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Abstract  
Abstract text. This paper considers several options for the architecture of convolutional neural 

networks for the recognition of isolated handwritten Ukrainian characters and numbers, which 

were trained using a synthetic dataset built on the basis of a set of handwritten and cursive 

fonts. Comparison of the results of recognition of several variants of images containing 

handwritten letters and numbers using neural networks with different architectures showed that 

an increase in the number of convolutional layers leads to a decrease in the frequency of 

erroneous character recognition. The size of the training dataset significantly affects the 

reliability of character recognition. The data sets used in the work contained from 192 to 2304 

samples per class. The upper limit of the number of samples per class is close to the limit that 

provides acceptable recognition accuracy. Reducing the sample size by reducing the number 

of samples per class leads to a significant decrease in recognition accuracy (from 90% 

recognition accuracy of elements of real inscriptions to 40-60% with a 4-fold decrease in 

sample size). 
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1. Introduction 

Optical character recognition (OCR) is a technology that is widely used today. The basis of this 

technology is the process of classifying images of symbols, which are selected on the original digital 

image, according to the corresponding samples [1]. 

Information technologies based on optical recognition allow solving a wide range of various 

practical tasks: identification of vehicle registration numbers from images of license plates, which helps 

control traffic [2], conversion of printed academic records into text for storage in an electronic database, 

decoding ancient inscriptions and texts, automatic data entry by optical scanning of cards or bank 

checks. 

In most cases, modern optical recognition systems are based on deep learning neural networks [3, 

4]. Convolutional neural networks (CNN) are widely used for image processing. It is one of the most 

popular types of deep neural networks and can be used to effectively recognize characters present in an 

image [5]. 

2. Literature review 

Convolutional neural networks are widely used to solve optical recognition problems. They are able 

to automatically highlight the conditional features of the input data. The properties of such networks 

make them a very convenient tool for solving computer vision problems, in particular, for recognizing 

images of letters or numbers. 
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Initially, most of the research was focused on the recognition of the Latin alphabet letters, but in 

recent years other alphabets began to attract attention - Arabic, Russian, Kazakh, Chinese, Indian, etc. 

[6-11]. For research on handwritten Latin alphabet recognition technologies, the EMNIST dataset 

became the de facto standard [12]. Many different variants of neural network architectures have been 

proposed to classify the images of this set. 

One of the first successful attempts to use deep learning for character recognition was the creation 

of the LeNet-5 architecture [13]. This architecture showed the highest accuracy of classification of 

handwritten digits among the solutions available at that time (1998). 

Similar solutions are widely used in relatively recent works on computers with low computing 

power. For example, the ConvNet architecture proposed in [14] consists of two convolutional layers 

with kernels of size 5x5 each, and using non-linearity activation (ReLU) functions, a MaxPooling layer 

after each convolutional layer, and two fully connected layers that contain 500 neurons and the last 

layer with a selection of 26 classes. Such a neural network has only 60,000 learning parameters. This 

number of parameters is much smaller than the AlexNet network (60 million training parameters and 

650,000 neurons) [15] or the GoogleNet network (6.8 million training parameters) [16]. 

The best results for training handwritten digit recognition models using the EMNIST Digits (or 

MNIST) datasets were achieved using convolutional neural networks (see [17] for a review). 

One way to improve the accuracy of letter or number image recognition is to use models with a more 

complex architecture than AlexNet or LeNet. For example, good results in recognition accuracy were 

achieved due to the use of capsular layers [18]. The authors of [19] proposed a convolutional neural 

network that contains 14 convolutional layers to represent character characteristics, two MaxPooling 

layers to reduce the number of features or highlight strong features, one softmax layer, and one 

classification layer for isolated character recognition. 

Pre-training using ImageNet accelerates convergence, especially at the beginning of training. 

However, for models with random initialization, the results achieved do not differ from models with 

pretraining for a comparable number of epochs [20]. 

According to [21], models created from scratch, as a rule, give better results compared to pre-trained 

models in the recognition of handwritten characters of the Arabic language. Regarding the complexity 

of the CNN architectures used, according to [21], less complex CNN models are less accurate, but have 

higher classification and learning rates (and vice versa). The authors of [21], based on the obtained 

results, suggested that learning from scratch all used models can improve the accuracy of model 

classification and the speed of obtaining results, regardless of the complexity of the model. 

In numerous studies devoted to the recognition of handwritten symbols, there is experience in using 

sufficiently complex architectures of neural networks. For example, in [22], modern pre-trained CNN 

architectures were used to classify 231 different Bangla handwritten characters based on the 

CMATERdb dataset. The images were first converted to black and white form with a white foreground 

color. Images were resized to 28×28 pixels. These images were used as input for the CNN architectures 

that were used. The learning rate was set to 0.001. Categorical cross-entropy was used as the error 

function. After 50 epochs, InceptionResNetV2 achieved the best accuracy (96.99%). DenseNet121 and 

InceptionNetV3 also demonstrated excellent recognition accuracy (96.55 and 96.20%, respectively). 

The authors [22] also considered a combination of pre-trained architectures InceptionResNetV2, 

InceptionNetV3 and DenseNet121, which provided even better recognition accuracy (97.69%) 

compared to other individual CNN architectures, but concluded that its practical use requires large 

computing power and memory and therefore hard for practical use. The models were tested in cases 

where character recognition appears difficult to a human, but all architectures showed the same ability 

to reliably recognize such images. According to [22], the InceptionResNetV2 architecture can be called 

the most efficient model, taking into account the computational complexity, the amount of memory and 

the ability to recognize distorted symbols. 

Research on the use of various architectures of neural networks without prior training based on 

ImageNet is also known. For example, in [23], two variants of convolutional neural networks with 

different architectures, varying the depth, width, and number of network parameters, were tested for 

recognition of Devanagari characters. 

The first model consisted of three convolutional layers and one fully connected layer. The second 

model came from the LeNet family, and consisted of two convolutional layers followed by two fully 



connected layers. The best result in terms of recognition accuracy (over 98%) was obtained by the 

authors with a model with more convolutional layers. 

A similar result was obtained in [24]. The authors investigated three variants of the architecture of 

CNN networks: LeNet-5, a modified variant of LeNet and AlexNet CNN. Using the latest version of 

the neural network architecture, Devanagari character recognition accuracy of 99% was achieved. 

Numerous experiments with several convolutional neural networks (basic CNN, VGG-16, and 

ResNet) were conducted in [25] using regularization approaches such as filtering and data 

augmentation. The VGG and Resnet architectures gave close results in recognition accuracy: using the 

Resnet architecture, it was possible to achieve the best result with a recognition rate of 98.57%, for the 

VGG-16 architecture, a result of 97.14% was achieved. 

The work [26] also noted the higher achieved recognition accuracy when using the deeper 

architecture of the CNN neural network. But increasing recognition accuracy is achieved only by using 

input data augmentation. In [27], different CNN architectures were investigated for recognizing the 

EMNIST dataset. According to [27], using the GoogleNet architecture always gives higher accuracy 

compared to ResNet18, but requires 2.5-2.9 times more time to train the model. 

Neural network architectures that use prior learning have been created to classify color images of 

different sizes. Therefore, for many datasets (e.g., EMNIST Letters 28×28), single-channel images must 

be converted to three-channel to use existing libraries and pre-training capabilities [27]. In particular, 

the ResNet module from the tensorflow package requires an input image with a size of at least 32×32×3. 

When using a modified CNN architecture and training models without loading the weights of the 

pre-trained model, the input data may contain single-channel images. When comparing variants of color 

and monochrome image recognition [27], it is indicated that variants with an input image size of 40×40 

pixels (for the resized EMNIST data set) in monochrome versions with rotation and shift augmentation 

have the highest results in the models studied by the authors (ResNet18 and GoogleNet). 

For the recognition of Cyrillic characters, similar studies are quite few. There is experience in using 

the MobileNet architecture, which included 30 layers [28] for character recognition of the Kazakh and 

Russian languages. 

Some results of Cyrillic character recognition are also presented in [29-30]. 

Regarding the data set for the recognition of Ukrainian letters, individual works in this direction are 

known. According to [31], when creating a data set for model training, it is necessary to distinguish 

between uppercase and lowercase letters, as well as take into account the possibility of different 

spellings of the same letter. The authors [31] identified more than 70 classes that form a complete set 

of symbols of the Ukrainian language (for example, different spellings of the lowercase letter "a" were 

taken into account). 

3. Experimental setup and proposed approach 

There are quite a few studies of handwriting recognition technologies that are based on the use of 

the EMNIST data set [17] (at least for English). There is known experience of using various classifiers 

and neural network technologies to recognize Cyrillic alphabet symbols, but comparative studies of 

recognition technologies for them are fragmentary. Also, there are no EMNIST-like datasets for the 

Ukrainian alphabet. 

This article is devoted to researching the possibilities of recognizing Cyrillic (mainly Ukrainian) 

handwritten letters using convolutional neural networks and analyzing the influence of the selected 

neural network architecture on the accuracy and reliability of recognition. In addition, the possibility of 

using a synthetic data set and the effect of augmentation of the original data set on the recognition 

results were investigated. 

The goals of this study: 

• Analysis of the influence of the architecture of convolutional neural networks on the accuracy 

of recognition of handwritten numbers and letters of the Ukrainian alphabet. 

• Analysis of the peculiarities of the recognition of Ukrainian symbols under the conditions of 

learning convolutional neural networks using a synthetic data set with various options for increasing 

the training sample. 



3.1. Building a dataset for model training 

The dataset used for training the models was built using a set of handwritten and italic fonts (a total 

of 48 font variants with Ukrainian glyphs were selected). All images of letters and numbers were 

divided into 76 classes (33 lowercase, 33 uppercase letters and 10 numbers) or 43 classes (33 letters 

and 10 numbers). All images of the data set were centered and a dataset was created from them with 

the size of each image 28x28, or 32x32, or 64x64, or 128x128 pixels. The Pillow library was used to 

create or transform images with letters or numbers (from one-channel to three-channel). 

The test data set was built using the same fonts. The selection of specific fonts and augmentation 

options was chosen randomly. The volume of the test dataset was about 10% of the volume of the 

training one. 

The presence of only a small number of suitable fonts with Ukrainian glyphs required the use of 

augmentation to form the necessary data set. We used the capabilities of the Image Data Generator from 

the tensorflow package to perform three options for transforming character images: random rotation, 

shift transformation, scaling transformation. 

The number of generated images varied from 2 to 48 for each symbol. For 32 images per each 

symbol the total volume of the dataset was 116,736 samples (32 images per character of one font). This 

sample volume is quite comparable to the EMNIST Letters dataset [12, 17], which contains mixed 

lowercase and uppercase letters (26 classes and a total of 145,600 samples). 

3.2. Preprocessing of images for recognition 

Tools from the OpenCV library were used to select image regions containing letters or numbers, 

which were then recognized. The findContours function or the algorithm for extracting the most stable 

extreme region (mser function) was used to select the contours of recognized symbols. 

The algorithm for preprocessing the image and selection of the area containing letters or numbers 

included the following stages: 

1. Image filtering to reduce the noise level (the Gaussian filter was used - function 

cv2.GaussianBlur); 

2. Binarization of the image to cut off noise (the cv2.threshold function was used, its parameters 

were chosen for reliable selection of character contours); 

3. Morphological transformation (dilation – function cv2.dilate, several iterations were used); 

4. Selection of contours and their sorting (selection of contours was carried out using the function 

cv2.findContours; 

5. Image segmentation, ie. selection of recognition areas as a set of rectangles containing contours 

of letters and numbers (cv2.boundingRect functions were used). 

Directly for recognition, selected regions of interest were cut from the original image, binarization 

was again applied to them, after which the obtained images of individual symbols (without dilation or 

other distortions) were scaled to the size of the image in the dataset. Each pixel value of the images was 

in the range 0 to 255, so normalization of these pixel values was performed by dividing by 255 so that 

all values in the array describing the image were in the range 0 to 1. 

3.3.  Proposed CNN Architectures 

At the first stage of the research, the models were trained using single-channel images sized 28x28 

pixels. The simplest variants of the architecture of LeNet-type convolutional neural networks for 

character image recognition are presented in Table 1. 

More complex neural network architectures are presented in Table 2. Architecture 4 and architecture 

5 are implementations of the AlexNet architecture for single-channel images. Architecture 6 included 

thirteen convolutional layers and three dense layers, as well as MaxPooling and Dropout layers. This 

version of the architecture is the most complex and repeats the VGG-16 architecture with respect to 

single-channel images. However, it turned out to be the best in terms of accuracy and reliability of 

recognizing the test sample and real inscriptions. 



Table 1 
The simplest variants of convolutional neural network architecture  

Architecture 1 Architecture 2 Architecture 3 

Input (28x28x1) Input (28x28x1) Input (28x28x1) 
conv2d, 128 filters conv2d, 64 filters conv2d, 128 filters 
conv2d, 128 filters conv2d, 64 filters conv2d, 128 filters 

MaxPooling2D MaxPooling2D MaxPooling2D 
Dropout Dropout Dropout 
Flatten conv2d, 128 filters conv2d, 256 filters 

Dense, 256 filters conv2d, 128 filters conv2d, 256 filters 
Dropout MaxPooling2D MaxPooling2D 

Dense ( output - 76 classes) Dropout Dropout 
 Flatten conv2d, 512 filters 
 Dense, 256 filters conv2d, 512 filters 
 Dropout MaxPooling2D 
 Dense ( output - 76 classes) Dropout 
  Flatten 
  Dense, 1024 filters 
  Dropout 
  Dense ( output - 76 classes) 

 

Table 2 
Variants of the architecture of convolutional neural networks such as AlexNet and VGG 16 

Architecture 4 Architecture 5 Architecture 6 

Input (28x28x1) 
conv2d, 128 filters 
conv2d, 128 filters 

MaxPooling2D 
Dropout 
Flatten 

Dense, 256 filters 
Dropout 
Dense  

( output - 76 classes) 

Input (28x28x1) 
conv2d, 64 filters 
conv2d, 64 filters 

MaxPooling2D 
Dropout 

conv2d, 128 filters 
conv2d, 128 filters 

MaxPooling2D 
Dropout 
Flatten 

Dense, 256 filters 
Dropout 

Dense (output – 76 classes) 

Input (28x28x1) 
conv2d, 128 filters 
conv2d, 128 filters 

MaxPooling2D 
Dropout 

conv2d, 256 filters 
conv2d, 256 filters 

MaxPooling2D 
Dropout 

conv2d, 512 filters 
conv2d, 512 filters 

MaxPooling2D 
Dropout 
Flatten 

Dense, 1024 filtrs 
Dropout 

Dense (output – 76 classes) 

 

Architecture 1 included an input layer, one convolution block of two layers, a MaxPooling 

subsampling layer, a Dropout regularization layer, a dense layer, a Flatten dimensionality 

transformation layer, another regularization layer, and an output layer.  

Two more variants of the architecture of convolutional neural networks with an increased number 

of convolutional blocks are also presented in Table 1 (architecture 2 and architecture 3). They differ 

from the simplest version by an increase in the number of convolutional blocks from two layers (two 

blocks in the architecture 2 or three blocks in the architecture 3). 

At the second stage of research, taking into account the presence of recognition errors even when 

using the best models, several variants for more complex neural networks architectures were 



considered. Research has been done with VGG16 and VGG19 [32], ResNet[33] or ResNetV2[34], 

MobileNet or MobileNetV2 [35, 36], InceptionResNetV2 [37] architectures. 

Several variants of implemented architectures for ResNetV2 family are shown in Figure 1.  

 

   
Figure 1: Examples of implementation of models with architectures ResNetV2 family 

4. Experimental results and discussion 

An example of the learning results of model with architecture 1 is presented in Figure 2. An example 

of the results of learning a model with architecture 6 (recognition accuracy and amount of loss 

depending on the number of learning epochs) is presented in Figure 3. 

 

  
a) model accuracy b) model loss 

Figure 2: Results of learning the simplest LeNet-type model 
 

All the architectures used during training on the maximum size sample provided a recognition 

accuracy of 95-99% of the sample items. 

An increase in the number of neural network parameters due to the use of a deeper architecture leads 

to an increase in recognition accuracy. The calculation time during neural network training increases 

with the increase in the number of adjustable parameters (when comparing architectures 1 and 6 - 

approximately an order of magnitude). 

However, when trying to recognize images with real inscriptions that do not belong to the training 

or test sample, a significant difference in the behavior of the studied architecture variants was found 

regarding the possibility of reliable character recognition. 

A typical example of recognizing an inscription containing letters is given in Table 3. As can be 

seen from the obtained results, 100% recognition accuracy is provided only by the most complex variant 

of the architecture (variant 6). 

An attempt to recognize an inscription containing only numbers gave an even more pronounced 

result of the accuracy of recognizing an image with isolated numbers, see Table 4. 

 



  
a) model accuracy b) model loss 

Figure 3: Results of learning the VGG-16-type model 
 

Table 3 
A sample of the results of an inscription with letters recognition 

Inscription on the image CNN Architecture Recognized  
(in Ukrainian) 

Accuracy score 

 
Inscription ( “АБіїв” in Ukrainian)  

 

 
Selection of recognition areas 

Architecture 1 ДБІ6 50% 

Architecture 2 Абієв 100% 

Architecture 3 ДБіїв 80% 

Architecture 4 ДБіїв 80% 

Architecture 5 Абієв 100% 

Architecture 6 Абієв 100% 

 

Table 4 
A sample of the results of an inscription with numbers recognition 

Inscription on the image CNN Architecture Recognized  
(in Ukrainian) 

Accuracy score 

 
Inscription ( “12345” in Ukrainian)  

 

 
Selection of recognition areas 

Architecture 1 Іг5ц5 20% 

Architecture 2 Іг3ц5 40% 

Architecture 3 1г5ц5 40% 

Architecture 4 123ц5 80% 

Architecture 5 123ц5 80% 

Architecture 6 12345 100% 

 
Similar results were obtained for many other variants of inscriptions, including those with letters 

and numbers at the same time: acceptable results in terms of recognition accuracy were obtained for 

more complex variants of architecture. 

Recognition errors were obtained on some samples of inscriptions and when using deep 

architectures. 

Neural networks for all architectures were trained using the Adam optimizer, the learning rate was 

chosen to be 0.0001, the number of training epochs was chosen to be 50. 



The size of the training sample strongly affects the reliability of character recognition. The 

generation of 1,536 images per letter or number (32 images for each character for 48 font types) is 

actually the limit for acceptable recognition accuracy. Reducing the sample size leads to a significant 

decrease in recognition accuracy (from 100% accuracy to 40-60% when the sample size is reduced by 

4 times). An increase in the size of the sample leads to a noticeable increase in the time spent on training 

the model. 

The use of ResNet or MobileNet architectures required a transition to the formation of a training 

dataset from three-channel images. It has been established that reliable recognition of various 

alphanumeric inscriptions for all variants of the model architecture was achieved using a training set of 

sufficient size. 

Training a model using three-channel images, especially as the resolution of the training sample 

increases, is a very resource-intensive process. Therefore, the authors were forced to reduce the number 

of recognizable classes to 43, abandoning the difference between lowercase and uppercase letters. 

An example of the recognition result for alphabetic and digital inscriptions is shown in Figure 4. The 

figure shows the selected areas of interest and recognition results. 

 

 

 
Figure 4: An example of recognition results using the VGG16 neural network (in this case, all letters 

and numbers are recognized accurately) 
 

Comparing different model architectures, all the options considered showed the recognition 

accuracy of the test set in the range of 99.2-99.6% when trained on a dataset of sufficient volume. An 

increase in the number of samples in the training data set for all the considered architectures led to an 

increase in recognition accuracy. An example of the experimental results for the model with the 

MobileNet architecture is shown in Figure 5. 

The recognition accuracy of real inscriptions with an accuracy of 80-90% was achieved with a 

training sample size of at least 700, and preferably more than 1500 images per class. An example of the 

experimental results for the model with the MobileNetV2 architecture is shown in Figure 6. 

Variation of the parameters of the transformations that were used for augmentation also has a 

noticeable effect on the recognition results: deformation or rotation of the image by more than 10-15% 

increases the frequency of errors. 

Increasing the resolution of the training sample images had little effect on the results due to 

saturation. 

For example, when training a model with the MobileNetV2 architecture on a dataset with a 

resolution of 32x32 data, the recognition accuracy of the test dataset was 98%, on a dataset with a 

resolution of 64x64, respectively, 99%, and on a dataset with a resolution of 128x128 - 99.5%  

(example is shown in Figure 7: An example of the influence of the training dataset images resolution 
on the achieved recognition accuracy (MobileNetV2 and ResNet152v2 architecture).Figure 7(a)). 

However, for other architectures, the result of resolution increase was much less pronounced. 



The number of errors in recognition of elements of real inscriptions has changed little: for the model 

with the ResNet152V2 architecture, an increase in the resolution of images of the training sample led 

to a decrease in the proportion of erroneous recognition from 18.0% to 11.4% (Figure 7 (b)), for models 

with the MobileNet or MobileNetV2 architecture, it has not practically changed. However, with an 

increase in the resolution of the training sample, the time spent on training increased quite significantly 

(by more than an order of magnitude). 

 

 
Figure 5: An example of the influence of the size of the training dataset on the achieved recognition 

accuracy (MobileNet architecture). 
 

 

 
Figure 6: Recognition errors of real inscriptions depending on the size of the training dataset 

(MobileNetV2 architecture, 32х32х3 dataset images). 

When using deep neural networks to recognize letters or numbers, the reliability of recognition of 

elements of real inscriptions depended primarily on the size of the training dataset.  

The recognition accuracy of the test dataset after training all variants of the models was quite high - 

97-98% and higher. However, the generation of training datasets of a small size - 300-500 images per 

class - practically did not provide any reliable recognition.  

The use of a model with the InceptionResNetV2 architecture, which requires an image resolution in 

the training set of at least 75x75x3 (actually, the model was trained on 128x128x3 images), did not lead 

to a noticeable increase in recognition accuracy. 

In general, when comparing the achieved accuracy of recognition of real images and the speed of 

training the model, the best performance was provided by models of the ResNetV2 or MobileNetV2 

family. 
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Experiments with changing the optimization algorithm from those available in the Tensorflow/Keras 

package did not give any improvement in the accuracy and reliability of recognition of real samples. 

Increasing the number of model training epochs above the marked one also did not lead to a change in 

the results. 

 

  
a) training accuracy (MobileNetV2) b) recognition accuracy (ResNet152V2) 

Figure 7: An example of the influence of the training dataset images resolution on the achieved 
recognition accuracy (MobileNetV2 and ResNet152v2 architecture). 

5. Conclusions 

In this work, several variants of the architecture of convolutional neural networks for the recognition 

of isolated handwritten digits and Ukrainian letters are considered. 

The results of recognition of various images containing letters and numbers were compared on 

models with different architectures. It has been established that when training a model on a set of one-

dimensional images 28x28, an increase in the number of convolutional layers of a neural network in 

most cases leads to an increase in the reliability of recognition. Among the options considered, the best 

accuracy and reliability of recognition was provided by a model with an architecture of the VGG16 

type, which included 13 convolutional and three dense layers. 

The possibility of learning convolutional neural networks using a synthetic data set built on the basis 

of handwritten or cursive fonts is shown. The size of the training dataset significantly affects the 

reliability of character recognition. The data sets used in the work contained from 192 to 2304 samples 

per class.  

The lower limit of the sample size, which provides acceptable recognition accuracy, was 1536 

characters per class. Reducing the sample size by reducing the number of samples per class leads to a 

significant decrease in recognition accuracy (from 90% recognition accuracy of elements of real 

inscriptions to 40-60% with a 4-fold decrease in sample size). An increase in the volume of the training 

data set did not provide an increase in the accuracy and reliability of recognition, but led to a significant 

increase in the training time of the model 

An increase in image resolution from 32x32x3 to 128x128x3 of the training dataset in most cases 

did not lead to an increase in the reliability of real image recognition. 
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