
Model-Driven Generation of Dynamic Adapters for
Integration Platforms

Matthias Böhm1, Jürgen Bittner2, Dirk Habich3, Wolfgang Lehner3, and Uwe Wloka1

1 Dresden University of Applied Sciences, Database Group
mboehm@informatik.htw-dresden.de

wloka@informatik.htw-dresden.de
2 SQL Gesellschaft für Datenverarbeitung mbH Dresden

juergen.bittner@sql-gmbh.de
3 Dresden University of Technology, Database Technology Group

dirk.habich@inf.tu-dresden.de
wolfgang.lehner@inf.tu-dresden.de

Abstract. The concept of Enterprise Application Integration (EAI) is widely
used for integrating heterogeneous applications and systems via message-based
communication. Typically, EAI servers provide a huge set of specific inbound and
outbound adapters used for interacting with the external systems and for convert-
ing proprietary message formats. However, one major shortcoming in currently
available products is the monolithic design of those adapters, resulting in perfor-
mance deficits caused by the need for data independence. Further, also functional
restrictions must be noticed here. In this paper, we give (1) a detailed problem
characterization, followed by (2) a discussion of alternative data representations
and adapter architectures, and (3) we introduce our model-driven DIEFOS (data
independence, efficiency and functional flexibility using feature-oriented soft-
ware engineering) approach. Finally, we analyze open research challenges.

Key words: Enterprise Integration Platform, Application Integration, Adapter
Architecture, Dynamic Adapters, DIEFOS Approach

1 Introduction

The trend towards heterogeneous environments comes with an increase in importance
of Enterprise Application Integration (EAI). Such an integration platform consists of a
set of inbound adapters, a core message broker, and a set of outbound adapters. The
large number of supported external system types results in the need for data inde-
pendence (independent-system-type data representations for internal processing) and,
simultaneously, for efficient integration task processing (minimum overhead for data
independence). These requirements—but particularly the first one—typically result in
very generic inbound and outbound adapter architectures. Therefore, the architecture
of such adapters is quite monolithic, resulting in low functional flexibility of such soft-
ware components. This means that for each external system type, a single adapter is
required, although specific functional modules could be reused. For example, a TCP
connection handler that sends specific messages to physical target systems might be
reused by several adapters, such as HL7 and B2MML adapters.

106 Proceedings of MDISIS 2008

To tackle this problem, we developed the model-driven DIEFOS (data indepen-
dence, efficiency and functional flexibility using feature-oriented software engineering)
approach. Aside from affecting the functionality, our DIEFOS approach also influences
the performance of integration processes. In contrast to the short introduction of the
basic idea of DIEFOS in [1], we use this paper to formally define the problem and then
discuss the adapter characteristics from a pragmatic perspective in detail. Furthermore,
we distinguish the main alternatives from the perspective of data representations. More-
over, we propose different alternatives from the perspective of adapter architectures.
Finally, we present our model-driven DIEFOS approach and explain the core concept
phases. Fundamentally, the whole concept relies on the model-driven development of
adapter components for integration platforms and is influenced by the commercial inte-
gration platform TransConnect R© of the company SQL GmbH.

The paper is organized as follows: Section 2 gives an overview on the adapter prob-
lem characteristic. Based on this problem description, Section 3 and Section 4 distin-
guish applicable approaches for data representations as well as adapter architectures.
After that, Section 5 includes the core DIEFOS approach description, starting with an
overview of the complete process, followed by explanations of the individual steps as
well as examples and the resulting benefits of this approach. Furthermore, we highlight
open problems as well as research challenges. Finally, in Section 6, we outline related
work—even though the body of related work does not focus on the exact same issue
addressed by our approach. We conclude our paper in Section 7.

2 Adapter Problem Characteristic

In this section, we introduce a generalized EAI server architecture and formally specify
the addressed problem as a dependency problem to be solved. Subsequently, resulting
problems of typical products are discussed. Finally, we classify types of adapters using
the layers of transformations defined in [2].

As illustrated
proprietary message formats

Fp1(msg)

External

System

Scheduler

Outbound

Adapter 1

...

Outbound

Adapter k

Process Engine

External

System

External

System

External

System

Operational Datastore (ODS)

Inbound

Adapter 1

...
External

System

Inbound

Adapter n
External

System

proprietary message formats

Fp2(msg)

uniform XML message formats

Funiform(msg)

...
External

System

Fig. 1. Generalized EAI Server Architecture

in Figure 1, an
EAI server con-
sists of several
typical compo-
nents. There is a
set of Inbound
Adapters which
listen passively
to incoming
messages and
convert those to
internal repre-
sentations. These internal messages are either distributed to Message Queues
(asynchronously) or directly sent to the core message broker (synchronously), which
is typically a Process Engine. This engine uses a set of Outbound Adapters
to actively interact with external systems. During the whole integration process, the

Proceedings of MDISIS 2008 107

recoverability must be ensured; thus, the internal message representations have to be
stored locally using the Operational Datastore.

In general, the main problems result from the monolithic adapter architecture and
can be stressed by the following observations. Our first observation is that an adapter
interaction typically requires an input XML message and optionally produces a result-
ing output XML message. This architecture is used in order to provide very generic
adapter interfaces. Thereby, data and meta data are mixed within one document. The
lack of meta data separation results in the fact that each adapter Ax has a defined input
schema Sin(Ax) and a defined output schema Sout(Ax). In fact, there is the dependency
problem Ax(msg)→ Funiform(msg) : Ax, where Funiform(msg) is the generic rep-
resentation of the required input or output data following specific schemas of an adapter
Ax. The second observation is that huge sets of adapters are developed independently
from each other. However, this is not a suitable solution from a functional flexibility
perspective. For instance, multiple adapters might use TCP as transport protocol and
could thus reuse this functionality for different adapter types. Based on this description,
we distinguish the following four pragmatical problems:
P1 - Poor Performance: The adapter-type-specific message format Funiform(msg) :
Ax requires useless transformation processing within the core broker. For example, if
we integrate the ERP System SAP with an RDBMS, the received SAP IDocs first have
to be transformed into the Funiform,out(msg) : Asap by the inbound adapter. Second,
Funiform,out(msg) : Asap have to be transformed into the Funiform,in(msg) : Ajdbc,
for example, by an XSL transformation. Finally, the Funiform,in(msg) : Ajdbc are
transformed into tuple arrays and bulk-loaded into the RDBMS. Obviously, the optimal
solution with regard to performance would be to transform the SAP IDocs directly into
the mentioned tuple arrays. However, if this is hard-coded, this will result in the loss of
data-independent processing within the core message broker.
P2 - Functional Restrictions: According to [2], all transformations of the layers trans-
port (L0) and data representation (L1)—which are lossless transformations—should be
optionally handled by all types of adapters. Imagine issues like compression and en-
cryption. These transformations should be applicable in a uniform manner.
P3 - Development Effort: Due to the fact of functional re-usability, a layered approach
seems to be advantageous. However, the characteristics of specific protocols (e.g., HL7)
prevent a generic layered solution. The architecture of monolithic adapters also requires
large efforts for testing because all functionalities have to be tested for all types of
adapters. The high effort is further caused by redundant implementations.
P4 - Data Independence: Due to the adapters being used as logical services within the
core message broker, the schemas of internal messages must be independent from the
proprietary data formats (P4: Data Independence). This addresses the layers schema as
well as data representation. Typically, EAI servers use a uniform data representation
but no uniform data schema. A separation between data and meta data will bridge this
gap. However, especially with efficiency in mind, the right level of data independence
has to be determined (as generic as necessary, as efficient as possible).

We classify the four different problems into two specific adapter perspectives: Data
Representation and Adapter Architectures. The former comprises the problems P1 and

108 Proceedings of MDISIS 2008

P4. The aim is to find the best compromise between efficiency and data independence.
The latter perspective comprises P2 and P3. Here, the objective is to find a solution
that achieves functional flexibility with low development effort. We will present several
alternative approaches for both perspectives in the following sections.

3 Perspective A - Data Representations

For this perspective, we are able to distinguish between the different approaches of in-
ternal data representations (message models) and consider the optimal data interface to
the specific adapters. In general, the following three types of internal data representa-
tions can be separated.

– Document-oriented: Here, each message is represented by exactly one XML docu-
ment. The advantage is the simple persistence as CLOB/BLOB attribute, while the
disadvantage is the deep structure and the resulting high costs for single attribute
accesses.

– Attribute-oriented, coarse-grained: Such a message consists of a list of atomic or
structured attributes in the form of name/value pairs. The advantage is higher flex-
ibility and efficiency. However, there is a high data dependence on the specific
attribute types, which does not seem to be adequate.

– Attribute-oriented, fine-grained: Using this approach, messages are separated into
their atomic attributes. Thus, the access to single values is very efficient and sim-
ple. The main problem with this approach lies in the high costs for fine-grained
data persistence and in the fact that standardized XML technologies (e.g., XSL
transformations) cannot be applied anymore.

Due to the high flexibility and the best overall performance, the attribute-oriented,
coarse-grained approach is most suitable. However, in order to reach the necessary level
of data independence, this approach must be modified. So, we define that all attributes
are either of type BLOB (this also comprises tuple arrays) or of type XML. Based on
this message model, we now consider applicable adapter interfaces, which is actually a
side effect of the perspective adapter architecture.

– Adapter-specific schema: The simplest form of an adapter interface is a specific in-
put and output schema for each adapter. Regardless of whether a message-based or
parameter-based approach is used, this is not sufficient with respect to the neces-
sary data independence. However, the advantage of this is the lightweight uniform
representation of the data.

– Universal schema: This interface has a message-based universal schema interface.
Here, the universal schema causes some overhead that influences the persistence
and the internal processing. However, the universal schema (with separated data
and meta data) allows for direct message exchange between adapters without the
need for message transformations, and thus, it results in higher efficiency.

Finally, we propose an attribute-oriented, coarse-grained data representation used
for schema-independent data transfer between adapters, where data and meta data are
separated as well.

Proceedings of MDISIS 2008 109

4 Perspective B - Adapter Architectures

In order to achieve functional flexibility—with the lowest possible development
effort—this section presents alternative adapter architectures. Basically, the three types
(1) monolithic, (2) generic and (3) generated can be distinguished. The monolithic
adapter architecture is not adequate and therefore, its description is omitted here. The
generic adapter (Subsection 4.1) is explained in detail because it could be applied in a
suitable way. Furthermore, we outline in short how a generation approach (Subsection
4.2) might be followed as well.

4.1 Generic Adapter

The first Adapter Instance
Adapter Instance

IFormat

Adapter type

IService

Format Converter

Connector

IProtocol

Protocol Handler

Connectivity

(system-specific and API-specific)

Adapter Instance

Con
figur

atio
n

Adaptertyp-

PropertiesIAdapter / CCI

Configuration

C

CN

Configuration

phys. Connectionphys. Connectionphys. ConnectionConnection

Pool

Format Transformation

(transport, protocol, representation)

configured adapter

instances

Fig. 2. Generic Adapter Micro Architecture

alternative to
the monolithic
approach is the
generic adapter
architecture,
where an adapter
(which should
be applicable for
inbound and out-
bound purposes)
allows for easy
extensibility con-
cerning different
formats and pro-
tocols. Figure 2
illustrates the
micro-architecture of such a generic adapter. Basically, such an adapter type is com-
posed of a Connector—implementing the CCI (Common Client Interface)—which
realizes the physical interoperability with external systems or APIs. Further, a specific
Protocol Handler might be plugged into the connector but this is optional. Such
a handler manages application layer protocols and is used—in a unique manner—by
the Connector. Another extension option is to use an arbitrary number of so-called
Format Converters in the form of a format stack. These converters are also used
by the Connector. As a result, the adapter type components can be divided into
three main parts: (1) the connectivity, (2) the format transformation (format converter
and protocol handler) and (3) the adapter-type properties. An adapter instance of such
a generic adapter type can be created providing a specification of the connector to be
used, the needed protocol handler and a set of format converters. Further, the adapter
type properties as well as the properties of all plugged-in function modules have to be
specified. Such created instances are maintained by a specific repository manager.

In order to separate the different connectors, we classify them into three layers.
First, there are simple transport connectors like file systems, TCP and UDP. Second,
there are higher-level protocol connectors like HTTP, SMTP, POP3, and SNMP. These

110 Proceedings of MDISIS 2008

mentioned connectors encapsulate transport protocols and thus, they also must be seen
as connectors. Third, there are the system connectors, like SAP and LotusNotes, which
handle specific system libraries or standardized APIs. Based on these three connec-
tor classes, we are able to define the class of protocol handlers for FTP, HL7 MLLP,
SWIFT, DICPOM, SMTP, POP3, IMAP, JMS, Elster and similar application logic
protocols. Further, let us consider possible format converters. Here, conversions like
Zip/Unzip, Encrypt/Decrypt, XML/HL7, XML/ASCII, XML/PDF, XML/EDI, XML/I-
Doc, XML/Binary, XML/SWIFT and many others are imaginable. The defined classi-
fication lets us dynamically build stacks of functional modules. An example for that is
the adapter type Aelster1, which is composed of the HTTP connector, the Elster pro-
tocol handler as well as the three format converters Encrypt/Decrypt, Zip/Unzip and
Elster/XML. Note that we can easily change Aelster1 to Aelster2 by using the TCP
connector. So, the functional flexibility can be achieved with low development effort.

From this perspective, the generic adapter seems to be suitable. However, there are
problems with this approach. Fundamentally, this concept requires knowledge of appli-
cable protocols and format converters. Although this is a minor problem, it stands in
contrast to the tendency towards self-managing systems. In any case, the major prob-
lems are specific application protocols like HL7. So, the binary encoding of HL7 2.x
requires format conversions from HL7-binary to XML. The problem is that right af-
ter the message has been converted, the connector can determine whether or not an
HL7 acknowledgment has to be sent. As a result, unfortunately, a clean separation of
connections, protocol handlers and format converters—used within a generic adapter
architecture—does not seem to be applicable for all combinations of external systems
and formats.

4.2 Adapter Generation

So, if we assume that the monolithic as well as the generic adapter approach are both not
suitable to meet the requirement of full functional flexibility, we conclude that only the
generative approach following the model-driven architecture (MDA) paradigm can be
applied in this context. In this case, the starting point is a textual specification (informal)
of the requirement for a specific adapter type—the so-called computer-independent
model (CIM). This model is manually transformed into the platform-independent model
(PIM). Here, a specification of adapter type functionalities (formal) is required. After
that, the PIM is automatically transformed into the platform-specific model (PSM), us-
ing available platform models (PM), which are in fact kinds of meta models. Finally,
the PSMs are transformed into executable code by using provided code templates.

Basically, there are two types of generation forms. First, we can use function mod-
ules (as generalized as possible) and only generate a kind of specific orchestration mod-
ule that links and uses the existing (and implemented) function modules. This will re-
sult in the use of well tested components, while there is a minor performance overhead.
Second, we can generate a whole specific adapter, which definitely results in much bet-
ter performance. However, here, the problem of testing the generator and its output is
highly significant. Within the DIEFOS approach, we use the first generation type, which
will be explained in more detail in Subsection 5.2.

Proceedings of MDISIS 2008 111

Model-Driven Development

 DIEFOS Adapter Generation Framework

Phase 1:

Specification

Phase 2:

Generation &

Compilation

Phase 3:

Configuration &

Instantiation

Adapter type

specification

PSM

Generated

adapter type

CODE

Instantiated

adapter object

available functional

properties and

dependencies

Setup

choice

PIM

generator

templates

linked

functional

modules

subsection 5.1 subsection 5.2 subsection 5.3

Problem

specification

CIM

Fig. 3. DIEFOS Generator Framework - Macro-Architecture

5 DIEFOS Approach

In this section, we introduce our DIEFOS approach (Data Independence, Efficiency
and functional flexibility using a Feature-Oriented Software-development approach) to
solve the described problems from Section 2 using the considerations from Sections 3
and 4. Figure 3 illustrates the macro-architecture of our developed framework. How-
ever, this is a work in progress because large efforts are needed in order to provide a
sophisticated and robust framework for this approach.

Basically, our framework comprises the three phases 1: Specification, 2: Generation
& Compilation and 3: Configuration & Instantiation. In the first phase, the CIM is man-
ually transformed into a setup choice—the applicable alternatives are given by feature
diagrams similar to Figure 3—representing the PIM. This setup choice, in conjunction
with available functional properties and dependencies, is used to create the formal re-
quirement specification (PSM). Within the generation step of the second phase, a Java
class is generated from the adapter type specification input, using specified code tem-
plates. Finally, this class is compiled and loaded into the JVM. Within the third phase,
the created instance of the generated adapter as well as the linked functional modules
have to be configured. Obviously, we use an approach where specific functionality can
be reused in function modules almost without any overhead. So, during runtime, these
hard-coded modules are used as a library. In the following three subsections, we explain
these three phases in very detail.

5.1 Specification

As already mentioned, the specification phase mainly has two inputs: the adapter type
setup choice and a set of available functional properties and dependencies in the form
of simple ECA (event, condition, action) rules. The functional properties are given by
the implemented functional modules as illustrated in Figure 4, where a feature diagram

112 Proceedings of MDISIS 2008

is used to illustrate the adapter specification opportunities. Imagine the setup choice
for a concrete adapter type: one might think of a graphical user interface similar to a
simple installation setup screen, where subcomponents can be selected or deselected
when needed. The setup choice, further, is evaluated with the given dependency rules.
So, if a specific component is selected (event), all related conditions are checked. If
one of these evaluates to true, a specific error (action) has to be signaled. Some simple
examples of such rules are the following ones (Listing 1.1):

Rule1 := {Connector ==∗ ; count (Connector) >1;
Mul t ip l i c i tyERROR }

Rule2 := {Connector== B a s i c . F i l e ; AdapterType != Outbound ;
FunctionalERROR}

Rule3 := {Protoco lHandler ==HL7 MLLP;
FormatConverter ! c o n t a i n s (XML/ HL7) ; FormatERROR}

Listing 1.1. Example Dependency Rules

As we use the feature diagram to visualize the adapter type’s functional properties,
we want to survey its meta model in short. So, a component is represented by a hierarchy
of features. If a feature is optional, this is marked with a white circle; otherwise it is
marked with a black circle. Further, a white angle represents an exclusive or choice,
while a black angle means that all sub-features are used. If a feature is represented by a
gray rectangle, this means that a sub-feature diagram for this sub-hierarchy exists.

Based on this simple meta model, we define the model for integration platform
adapter types. One specific adapter type has several specific process models and one
connector as well as one optional protocol handler and several format converters. There,
a subset of the process models Inbound.ClientInterface, Inbound.Async,
Inbound.Sync and Outbound can be used. We omit more detailed explanations of

Adapter

Connector
Protocol

Handler

Format

Converters

Processing

Models

Inbound Outbound

Async Sync

Zip/Unzip

En-/Decrypt

WSSecurity

XML/HL7

XML/CVS

XML/ASCII

XML/PDF

XML/EDI

XML/IDOC

XML/TupleFTP

SMTP

HL7 MLLP

XML/Binary

Elster

XML/HCM

XML/SVG

XML/SWIFT

SWIFT

XML/DICOM

DICOM

POP3

IMAP

JMS

MQ API

EJB

Domino

HTTP

SOAP

JMS

SAP

JDBC

File

TCP

UDP

Siebel

Peoplesoft

Navision

XML:DB

JDO

Client

Interface

Basic API

Application

Fig. 4. Adapter Type Specification Feature Diagram

Proceedings of MDISIS 2008 113

connectors, protocol handlers and format converters because they are given in Figure 4
already.

As a result of the specification phase, a formal requirement specification is created.
Here, we use an XML representation of the defined integration platform adapter type
model, flagged with choice parameters. Note that the produced specification is seman-
tically correct if phase 1 has finished successfully. This is an important assumption in
order to ensure robustness for the second phase of generation & compilation.

5.2 Generation and Compilation

For generation, we use the approach of function modules and only generate some kinds
of specific orchestration modules that use the implemented function modules. However,
even these orchestration modules have a high complexity, dealing with completely dif-
ferent protocols and system connectors. We can state that all Format Converters
and specific parts of Connectors can be implemented as function modules. Only a
marginal performance overhead has to be accepted when doing so.

The generation addresses the transformation of the produced specification of phase
1 into executable code. So, an orchestration Java class is generated, which contains the
connector usage, protocol handling (if specified) and the usage of format converters,
always obeying the specific configuration. Therefore, we use text templates with place-
holders for atomic parameters and complex substructures. For each specific pattern,
such templates are defined. Basically, we iterate through the XML specification, ex-
tracting the necessary information and replacing the defined text templates. Finally, the
generated class is physically stored, compiled and loaded into the JVM. For compilation
purposes, we use the Java Compiler API (JSR 199) in order to prevent the initialization
of a second JVM process. Due to the fact that each generated adapter type implements
the CCI (Common Client Interface), each generated adapter type can be dynamically
loaded and used by the process engine in a unique manner. Restricted by the lack of
space, we have to omit further details about the generation process.

5.3 Configuration and Instantiation

With the intent to use the CCI, we typically configure the generated adapter type with
so-called property objects during instantiation. Thereby, a concrete adapter is created
from the adapter type. Note that static configuration properties are directly used during
generation, while others are dynamically provided during the phase of instantiation.
In order to distinguish these two types of configuration properties, we introduce the
adapter type properties and the adapter properties.

The adapter type properties, on the one side, specify which dynamic parameters a
generated adapter should contain on the meta level. On the other side, also all configu-
ration values that are not intended to be changed are included. Note that this assumption
results in the fact that all adapter type properties are statically generated into the adapter
type and cannot be changed during runtime.

In contrast to that, the adapter properties enable us to dynamically influence the
behavior of the generated adapter. Here, two types of properties have to be distinguished
as well. First, there are the properties that are specified by the adapter type properties.

114 Proceedings of MDISIS 2008

Thus, a functional dependency between the adapter type properties and the adapter
properties has to be noticed. Second, there are the properties given by the used function
modules. These are determined by the implementation of the function modules and thus
can only be affected by the setup choice regarding the used features.

All generated adapter types and configured adapters of these types are managed
within a central repository. Here, the maintenance and notification of changed properties
during development time and runtime is also realized. In accordance with the specific
characteristics of the two types of properties, a property change request can result in
two different actions. First, if the change affects an adapter type property, implicitly,
phases 2 and 3 of the DIEFOS approach have to be reapplied in order to generate a new
adapter type with the specific static property. Second, in case of an adapter property,
only phase 3 has to be reapplied because only dynamic parameters are affected. Finally,
note that the Configuration History might pose an open problem in this area.

5.4 Example Adapter Generation

In order to make our approach easier to understand, in this subsection, we illustrate
a sample adapter type generation for a very simple adapter. Basically, we follow the
three phases as described as our overall DIEFOS approach. The informal requirement
is to define an outbound adapter that allows for interacting with the file system, thereby
realizing zip compression as well as PGP encryption.

The result of phase 1 (specification) is an XML representation of the adapter type
model. Here, Listing 1.2 shows the specification including the given adapter type prop-
erties for the format conversion step ”encrypt, decrypt”. Note that the sequence is of
high importance. So, we specify to first compress and then encrypt the data before writ-
ing it to the file system. Further, for example, the format conversion step type ”zip,
unzip” specifies that when writing files (push), they are zipped, while read files (pull)
have to be unzipped.

<a d a p t e r t y p e name=” f i l e 1 ”>
<type inbound =” no ” outbound =” yes ” />
<c o n n e c t o r type =” f i l e ” />
<p r o t o c o l type =” none ”/>
<f o r m a t type =” composed ”>

<f o r m a t s t e p type =” z ip , u n z i p ” />
<f o r m a t s t e p type =” e n c r y p t , d e c r y p t ” />

<p r o p e r t y name=” a l g o r i t h m ” va lue =” aes256 ”/>
<p r o p e r t y name=” p u b l i c k e y ” va lue =” ˜ / keys / p u b l i c ” />
<p r o p e r t y name=” p r i v a t e k e y ” va lue =” ˜ / keys / p r i v a t e ” />

</ f o r m a t s t e p >
</ fo rmat>

</ a d a p t e r t y p e >

Listing 1.2. Example Adapter Type Specification (XML Representation)

Based on the defined adapter type model, in phase 2 (generation & compilation), the
orchestration class, illustrated in Figure 5, is generated. Here, the connector type file
results in the two adapter properties path and pickup mask. Further, obviously this

Proceedings of MDISIS 2008 115

Zip/Unzip

Encrypt/Decrypt

File

CCI

Generated

Adapter Type

Java Class

Adapter type Properties:

encrypt_decrypt.algorithm = aes256

encrypt_decrypt.publickey = ~/keys/public

encrypt_decrypt.privatekey = ~/keys/private

Adapter Properties:

file.path = /opt/transconnect/archive/

file.filemask = *.*

Record data
meta

data
 Interaction Properties

Fig. 5. Example Generated Adapter Type

generated class implements the CCI, and so, we are able to interact with this adapter
using records for data and meta data separation.

Finally, the generated class has to be parameterized with concrete values for the
adapter properties and then loaded into the JVM. As this simple example shows, our
approach allows a very high functional flexibility, realized with marginal overhead for
data independence, so that efficient processing is possible. At this place, we explicitly
omit performance experiments due to the fact that they are highly dependent on the cho-
sen integration process, the adapter constellations and further workload characteristics.

5.5 Benefits and Approach Validation

In order to validate our approach, we point out the major benefits of the DIEFOS ap-
proach. Here, we observe in detail the results according to the defined four problems
(see Section 2). The first benefit reached is functional flexibility, which tackles problem
P2: Functional Restrictions. Due to the separation into elementary format converters,
protocol handlers and connectors, adapters can easily be created using a specific combi-
nation of those. While the functional restrictions were given by monolithic adapters with
specific functionalities, adapters can now be flexibly composed. Thus, this combination
possibility results in a wide range of concrete applicable adapters. Hence, functional
restrictions are prevented.

Another benefit is the reduced development effort, addressing P3. On the one side
(server development), the low development effort is reached by the already mentioned
functional separation. Thus, the redundant maintenance of monolithic adapter code is
prevented reusing clearly distinguished function modules. On the other side (integration
process modeling), the low development effort is also caused by the model-driven de-
velopment. Here, the dynamic adapters are simply modeled by feature selections rather
than being reimplemented.

The third benefit of the DIEFOS approach is the given data independence (P4, if the
given dynamic adapters match each other) without the need for generic data representa-
tions. The data-independence is reached by alternative applicable data formats. Hence,
the adapter is mostly independent from the used data format (because one might simply
model additional format converters) and the data format of the external system. Further,
this is the precondition for an efficient processing of integration tasks. Hence, problem
P1: Poor Performance can also be eliminated using this approach. As shown in the

116 Proceedings of MDISIS 2008

following subsection, the optimization of dynamic adapters configurations is an open
research challenge. Thus, we explicitly do not present any performance evaluations of
generated dynamic adapters because the overall performance strongly depends on the
cost-based optimization decisions. However, the proposed approach is the functional
precondition for solving this optimization problem.

5.6 Open Issues and Challenges

Although our approach is suitable for application within enterprise integration plat-
forms, there are open problems and research challenges ahead. We want to sketch five
of them in the following:
Conceptual adapter specification model: Aside from our described specification
model using feature diagrams, a conceptual model is needed specifying the vendor-
independent functionalities of an adapter. This will result in a higher degree of portabil-
ity across different integration platforms of different vendors. Such a conceptual model
would consist of a minimum set of concepts to be supported by all integration plat-
forms and of an appropriate extension mechanism for platform-specific functionalities.
Thus, the portability of adapter specifications could be ensured (similar to an industry
standard).
Debugging and testing: A major problem of the feature-oriented development of
adapters is the debugging and testing of these generated software components. So, each
configuration change will cause the generator to produce another software. Thus, not
only software components have to be tested (which is hard enough by itself). Instead,
the generator and all possible outputs have to tested. The latter has a high complexity
due to the combinatorial problem of connectors, format converters, protocol handlers,
configuration properties and external systems. Here, new methodologies—similar to the
testing of procedural language compilers—have to be introduced. We tried to weaken
the problem by using the second generation approach, where we reuse functional mod-
ules where possible. However, this is really an open research challenge.
Self-configuration of adapter specifications: Following the trend of self*-techniques,
the need for protocol and formatting knowledge is an open problem. The goal is to
provide only the workflow specification as well as the specifications of external sys-
tems, and then, self-configuration techniques should be applied to generate the whole
inbound and outbound adapter stacks. Mainly, we see three challenges here: (1) the
determination of needed connectors and protocols based on the external systems, (2)
the determination of needed format conversions and protocol handling based on the
specified workflow, and (3) the optimization of transformation stacks across the whole
workflow description. For (3), adaptive methods have to be developed in order to reach
the best possible performance, based on the specific workload characteristics. Here, the
biggest challenge is the tight-coupling of adapter configurations.
Adequate separation of data and meta data: We already explained that the separa-
tion between data and meta data is necessary in order to reach the data independence.
Further, this challenge focuses on the adequate management of meta data in order to
realize an efficient processing on the one side and to make the generated adapter most
robust on the other side. An example for sophisticated management is the determination
of suboptimal transformations and the determination of non-pluggable adapter stacks.

Proceedings of MDISIS 2008 117

Configuration history: Due to the need for recoverability, the change of configuration
properties is an open problem. If an integration process fails with the configuration
setup c1, it will be repeated after a specific period of latency time or upon user request.
In case the configuration is changed in the meantime from c1 to another configuration
setup c2, this might lead to unexpected results. In conclusion, the most robust solution
is a version system for workflow and adapter configuration properties. Each recovery
process can be executed with the configuration of its first failed execution.

6 Related Work

There is a lot of work concerning MDA techniques [3, 4] and MDA tools (e.g., An-
doMDA, MOFLON [5] and Fujuba) as well as application integration platforms (e.g,
SQL GmbH TransConnect, SAP XI, BEA Integration, MS Biztalk and IBM Message
Broker). Here, we first give an overview of model-driven approaches; then, we highlight
that in the context of application integration, there is very low support for model-driven
development and therefore, we refer to other adapter creation approaches.

The paradigm of model-driven development following the model-driven architec-
ture (MDA)—specified by the Object Management Group (OMG)—mainly addresses
the development of software and hardware using generation techniques. The main
concepts of a model-driven architecture are MOF [6], standardized meta models like
UML [7], and model-model transformation techniques like QVT (Query/View/Trans-
formations) and TGG (Triple Graph Grammars) [8]. Further, MDA is widely used for
database application creation using database design tools like Sybase Power Designer
or full-fledged CASE tools like Borland Together, IBM Rational Rose or Microtool
Objectif. In this area, interesting approaches concerning the optimization of generated
code are undergoing development, for example, within the GignoMDA project [9].

Basically, when talking about model-driven architectures within the context of
application integration, process description languages like WSBPEL [10], UML [7],
BPMN [11], etc. should be mentioned. However, these rather address the generation
of integration processes than the generation of adapters (which are used as services in
these integration processes). Further, some work on ETL process modeling like [12–
14] and ETL model transformation [15–17] also exists, but it omits any details about
the realization of the extraction and load components. Also, in the area of EAI, the
so-called RADES approach [18] exists, which tries to give an abstract view on EAI
solutions using technology-independent and multi-vendor-capable model-driven engi-
neering methodologies. Unfortunately, this approach does not focus on the problems
(data independence, efficiency and functional flexibility) considered here.

Regarding the specific problem of adapter generation, there is only little work avail-
able. First, there are approaches to automatically generate Web service adapters [19–21]
and BPEL adapters [22]. These techniques are too specific to the integration technol-
ogy used. Second, the semi-automated generation of adapters for legacy applications is
addressed in [23]. However, such a semi-automated approach is not suitable. Also, the
dynamic adapter generation approach [24] addresses the dynamic adding of new data
sources and their invocation rather than the functional flexibility of adapter generation.

118 Proceedings of MDISIS 2008

<<DPD>>

EAI
<<DPD>>

EAI

<<DPD>>

ETL
<<DPD>>

ETL

<<DPD>>

FDBMS
<<DPD>>

FDBMS

<<PIM>>

UML
<<PIM>>

BPMN

<<A-PSM>>

MTM

import import exportexport

<<PSM>>

ETL

<<DPD>>

ETL

generate

PSM

generate

DPD

analyze and optimize

A-PSM

<<PSM>>

EAI

<<DPD>>

EAI

<<PSM>>

FDBMS

<<DPD>>

FDBMS

generate

DPD

generate

DPD

generate

PSM

generate

PSM

GCIP Generation Approach

(Model-Driven Generation

of Complex

Integration Processes)

Phase 1:

Specification

Phase 2:

Generation &

Compilation

Phase 3:

Configuration

& Instantiation

DIEFOS Generation Approach

(Model-Driven Generation of Dynamic Adapters)

PIMPSMCODE

Fig. 6. Two Orthogonal Model-Driven Generation Approaches

In conclusion, we are not aware of any suitable solutions for the generic gener-
ation of adapters for integration platforms. However, we are convinced that—due to
missing data independence, low performance and functional inflexibility—such a so-
lution is certainly required, similar to our GCIP (Generation of Complex Integration
Processes) generation approach [25, 26]. However, as shown in Figure 6, these two
model-driven approaches are orthogonal to each other. The GCIP Framework focuses
the model-driven generation and optimization of integration processes (deployed into a
specific integration platform), while the DIEFOS approach deals with the model-driven
generation of dynamic adapters for integration platforms (which execute the deployed
integration processes). A tighter correlation of these orthogonal aspects (e.g., with dif-
ferent model views during generation) might be a long-term research goal.

7 Summary
The overall motivation for our model-driven DIEFOS approach was the existence of
the four pragmatical problems (1) poor performance, (2) functional restrictions, (3)
development effort and (4) need for data independence. The goal was to realize an
adapter architecture ensuring data independence with minimal overhead concerning the
processing efficiency. Furthermore, the functional flexibility should also be maximized
while minimizing the development effort at the same time.

To tackle these problems, we first observed the adapter problem characteristic of
real-world integration platforms. Second, we proposed different alternative approaches
for the two perspectives: data representations and adapter architectures. Based on
this, we introduced our model-driven DIEFOS approach generating adapter types in
a feature-oriented manner and discussed several open challenges we see in this con-
text. In conclusion, the model-driven development of integration platform components
is advantageous but further research efforts are needed in order to ensure robustness.

Proceedings of MDISIS 2008 119

References

1. Böhm, M., Habich, D., Lehner, W., Wloka, U.: Improving data intependence, efficiency
and functional flexibility of integration platforms (poster). In: CAiSE. (2008) available at:
http://www.htw-dresden.de/˜mboehm/pubs/caise2008.pdf.

2. Hohpe, G., Woolf, B.: Enterprise Integration Patterns : Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley (2004)

3. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. The Model Driven Architecture: Practice
and Promise. Addison-Wesley (2003)

4. Thomas, D., Barry, B.M.: Model driven development: the case for domain oriented program-
ming. In: OOPSLA. (2003)

5. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: Moflon: A standard-compliant meta-
modeling framework with graph transformations. In Rensink, A., Warmer, J., eds.: Model
Driven Architecture - Foundations and Applications. (2006)

6. OMG: Meta-Object Facility (MOF), Version 2.0. (2003)
7. OMG: Unified Modeling Language (UML), Version 2.0. (2003)
8. Königs, A.: Model transformation with triple graph grammars. In: MODELS. (2005)
9. Habich, D., Richly, S., Lehner, W.: Gignomda - exploiting cross-layer optimization for com-

plex database applications. In: VLDB. (2006)
10. OASIS: Web Services Business Process Execution Language Version 2.0. (2006)
11. BMI: Business Process Modelling Notation, Version 1.0. (2006)
12. Simitsis, A., Vassiliadis, P.: A methodology for the conceptual modeling of ETL processes.

In: CAiSE workshops. (2003)
13. Trujillo, J., Luján-Mora, S.: A UML based approach for modeling ETL processes in data

warehouses. In: ER. (2003)
14. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Conceptual modeling for ETL processes. In:

DOLAP. (2002)
15. Hahn, K., Sapia, C., Blaschka, M.: Automatically generating OLAP schemata from concep-

tual graphical models. In: DOLAP. (2000)
16. Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Applying mda to the development of data

warehouses. In: DOLAP. (2005)
17. Simitsis, A.: Mapping conceptual to logical models for ETL processes. In: DOLAP. (2005)
18. Dorda, C., Heinkel, U., Mitschang, B.: Improving application integration with model-driven

engineering. In: ICITM. (2007)
19. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing adapters

for web services integration. In: CAiSE. (2005) 415–429
20. Lee, K., Kim, J., Lee, W., Chong, K.: A tool to generate an adapter for the integration of web

services interface. In: CBSE. (2006) 328–335
21. van den Heuvel, W.J., Weigand, H., Hiel, M.: Configurable adapters: the substrate of self-

adaptive web services. In: ICEC. (2007) 127–134
22. Brogi, A., Popescu, R.: Automated generation of bpel adapters. In: ICSOC. (2006) 27–39
23. Pieczykolan, J., Kryza, B., Kitowski, J.: Semi-automatic creation of adapters for legacy

application migration to integration platform using knowledge. In: International Conference
on Computational Science (4). (2006) 252–259

24. Gong, P., Gorton, I., Feng, D.D.: Dynamic adapter generation for data integration middle-
ware. In: SEM. (2005) 9–16

25. Böhm, M., Habich, D., Lehner, W., Wloka, U.: Model-driven generation and optimization
of complex integration processes. In: ICEIS. (2008)

26. Böhm, M., Habich, D., Lehner, W., Wloka, U.: Model-driven development of complex and
data-intensive integration processes. In: MBSDI. (2008)

