Rule-Based Service Composition and Service-Oriented
Business Rule Management

Hans Weigand, Willem-Jan van den Heuvel and Métoel

INFOLAB, Tilburg University, Warandelaan 2, Tilburghe Netherlands
H.Weigand@uvt.nlwjheuvel@uvt.nlm.hiel@uvt.nl

Abstract. As business processes change constantly, thargriswing need for
adaptive composite services. Unfortunately, existiservice composition
languages and techniques result in rather brittle dgid processes, whose
services live in a straitjacket. In this paper, pvepose a rule-driven approach
for service composition that is purely declaratileighly adaptive and
integrated in a truly service-oriented approachusiness rule management.

1. Introduction

Today’s business environment dictates organizattonise agile so they are able to
accommodate their business processes to rapidlygeia market conditions,

including updated or new legislations and regufegjoswiftly changing consumer
demands and novel technological innovations, @&gw mobile platforms. Service
Oriented Architecture captures an emerging paradiggh is quickly gaining broad

industry acceptance, and enables the developmers ofw breed of (cross-)
enterprise applications that are comprised of llyoseupled services, which holds
the promise that these applications can be modéfietior extended on the fly..

One of the key impediments towards realizing th&own, unfortunately, is that
currently services are predominantly composed usilogk-structured and graph-
based languages, notably BPEL, resulting in statid brittle composite services,
although some work has been done on trying to rtfadea a bit more adaptable, e.g.,
[1]. Composite services that are developed in tay are liable of intermingling
process logic with business rules, providing thegm ingredients for unmanageable
and rather repellent process/rule spaghetti. Témsliecome even more problematic as
companies have begun to apply languages such at RPEery agile, real-world
applications, and have observed that rules areadh fnuch more dynamic than
business processes. Consequently, updating thiesethat are deeply buried in the
scattered process definitions has quickly grown mtcomplex, labor-intensive and
cumbersome task.

It has been suggested that business rules carpbheated from the BPEL code in a
kind of aspect-oriented flavor [2]. Although thiBeziates the management problem
to some extend, adaptations are still only possibléong as they concern the content
of pre-identified business rules that fit into fheed BPEL frame.

2 Proceedings of ReMoD 2008

In this paper, we argue that business rules cansee in service composition
without the need of such a BPEL frame, thus indngashe adaptability of the
orchestration significantly. At the deployment lewse introduce a CA-rule engine
that supports rule-based service composition. TepKkbe business rules manageable
themselves, we describe a service-oriented approach

This paper is organized as follows. In the follogvisection we will introduce a
realistic running example that motivates the rudsdd approach. In section 3, we will
elaborate on this approach and how it fits in aiseroriented architecture. In section
4, we introduce the FARAO approach towards seremmposition that is based on
the use of a CA-rule engine, and analyze to whegrngbusiness rule compliance can
be realized in this framework. The last section samzes the main findings of our
work, and sketches directions for future research.

2. Motivating Case Study

MultiTech (fictitious name) is a wholesaler SME tthHauys and sells mobile
phones. Its primary business process revolves drdtat)selling mobile phones,
which it acquires from various international vergloin this fictional, yet realistic,
case study we exemplify business services, ruleicees and the actors invoking
them, concentrating on the purchase-and-paymef¢ oydMultiTech.

Requisition -
Service

Purchase

Sales Clerk

Procurer
J18[e8q

Dealer
1aA1999Y
asnoyarem

Institutional
Policy

. T Verified

Receipt
Document

Account
Payable
Clerk

—

Payment []
Voucher

Fig. 1 Swimlane model of the Purchasing and Payment Pseses

Payment
Clerk

Ordering
Policy

This cycle is organized as follows. The cycletstavith an authorized sales clerk
requisitioning mobile phones. After his permisstorrequisite a particular product is
ascertained, he may issue a purchase requisitithe tmventory manager.

The inventory manager then sends the verified @megehequisition to the purchase
agent, whose authorization to deal with this paléickind of order is then checked
(Per mi ssi onPol i cy). The purchase agent transforms the purchasesiéqniin a

Proceedings of ReMoD 2008 3

purchase order, while ensuring that the used mastex complies to the supplier's
product code; in case of a problem, an exceptioraised Excepti onPO- Pol i cy).

Also, the internal stock level is checked; a poli®scribes the stock replenishment
level. Thereafter, he sends the purchase orddwetodndor, and issues two additional
copies of the purchase order, one to the warehdadeand one to the payment clerk.

Service Business policy Definition

RequisitionService PermissionPolicy The sales clerk should be authorized to
requisition particular (quantities of)
products, e.g., Sales Clerk “Klaus” is
allowed to requisition not more than
1000 mobile phones a time.

CreatePurchaseOrderService PurchaseOrder-Policy A sales order can only then be created
if, and only if, the purchase requisition
is complete, the order would cause
stock dropping below the allowed
replenishment level, and he is
authorized.

CreatePurchaseOrderService ExceptionPO-policy A purchase order cannot be created if
the ordered product does not exist cf.
the master data; in this case, a new
purchase requisition is required.

CheckAgainstPOService CheckSHPO-Policy An incoming shipment document must
be checked against a purchase order
document within 24 hours after receipt.

PurchaseProcessService VerificationPolicy If the verified document is not valid,
then the ordering process is
terminated.

PurchaseProcessService InstitutionalPolicy A purchase must be financially reported

on a real-time basis (cf. institutional
policies declared in Sarbanes-Oxley)

PurchaseProcessService SODPolicy The actor invoking this service should
be another than the actor invoking the
requisition process to obey segregation

of duties.

PaymentService EscalationPolicy In case of dubious credits, the payment
should be escalated to a human
manager.

PaymentService OrderingPolicy A payment can only be invoked, after

the ordered products have been
received, and checked against the PO.

Table 1. MultiTech Business Policies

The vendor invoices MultiTech by sending an invoideng with its shipment to
the warehouse clerk. After receipt of the goods #@mdaccompanying shipment
document, the warehouse clerk uses the purchase ardl the receiving report to
verify the correctness of the delivery. Then hedsethe verified receiving report to
the accounts payable clerk.

If the purchase is not valid, the process is teatdd according to the
VerificationPolicy, €.g., in case the budget has been exceeded. Af®o,
accountant is liable of reporting any payments afiyeto the government cf.
Sarbanes-Oxley act, section 408s{ i t uti onal Pol i cy). Also, to ensure segregation
of duties, and circumvent potential fraud, the actant cannot be the same person as
the sales clerksfopol i cy).

4 Proceedings of ReMoD 2008

The accountant creates and sends a payment votehbe payment manager,
together with the verified receiving report, purebarder, and verified invoice; only
after all this information is available the paymeahn be processedr@er Pol i cy).
Note that in case of excessively large purchasersroh a specific time period, the
payment process is escalated to the managementfuidher consideration
(Escal ati onPol i cy).

The example makes clear that business policiesfieseclass citizens in the
modern enterprise and directly influence businesgices.

3. Business Rules and Service Composition

In this section, we first define and classify besis rules and policies. In 3.2, we
review previous work on rule-based service compmsitand in 3.3 a new service-
oriented approach to business rule managemensdsided.

3.1 Business Rules and Policies

We follow the fundamental distinction between basmrule and policy [3]. Policies
arise from internal sources such as business néexfs, corporate-level guidance,
from external laws and regulations, and from ethicativations. Based on the OMG
Business Motivation Model (BMM) such policies "gomeor guide an enterprise,”
specifying business design aspects that compleimfanimation and operation models
[4].

Business policies are usually written in naturablaages to cater for evaluation by
domain experts, viz. business analysts. That etraluassumes human interpretation,
as the ambiguities of natural languages must l#ves and application of policies to
specific business contexts generally requires amalyf impacts, consequences, and
trade-offs. Thus, policies provide guidance butffisient detail for implementation.
Considerable research has been conducted into adheeptualization of business
policies using languages such as ORM ([5], [6]P& and OCL.

The application of policies in specific contextads to business rules, meaning
highly structured, discrete, atomic statements eftdly expressed in terms of a
vocabulary" [4] to enforce constraints (integrityles), to deduce new information
(derivation rules) or to trigger actions on sagidficonditions (reaction rules) [7]. If a
business rule “defines and constrains some aspetheo business” [4], we can
distinguish between norms or constraintsengtraining) and definitions defining).
The former category can, without loss of generality expressed as prohibitions,
indicated in deontic logic with the F modality, wlas the latter typically take the
form of derivation rules.

Following [3], we posit that business rules arewbmisiness requirements, rather
than about execution. They model “what” is requinedher than “how” it should be
implemented. Hence we distinguish business ruleguages from (executable)
production rule languages such as ECA-Rules [8] ‘dRd. THEN" (CA)-rules [9].
SBVR is an OMG proposal for the representation w$itess rules in Structured
English [10].

Proceedings of ReMoD 2008 5

In order to operationalize constraints, often infation has to be added. According
to [11], a constraint (called norm frame in thedrminology) should consist of 5
elements: a norm condition, a violation conditianjetection mechanism, a sanction
and repairs. Theiolation condition is a formula denoting the state when the norm is
violated. Although in simple cases, there is a delationship between norm and
violation condition — for example, if the norm i¢off for an observable actian then
the violation condition is DONE() — it is not possible to derive one from the otimer
all cases. For example, when a certain actiontiglefined in the operational context,
or when the norms cannot be interpreted in isatatibhe detection mechanism
provides the procedure necessary to determine wh#th violation holds at a certain
moment. For example, the OBL(BEFORE d), expressing that actionmust be
performed before deadline d, can be checked efigidy a trigger that fires when
the deadline d has been reached (based on a étpekt)s and that checks DONGEY,
Note that the detection mechanism here is moreifgpdtan the violation condition.
The sanction is an action that is to be performed when a \imtahas been detected,
whereas aepair is an action that tries to undo or compensatektion. Following
this approach, it is clear that the translatiomfroorm to executable rule is not a
simple transformation.

In SOA, a series of (partially overlapping and dictihg) specifications and
standards have been proposed that can be usedder feusiness policies and rules.
WS-Policy entails a family of semantic-agnosticgaages to express assertions about
constraints and capabilities of service end-poifiteese constraints and capabilities
can be either very generic, or domain-specific,, @lgfining security-, transaction or
reliability policy constraints (cf., WS-Security, ®WTransactions and WS-Reliaiblity).
KAoS [12], Cassandra [13] and Rei [14] denote etade policy specification
languages from the semantic web community, whiehtmsed on RDF and OWL.
RuleML [15] and the Semantic Web Rule Language [@6hstitute two general-
purpose executable rule languages.

3.2 Rule-driven Service Composition —state of therta

Service composition sits at the heart of the Ser@eiented Architecture, allowing

service requesters to assemble several servicésnbeat their requirements, into

composite services. Unfortunately, languages IikPEB, suffer from severe

problems, especially with regard to their flexityiliand adaptability. Instead, rules

have been investigated as an alternative declarafiproach, boasting the following

key advantages:

= [Intuitive formal semantics: Rule-based languages exploit a limited set of
primitives with the formality of an underlying lagil and/or mathematical
framework, and the quality of being meaningfulhe tlomain expert.

= Direct support for business policies business rulesnact business policies in
that policies can be transformed into businesssritea straightforward and
transparent manner. These business rules are abtech and managed
separately from the processes in which they aréespp

= Flexibility : rule-based compositions are believed to be mderible than
BPEL-like compositions, given their ability to puesalternative execution paths

6 Proceedings of ReMoD 2008

in case a particular execution path fails, withdwtving to redefine the
composite service and redeploy it on a servicerengi
= Adaptability : given the declarative nature of rule-enabledisergompositions,
they can be modified and/or extended to accommodatetext-specific
situations, e.g., in terms of external servicetherdeployment platform.
= Reusability: Since rules isolated from the business procestegf they can be
more easily reused in other service applicationexds.
Recently, considerable efforts have been investedile-engines to support service
compositions. In particular, we herein wish to n@mtthe following key
contributions. Firstly, in [7], a service-orientade engine was introduced that allows
enterprises to access business rules by invokisgitilited service-enabled ruleML
engines that sit at the service supplier's senacg-point. [17] introduces an
alternative service execution environment in whielles can be defined, and
subsequently injected in WSDL specifications, aftbich they can be deployed on a
service executor. [2] introduc@©4BPEL, an aspect-oriented extension to BPEL that is
able to weave business rules into BPEL franfdternatively, in [18] an approach is
suggested to incorporate business rules in BPEtifsgions, while enforcing them
in rule engines that work in concert with BPEL ergfi, and coordinate themselves
through an ESB. This approach basically works #levits; an interceptor is used to
catch incoming and outgoing BPEL service invocaidactivities), after which a
business rule broker service is initiated, throudtich applicable business rules can
be accessed. Depending on the interceptor moderésefter), the BPEL activity is
either fired or the control flow is continued.

In addition to research prototypes that were dedo for the purpose of
validation, several service-oriented rule engines mowadays available, viz. the
Oracle Fusion Middleware Rule Engine. This ruleieegllows specifying business
rules as ILOG facts that can be inserted into BBcifications. This is achieved by
allowing users to map BPEL variables to facts iala repository.

3.3 A service-oriented approach to business rule magement

Business rules are an example of crosscutting coscespecially those encountered
in composite services with a coordinating functiamd run the risk of getting
scattered over the system. In a service-orient@doagh it is possible to encapsulate
a certain business policy into a service. The atgnis that this service can be
called from anywhere, and rule redundancy can béed (cf. [19]). However, given
the presumed autonomy of services in SOA, it is momediately clear how
compliance to such rule services is ensured. Thiat®on is similar to the situation in
Multi-Agent Systems (MAS), where autonomy is a famntal property of agents as
well. In MAS, the problem is addressed by an intihal approach. As one of the
earliest papers on this topic, [20] described aketaplace architecture for agents that
draws on exception handling third parties thatliet “institutions” as we know them
from human societies (e.g. notary, registry). Talize such an institutional approach,
[20] suggests three concepts. First, each agethteirsystem is assigned a “sentinel”
that mediates the interactions of the agent witleiogents. These sentinels monitor
message traffic, detect violations to commitmeats apply resolution handlers. The

Proceedings of ReMoD 2008 7

sentinel incorporates domain-independent excepitzomling expertise. Secondly, the
system includes institutional or ancillary servisegh as a reputation service that can
be called upon by the sentinels. Thirdly, agentsoajust enter the system; the only
way to join is to register at the Registrar seryviado only allows entrance after
having assigned the agent a sentinel. Is it pasgibluse this solution approach in
SOA?

As we just noted, the second element of the salutam be easily applied in SOA.
We can introduce institutional services as serviemsl as far as they represent not
only mechanisms (which is the focus of [20]) but alspolicies, it is possible to
implement them using a rule-based approach. Tist &tement requires more
attention, as sentinels are clearly not part of SG#wever, there are recent
developments within SOA that provide each servidth \& service manager (e.g.
[21], [22]). This service manager can be realizead aervice and has the possibility to
adapt the service via a management interface (MOWISASOA [22], the service
manager follows a monitor-plan-act cycle as enwistb in autonomic computing,
which is close to the specified behavior of thetiseh

(N
‘\\ principal)

S o

service service
‘ manager @ manager
7 \\\ // - \\\\\ o T
(\ business rule
client /o—@—\ service %(g)
L v / \ /
o % / %

Fig. 2. Service-oriented business rule management, anutistial approach

In order to apply an institutional solution apprvaand to solve the compliance
problem, we make the fundamental assumption thatces have a dual orientation.
One orientation is the client-orientation that liats the heart of SOA. However,
implicitly or explicitly, there is also another eritation towards someone who wants
this service to be delivered. This party can bé&edaheprincipal, and the relationship
is one ofdelegation. Delegation means that a party wants to achieveetung —
typically providing a service to some customer + tather than doing it himself, he
asks another party (“agent”) to do it on his beh@linceptually, the relationship can
be characterized as a service offered by the “aderthe principal. The delegation
provides us with a mechanism to introduce servigeservice X is introduced by a
service provider — which we identify with a serviognager — by replying to a
request from the principal to deliver service X.

Now it becomes clear how a service can be boura baisiness policy. When the
principal requests the service manager to delieevice X, the request contains a
reference to all the policies that should be retgukas well. By adopting the request,
the service manager commits himself to respecetpeéicies. Within these policies,

8 Proceedings of ReMoD 2008

a distinction can be made between generic rulash sas for detecting norm

violations and reporting, and context-specific sul¢he latter can be offered as
separate services, and a generic rule only sayshbaservice manager should call
these services for this or that occasion. Fig. 8cdees the process of service
introduction. A certain business rule service isuased to exist representing some
policy, for example, the PermissionPolicy of Mukidh. The principal uses this

service (1). The service manager of the “agentVigies a service delivery service to
the principal (2) upon his request. In performihgs tservice, it uses and invokes the
business rule service (3). Typically, in the caf@ @omposite service, this implies
that the service execution itself involves the bess rule service (4), by

orchestration. This all being in place, a cliemt call the service (5).

This scenario offers a solution to the compliana@bfem, but it does not assume a
central Registrar authority. Each principal can s its own policies. However,
what the principal imposes is not an autonomoussitet; as it depends on the
policies imposed on him by powers above him.

Business Control-flow
Rules % % Constraints
Registry (UDDI) /
(2) [(3)
©_0O /
O
\ -
M v CA-Rules

XML Schema
Protocol

Fig. 3The FARAO approach towards service composition

4. Framework for Designing, Reusing and Evolving Busiass
Rules in Service Compositions

FARAO stands for a FrAmewoRk for Adaptive Orchetitra The ultimate goal of
FARAO is to support the development of adaptableice orchestrations and to
prepare for adaptivity by providing a manageabilitterface to a service manager,
such as described in xSOC [23] and ASOA (Adaptigevise Oriented Architecture)
[22]. Fig. 3 conceptualizes the relations betweke ingredients of our service
orchestration. Given a set of services to be otchiesl, the designer starts with
retrieving the interface and data descriptionsiclfy from the registry. From these
descriptions, Condition-Action (CA) rules are dedvthat manage the data flow. We
have chosen for CA-rules rather than ECA-rules e latter introduce more
dependencies between the rules. In step (2), thése are extended with business
rules that typically steer the decisions in thehestration. In step (3), the designer has
the opportunity to add additional control-flow ctraints, if required. In ASOA, all

Proceedings of ReMoD 2008 9

three steps will be delegated to the service manale executes them autonomously
or semi-autonomously.

4.1 Data dependencies

The FARAO lifecycle model starts with a data-drivepproach where the process
structure is derived essentially from the data ddpacies between the services
involved in the orchestration. For example, if amhestration involves both an
Inventory service that returns, among others, ttteah price of the product and a
message to the customer with a quote, there igadépendency between the two
services that (implicitly) enforce that the fornpeecedes the latter. If there is no data
dependency between two services, there is no mesdhiedule one before the other,
and by refraining from an arbitrary ordering weraase flexibility.

As hinted at in the above, we generate a CA-rule eflach message that the
orchestrator has to send. From the WSDL of theicermn question, we derive the
structure of the document it expects. Range réistnis on the message elements are
copied into the conditions of the CA-rule. If thasenot a range restriction, a NOT
NULL condition is generated. In the action part, prg asend action that takes the
service and its input document as parameters.

Rules refer to data items. In order to increaseptaddlity, we require that the
orchestration is based on a shared ontology. WS[24Fprovides a mechanism to
add semantics to web services. This allows, amadingr®, that the message elements
of the service are mapped to a given ontology.&yiring the WSDL descriptions of
the services to be semantically annotated, we eathé rules refer to data items in
terms of the shared ontology. In this way, chanigethe service interface do not
influence directly the orchestration, as long as Hervices adhere to the shared
ontology.

4.2 Inference rules

The CA rules generated from the data dependencreside an executable
orchestration, but it only works well to the ext¢imit the data items in the documents
are seamlessly integrated. This is not always #se:csometimes an inference step is
needed. For example, if one data item is "crediibgé& and another is "creditworthy",
then we need a rule to correlate the two that ¢isdlgrnprescribes when a person is
creditworthy (for example, if credit rating > 10).

The general format of these inference rules is:

IF <condition> THEN a, = v, .. a =v

Technically, these inference rules are not CA-rlNge coerce them into CA rules
by giving the consequent part an assignment imgéapon: if the conditions are
satisfied, then assign values.. v, to the variables, .. a,
Example: After the accounts payable clerk has got the rinedion from the
CheckAgainstPO service it must decide whether artmdurther process the order.

The business rules for this decision can be fortadlas follows:
Rule 1: |F verified-shipping-doc != "ok" THEN shi ppi ngstatus = reject
Rule 2: | F verified-shipping-doc == "ok" THEN shi ppi ngstatus = accept

10 Proceedings of ReMoD 2008

These rules are to be used in combination withrake (for the action) that processes
the verified shipping document. This rule contalmes condition thaghi ppi ngst at us

= accept. The rules 1 and 2 can be fed directly into the&Wyine, but they may also
be part of a business rule service included inotishestration. In the latter case, they
are much easier to maintain of course. In a réalinplementation, a combination of
the two approaches can consist in a caching salutidhere the rules from the
business rule service are moved to the CA-enginth@fservice temporarily. This
approach saves on the communication overhead attgohservice invocations. The
cache has to be refreshed when the business relesaalified at the source.

4.3 Control flow constraints

The most prominent control flow constraint is threqedence constraint, where a
certain service can only be executed after somer &térvice has happened or some
state has been reached. In Linear Temporal Logich & precedence constraint is
usually described asp UNTIL a, wherea andp are arbitrary propositions. In the
case of orchestration, we restrict ourselves teiramts in whichf is a service call.
Then the meaning of the constraint is that thigisercannot be called as long@ss
not true.

For example;send(Paynent Voucher) UNTIL (PurchaseProcessing = "ok")
which enforces payment voucher is not issued tcs#meicePaynent Ser vi ce before
the Pur chasePr ocessi ng service has been concluded (MultiTezlieri ngPol i cy) .

A fundamental restriction of SOA is that services autonomous, so the orchestrator
cannot verify himself whether a certain servicéingshed; he is dependent on return
messages of that service. If no return messaggtusned, there is no way to enforce
precedence. Hence we restrict thgart of the precedence constraint to propositions
on data (and not on the completion of some seragkeuch). Within the present
context, thel} part is restricted to the event of sending a dantm

In FARAO step (3), the control flow constraints @meerted into the CA-rules. In
step (1), a CA-rule has been generated for eagfomg document. Let this rule be of
the form I'F D THEN send(M", and let a control flow constraint besend(N)
UNTI L C". If M=N, then we derive the ruld ¥ D AND C THEN send(M".

Atomic prohibitions such as theer ni ssi onPol i cy in MultiTech can be injected
into the CA-rule condition in a similar way (not wed out for lack of space).

4.4 Business Rules Implementation in FARAO

As far as business rules are concerned, we magirction between definitions and
constraints. In the above, we have indicated hofinitiens can be incorporated in
(the CA-engine of) FARAO as inference rules. Preceg constraints can be injected
into the CA-rules. However, the interpretation oh@m frame requires more than
precedence constraints. Not all norms are enfoteeéb that case, the norm frame
includes detection and remedy parts, among othefSARAO, these can be directly
implemented as CA-rules, although preferably, tbevise orchestration itself only

Proceedings of ReMoD 2008 11

contains detection rules and the remedy is leftthe service manager or an
institutional service.

A type of rules not mentioned so far are permissidghwe follow the “everything
is permitted unless forbidden” regime, permissiare not strictly needed. However,
often permissions function as “second-order” caists, determining which
prohibitions can be added and which can not. Iremthords, they prohibit certain
prohibitions, in which case they can be treatedomstraints.

5. Conclusions

At present, organizations typically rely on blodkusture, light-workflow
specifications such as BPEL, to realize their bessnprocesses as composite Web-
services. Unfortunately however, this style of cosifion assumes that at run-time, a
detailed and complete process layout is “carvedtone”, making its adaptation
cumbersome, complex and time-consuming, requireagompilation of the process
engine, and causing disruptions in, potentiallysiois-critical, business processes.

In this paper, a declarative and rule-driven framdwto dynamic service
composition, labeled “FARAQ”, is introduced, whiless ramifications are further
explored and illustrated with a realistic case gtuche “heart-and-soul” of FARAO
constitutes business rules that prescribe the wawhich services can actually be
aggregated dynamically into processes. The bushuss are fed into the engine in a
service-oriented way, that is, by a principal resjurgy a service delivery in
accordance with given policies and by the serviemager accepting this request. The
business rules are maintained and updated outsideperational services. Given the
platform independence offered by SOC, this can meavhere inside or outside the
company.

Our current research efforts concentrate on theeimentation of the FARAO
framework to experiment with rule-based service position. A topic for future
research is the mapping of our business rule reptaton to standard business rule
languages, and to define a transformation from thiguage to the operational
FARAO environment using a model-driven engineeapgroach.

References

[1] Reichert, M., Rinderle, S.: “On design prin@plfor realizing adaptive service flows with bpéti:
Weske, M., Nttgens, M., (eds), EMISA. Volume 98.0fl., GI, pp.133-146, 2007.

[2] Charfi, A. and Mezini, M., “AO4BPEL: An Aspedairiented Extension to BPEL", World Wide Web,
V.10, nr. 3, pp.: 309-344, 2007.

[3] N. Nayak et al., “Core business architecture dcservice-oriented enterprise”, IBM Systems Jalirn
Vol 46, No. 4, pp. 723-742, 2007

[4] The Business Motivation Model, Business Rulesup and the Object Management Group (OMG),
http://www.businessrulesgroup.org/bmm.shtml

[5] Hargreaves, A. “Expressing Business Rules vithject Role Modeling”, Proceedings of the 17th
NACCQ, 2004.

[6] Halpin, T. “Business Rules and Object Role Mig”, Database Programming and Design, Oct 1996.

12 Proceedings of ReMoD 2008

[7] Nagl, C., Rosenberg, F., Dustdar, S., VIDRE Distributed Service-Oriented Business Rule Engine
based on RuleML. In: Proceedings of the 10th IEEBEerhational Enterprise Distributed Object
Computing Conference (EDOC'06), 16-20. October 26{ahg Kong, China.

[8] Chen, L et al., “ECA Rule-based workflow moawjiand implementation for service composition”,
IEEE Transactions on Information & Systems, Vol, B®. 2, pp. 624-630, Feb. 2006.

[9] Geminiuc, K. “A Services-Oriented Approach tadiness Rules Development”, In: SOA Best
Practices: SOA Cookbook, Oracle, 2007. Availabie at
http://www.oracle.com/technology/pub/articles/bgelokbook/geminiuc.html

[10] Semantics of Business Vocabulary and Busifedes (SBVR), The Object Management Group, Sept
2006, http://www.omg.org/cgi-bin/apps/doc?dtc/06-08-0%.pd

[11] Vasquez-Salceda, J., H. Aldewereld, F. Dignimplementing norms in multiagent systems. In: G.
Lindemann, J. Denzinger, |. Timm, R. Unland (edd)lti-Agent System Technologies. LNAI 3187,
Springer Verlag, pp. 313-327, 2004.

[12] Bradshaw, J.M., S. Dutfield, B. Carpenter, Jeffers, and T. Robinson. "KAoS: A Generic Agent
Architecture for Aerospace Applications”, in Praif. the CIKM'95 Intelligent Information Agents
Workshop. Baltimore, MD, 1995.

[13] Becker, M.Y.; Sewell, P Cassandra: distributedtess control policies with tunable expressivenes
Proc. Fifth IEEE Int. Workshop on Policies for Dibtited Systems and Networks (POLICY 2004), pp.
159-168, 2004.

[14] Kagal, L., Finin, T., Joshi, A., ‘A Policy Lguage for a Pervasive Computing Environment’,
Proceedings of IEEE 4th Int. Workshop on Policies Distributed Systems and Networks (POLICY
2003), Lake Como, Italy, 2003.

[15] Schroeder, M. and G. Wagner (Eds.): Proc.hef int. Workshop on Rule Markup Languages for
Business Rules on the Semantic Web., Italy, JuB2. 20EUR-WS Publication Vol-60

[16] Horrock, I. et al., “SWRL: Semantic Web Rulanguage”, http://www.daml.org/rules/proposal/ ,
Dec. 2004.

[17] Kamada, A. and M. Mendes, “Business Rules 8eavice Development and Execution Environment”,
Proc. of the Int. Symposium on Communications aridrination Technologies, pp. 1366-1371, IEEE,
2007.

[18] Rosenberg, F. and S. Dustdar, “Business rinegration in BPEL: A service-oriented approach”,
Proceedings of thé™nternational Conference on E-Commerce TechnoltggE, 2005.

[19] Rosenberg, F. and S. Dustdar, “Towards a ibigied service-oriented business rule system”,
Proceedings of the Third European Conference on S¢éebices (ECOWS'05), IEEE, 2005.

[20] Dellarocas, C., Klein, M., and Rodriguez-Aguil J. A. An exception-handling architecture foenp
electronic marketplaces of contract net softwarengg In Proc. of the 2nd ACM Conf. on Electronic
Commerce, EC '00, pp.225-232. ACM, 2000.

[21] Papazoglou, M.P. and W.J. van den Heuvel,ViSeroriented architectures: approaches, techredogi
and research issues", VLDB Journal, Vol.16(3):389;2007

[22] Hiel, M., H. Weigand and W.J. van den Heuvéln Adaptive Service-Oriented Architecture”, In:
Mertens, K, R. Ruggaber, K. Popplewell, X. Xu (edghterprise Interoperability Ill, pp.197-208,
Springer, 2008.

[23] Papazoglou, M.P., Extending the Service-Origrtechitecture. InBusiness Integration Journal,
February 2005, pp. 18-21.

[24] W3C, “Web Services Semantics”, Version 1, W8€mber submission, 2005.

