual model of input layer

Let us have a look at the conceptual model in more detail. The conceptual
model extends the Model-View-Controller (MVC) design pattern and serves as
a base for Nested Visualization (visualization based on combining visualization
methods where inserting elements of one visualization methods into elements of
different one is possible).
The Model layer from the MVC pattern is represented by the entity Model,
entity ModelElement and entity Property. Model is a container for Model El-
ements. Property is every pair of attribute and value. Through this entity the
attributes to a Model or Model Element are assigned (e.g. colour of heading in
the table).
Entities View and View Element can access these attributes and adapt GUI to
values of these attributes. Entities View and View Element represent the View
layer from the MVC pattern. The entity View is the GUI representation of given
Model.
The Controller layer from MVC pattern is represented by the entities Recognizer
and Consumer. Recognizer is every sensor which can recognize user’s actions per-
formed at a View or View Element to which this Recognizer is attached. Con-
sumer is every service which can provide reaction to user’s actions. Consumers
usually change Model or Model Element.

66 Proceedings of MDISIS 2008

The extension of the MVC pattern lays in entities Visualization, Visualiza-
tionElement, Connection and their relationships. Any visualization consists of
the elements (e.g. the form contains labels and cells) and in the conceptual model
reader can see the relationship between entities Visualization and Visualization
Element with semantics: Visualization is composed of given Visualisation Ele-
ments. But even more important is the relationship between these two entities
with semantics: Visualization is wrapped by given Visualization Element. This
part of the model brings the ability of the AVS to visualize by Nested Visualiza-
tion approach. Any visualization has to have its model and view. These facts are
also mirrored in the conceptual model too. There can be created various con-
nections between Visualization Elements (for example like connection between
graph edge and its source and target nodes, between table row and its cells).

Visualization Methods Layer: Visualization methods layer is a set of com-
ponents that implements various visualization methods.

Every implementation of any visualization method consist of components
(Visualization Method, Model, View, Visualization Method Element, etc.) These
have their counterparts in entities of the conceptual model in the language
layer. By the implementation of the visualization method (adding a new vi-
sualization method) there also has to be implemented a simple interface. This
interface provides functionality used for GUI building and controlling by the
transformation layer. This functionality provides dynamics to the static struc-
ture which is expressed in the conceptual model of the language layer. All the
functionality does not have to be described here but we can present an ex-
ample: every implementation of any visualization method has its Visualization
Method component and this must implement addVisualizationMethodElement
and removeVisualizationMethodElement functions. These functions provide
the ability to change the set of Visualization Method Elements in given Visu-
alization Method. Thus the content of the output can be changed dynamically
and can be adapted to actual demands.

Currently the visualization method layer of AVS consists of six visualization
methods: Window, Form, Combo box, Spread sheet, Workspace and Dynamic
mind maps. A sample of an output of the AVS is shown at figure 4. The AVS is
here used in application MyNetScpe for the watching traffic in the network.

Transformation Layer: Transformation layer is quite universal thanks to the
conception of the language and visualization methods layer. The structure of
language layer does not change in time so the transformation layer is supplied
by inputs with uniformly structured data. It uses Java Reflection API and from
programmer’s point of view can be seen as some kind of interpreter. It provides
automatic generation of visualizations and GUIs from their descriptions.

On the figure 5 there is a schematically expressed that through elements (i.e.
input) of specific language (where the elements are parts of the conceptual model
of the extended MVC pattern) through simple automatic transformation a GUI
with the Nested Visualization technique could be automatically generated.

Proceedings of MDISIS 2008 67

Fig. 4. Output of the AVS

Fig. 5. Transformation layer

68 Proceedings of MDISIS 2008

The main advantage of the transformation layer is the fact that an addition of
new visualization method into the AVS does not require reprogramming of this
layer. Only the extension of the visualization methods layer by implementation
of the new visualization method is needed.

3.2 Extensibility in AVS

To minimize changes that are necessary when adding a new visualization method
into AVS the following approaches were taken:

– AVS is divided into three layers – language, visualization methods and trans-
formation layer

– all visualization methods are handled in a uniform way
– the Model-View-Controller pattern is used in the design
– the Model-View-Controller pattern is extended to allow to use the Nested

Visualization approach
– AVS is language and platform independent

Let us have a closer look at remaining approaches as the first of them has been
explained earlier in this paper.

Model-View-Controller: The basis for the AVS solution is the MVC design
pattern. The model itself is representing the ”raw” data to be displayed by
given visualization method. Several different views can be linked to this model.
These views observe the model and react by modifying themselves according
to the observed changes. The controller is responsible for modifying the model
according to user actions performed upon the view.

Model of the Basic Structure. Models and model elements in the AVS solution
represent only the basic structure of the visualization. Thus they do not contain
any data except their identifiers [13]. All data, attributes or properties are held
in separate entities, in instances of subtypes of the Property entity (see Figure
3). The implementation allows to every visualization method to define its own
property subtypes. This makes easier to handle various types of properties.

There are some general purpose properties that are common to the most
of the visualization method elements (e.g. textValue, isSelected). However
many visualization methods define their own properties, like arrowShape for an
edge of a mind map.

The view or the view element in the AVS architecture plays the role of a
wrapper to libraries or components which are implementing desired visualization
methods.

We use the prefuse visualization toolkit [10] for graph-based visualizations for
example. The view in our implementation of a graph visualization method wraps
the prefuse visualization toolkit. Changes observed in particular properties of the
model or model elements of the visualization are handed over to the wrapped
prefuse component.

Proceedings of MDISIS 2008 69

Adjustable View. A major criticism of the MVC design pattern aims at its
inability to influence the view. There is no way how to set the properties of the
view (e.g. colour, shape, etc.) by the model. One of the modifications of the
MVC pattern that deals with this problem is the model-view-presenter (MVP)
design pattern. It allows the presenter layer to modify just those properties of
the view that the synchronization between model and view can not satisfy [9].

Our approach uses the concept of model or model element properties and
their subtypes to tackle the problem of mentioning and changing the view. Ev-
ery property of the visualization method that we wish to mention, i.e. allow the
caller of our visualization service to modify it, has to be declared as a property
(subtype) of the model or model element of the visualization method. An exam-
ple could be the colour or width of an edge representing data flow in our network
security monitoring application.

Thus we use the concept of model or model element properties to store data
of the model as well as details about the visualization.

Controller – Recognizers and Consumers. We have extended the concept of the
controller in several aspects. In classical MVC the controller is called as a reaction
to events from the UI controls. The action to be performed is then hard-coded
in the the controller code. The reaction to a UI event (mouse click, key hit)
is hard-wired with firing the demanded application logic event. To change such
behaviour means to rewrite the code of the controller.

AVS solution separates these categories of events. Recognizers implement
listeners to low-level UI events – mouse clicks, keyboard shortcuts. They produce
application logic events that are handed over to consumers registered to consume
the kind of events produced by the recognizers they are registered with. Only
consumers are allowed to change the properties of the underlying model or model
elements. A recognizer can listen to several UI (low-level) event producers. A
consumer can listen to several recognizers and one recognizer can supply several
consumers with application logic (high-level) events. A consumer can modify
several models or model elements properties.

This separation allows us to have a set of recognizers which can be rehang
to different UI event sources without modifying a single line of code. Similarly
consumers can be reconnected to alternate recognizers upon a command from
the server. Supposed the required and necessary recognizers and consumers are
implemented, we can change the behaviour of the user interface programmati-
cally.

One of the situations that can be handled by this solution is the adjustment
of the UI to user preferences for example. There can be several recognizers of an
application-level action each one of them reacting to different UI actions. One
of the recognizers listens to mouse clicks another one to keyboard shortcuts etc.
So user preferences can be saved simply by storing only the connections between
appropriate view (elements), recognizers and consumers. And by altering just
these connections of the mention form preferences can be modified.

70 Proceedings of MDISIS 2008

Uniformity: The possibility of uniform handling of visualizations and their
individual elements makes AVS open to new visualization methods which will be
required in future. Although it is easy to implement a new visualization method
or its elements into AVS (similarly with removing). For each visualization a set
of methods is implemented which is the same for every single visualization. The
methods have the same interface across different visualizations. It makes the
AVS modular and that is why services of AVS can be provided with different
complexity depending on requirements of a user.

Language Independency: The transformation layer is written in Java. As
it was mentioned in Section 3.2 the view or the view element plays the role of
a wrapper. This wrapper can use the Java Native Interface to provide access
to non-Java components. These wrappers encapsulate individual visualization
methods or libraries. Thus using a concept of such wrappers makes the AVS
language independent.

4 Conclusions and Future Work

Our work presents the Adaptable Visualization Service (AVS). The AVS is a part
of a system that provides support in the field of network security. Requirements
on such a system change very dynamically and particularly on its visualization
service. First the type of information to be visualized is changing. Second also
requirements on the visualization methods used to render given type of informa-
tion can change in time. To minimize changes that are necessary when adding
a new visualization method into AVS the following steps were taken: AVS is
divided into three layers – language, visualization methods and transformation
layer. All visualization methods are handled in a uniform way. The Model-View-
Controller pattern is extended and used in the design. AVS is language and
platform independent.

At the time of this writing, the first preliminary version of the complete
system is being integrated and the whole system is still under development.
The data used for system testing are acquired on Masaryk University network,
connected to the Czech national educational network (CESNET). In our future
work we will extend the set of provided visualization method implementations.
Another direction of development is to extend the architecture by a renderer
layer providing many visual features independently on particular visualization
method implementation. These visual features will make the whole visualization
more effective. The work is a part of a stream going to modelable and executable
service systems with elements of artificial intelligence which is called Knowledge
and Information Robots [20] based on principles of universal modelling and soft-
ware construction [19].

References

1. Baxley, B.: Universal model of a user interface. In: DUX ’03 Conference on Designing
for user experiences, pp. 1–14. ACM, New York, NY, USA (2003)

Proceedings of MDISIS 2008 71

2. Burkhard, R.A.: Towards a framework and a model for knowledge visualization:
Synergies between information and knowledge visualization. Knowledge and Infor-
mation Visualization 3426, 238–255 (2005)

3. Eppler, M.J., Burkhard, R.A.: A framework for the visual representation of knowl-
edge. In: Multi-Conference Wirtschaftsinformatik, Passau, Germany (2006)

4. Hansen, S., Fossum, T.V.: Refactoring model-view-controller. J. Comput. Small
Coll. 21(1), 120–129 (2005)

5. Lengler, R., Eppler, M.: Towards a periodic table of visualization methods for
management. In: IASTED Conference on Graphics and Visualization in Engineer-
ing (GVE 2007), Clearwater, Florida, USA (2007)

6. MacDonald, M.: Pro WPF. Apress, (2007)
7. Molina P.J.: User interface generation with olivanova model execution system. In:

IUI ’04 9th international conference on Intelligent user interfaces, pp. 358–359. ACM,
New York, NY, USA (2004)

8. Ruby on Rails, http://www.rubyonrails.org/
9. Fowler, M.: GUI Architectures, http://martinfowler.com/eaaDev/uiArchs.html
10. The Prefuse Visualization Toolkit, http://www.prefuse.org
11. JFCML - JFC/Swing XML Markup Language, http://jfcml.sourceforge.net/
12. Oškera, M.: Alternativńı zp̊usob reprezentace dat k objektovému př́ıstupu. Mas-

ter’s thesis, Masarykova univerzita, Brno (2006)
13. Oškera, M.: Vztahově orientovaně úložǐstě. In: DATAKON 2006, Brno (2006)
14. Pettersson, M.: Designing the user interface on top of a conceptual model. In: CAiSe

’95 7th International Conference on Advanced Information Systems Engineering, pp.
231–242. Springer-Verlag, London, UK (1995)

15. Quiroz, J.C., Louis, S.J., Dascalu, S.M.: Interactive evolution of xul user interfaces.
In: GECCO ’07 the 9th annual conference on Genetic and evolutionary computation,
pp. 2151–2158. ACM, New York, NY, USA (2007)

16. Rehák, M., Pěchouček, M., Čeleda, P., Krmı́ček, V., Moninec, J., Dymáček, T.,
Medvigy, D.: High-performance agent system for intrusion detection in backbone
networks. Cooperative Information Agents XI 4676, 134–148 (2007)

17. Santini, S.: Notes for the conceptual design of interfaces. Conceptual Modelling –
ER 2006 4215, 413–423 (2006)

18. Phanouriou, C.: Uiml: a device-independent user interface markup language. PhD
thesis, Virginia Polytechnic Institute and State University (2000)

19. Stańıček, Z.: Univerzálńı modelováńı a konstrukce IS. PhD thesis, Masaryk Uni-
versity, Brno (2003)

20. Procházka, F.: Universal Information Robots a way to the effective utilisation of
cyberspace. PhD thesis, Masaryk University, Brno (2006)

21. Terwilliger, J.F., Delcambre, L.M.L., Logan, J.: The user interface is the conceptual
model. Conceptual Modelling – ER 2006 4215, 424–436 (2006)

22. Veit, M., Herrmann, S.: Model-view-controller and object teams: a perfect match
of paradigms. In: AOSD ’03 2nd international conference on Aspect-oriented software
development, pp. 140–149. ACM, New York, NY, USA (2003)

23. Massó, J.P.M., Vanderdonckt, J., Simarro, F.M., López, P.G.: Towards virtualiza-
tion of user interfaces based on UsiXML. In: Web3D ’05 10th international conference
on 3D Web technology, pp. 169–178. ACM, New York, NY, USA (2005)

