
On the Subtlety of Causal Reasoning in
Probabilistic Logic Programming:
A Bug Report about the Causal Interpretation of
Annotated Disjunctions
Kilian Rückschloß1,†, Felix Weitkämper1,†

1Ludwig-Maximilians-Universität München
Institut für Informatik
Oettingenstraße 67
D-80538 München

Abstract
In this work in progress, we give an example for a logic program with annotated disjunctions where the
do-operator does not behave as intended. In particular, we see that the mutual exclusivity of heads in an
annotated disjunction is not preserved after intervention.

Bug Report

In this contribution, we study the causal semantics of the LPAD-language [1]. Assume for
instance that we throw a die if we decide to play, denoted 𝑝𝑙𝑎𝑦 . In this case, we throw 𝑜𝑛𝑒,

𝑡𝑤𝑜, 𝑡ℎ𝑟𝑒𝑒, 𝑓𝑜𝑢𝑟, 𝑓𝑖𝑣𝑒 or 𝑠𝑖𝑥 each with a probability of
1

6
. This scenario can now be modelled

with the LPAD-clause

𝑜𝑛𝑒 :
1

6
; 𝑡𝑤𝑜 :

1

6
; 𝑡ℎ𝑟𝑒𝑒 :

1

6
; 𝑓𝑜𝑢𝑟 :

1

6
; 𝑓𝑖𝑣𝑒 :

1

6
; 𝑠𝑖𝑥 :

1

6
← 𝑝𝑙𝑎𝑦. (1)

To establish a causal semantics for LPAD-programs we rely on the functional causal model
semantics or FCM-semantics [2] for ProbLog programs and use the fact that the languages
ProbLog and LPAD are expressively equivalent [3, §2.4]. Generally, the FCM-semantics asso-
ciates to each (acyclic) ProbLog program a system of Boolean equations that is uniquely solvable
in terms of some independent predefined random variables, i.e. a functional causal model in the
sense of Pearl [4].

To illustrate this, we consider a road, which passes along a field with a sprinkler in it. It
is spring or summer, denoted 𝑠𝑧𝑛_𝑠𝑝𝑟_𝑠𝑢𝑚 with a probability of 𝜋1 := 0.5. The sprinkler is
switched on, written 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟, by a weather sensor with probability 𝜋2 := 0.7 in spring or

PLP 2023: The Tenth Workshop on Probabilistic Logic Programming, London, July 09th 2023
†
These authors contributed equally.
$ kilian.rueckschloss@lmu.de (K. Rückschloß); felix.weitkaemper@lmu.de (F. Weitkämper)
� 0000-0002-7891-6030 (K. Rückschloß); 0000-0002-3895-8279 (F. Weitkämper)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:kilian.rueckschloss@lmu.de
mailto:felix.weitkaemper@lmu.de
https://orcid.org/0000-0002-7891-6030
https://orcid.org/0000-0002-3895-8279
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


summer. Moreover, it rains, denoted by 𝑟𝑎𝑖𝑛, with probability 𝜋3 := 0.1 in spring or summer
and with probability 𝜋4 := 0.6 in fall or winter. If it rains or the sprinkler is on, the pavement
of the road gets wet, denoted by 𝑤𝑒𝑡. And in the case where the pavement is wet we observe
that the road is slippery, denoted by 𝑠𝑙𝑖𝑝𝑝𝑒𝑟𝑦.

To model this situation we generate mutually independent Boolean random variables 𝑢1-𝑢4
with 𝜋(𝑢𝑖) = 𝜋𝑖 for all 1 ≤ 𝑖 ≤ 4. The described mechanism is then represented by the following
system of equations:

𝑠𝑧𝑛_𝑠𝑝𝑟_𝑠𝑢𝑚 := 𝑢1

𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 := 𝑠𝑧𝑛_𝑠𝑝𝑟_𝑠𝑢𝑚 ∧ 𝑢2

𝑟𝑎𝑖𝑛 := (𝑠𝑧𝑛_𝑠𝑝𝑟_𝑠𝑢𝑚 ∧ 𝑢3) ∨ (¬𝑠𝑧𝑛_𝑠𝑝𝑟_𝑠𝑢𝑚 ∧ 𝑢4)

𝑤𝑒𝑡 := (𝑟𝑎𝑖𝑛 ∨ 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟)

𝑠𝑙𝑖𝑝𝑝𝑒𝑟𝑦 := 𝑤𝑒𝑡 (2)

Furthermore, the FCM-semantics identifies the System of Equations (2) with the following
ProbLog program.

0.5 :: 𝑠𝑧𝑛_𝑠𝑝𝑟_𝑠𝑢𝑚

0.7 :: 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 ← 𝑠𝑧𝑛_𝑠𝑝𝑟_𝑠𝑢𝑚

0.1 :: 𝑟𝑎𝑖𝑛← 𝑠𝑧𝑛_𝑠𝑝𝑟_𝑠𝑢𝑚

0.6 :: 𝑟𝑎𝑖𝑛← ¬𝑠𝑧𝑛_𝑠𝑝𝑟_𝑠𝑢𝑚

𝑤𝑒𝑡← 𝑟𝑎𝑖𝑛

𝑤𝑒𝑡← 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟

𝑠𝑙𝑖𝑝𝑝𝑒𝑟𝑦 ← 𝑤𝑒𝑡 (3)

Using the FCM-semantics, we can now transfer Pearl’s causal reasoning [4] to probabilistic logic
programming. This enables us to evaluate queries about the effect of external interventions [2]
and about counterfactuals [5]. In this contribution, we focus on modeling external interventions.

What happens in Model 2 if we switch the sprinkler on/off?
As switching the sprinkler on/off basically means that nothing changes but the fact that

𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 is set to 𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒, we can model this action by replacing the equation for 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟
by 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 := 𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒. This can be modelled in Program (6) by erasing the clause
0.7 :: 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 ← 𝑠𝑧𝑛_𝑠𝑝𝑟_𝑠𝑢𝑚 and adding the fact 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 ← in case we switched the
sprinkler on.

Generally, intervening on a proposition 𝑝 in a propositional ProbLog program P is done by
erasing all clauses defining 𝑝 and adding the fact 𝑝← in the case where 𝑝 is set to true.

However, remember that we were initially interested in the LPAD-language. As already
mentioned earlier to define a semantics for a LPAD-program P, for each proposition 𝑝 we
introduce an auxiliary proposition 𝑝𝑅𝐶 and transform it to an equivalent ProbLog program
according to Riguzzi [3, §2.4]. In our example, we transform the Program (1) to the following
ProbLog program.



1

6
:: 𝑜𝑛𝑒𝑅𝐶 ← 𝑝𝑙𝑎𝑦

𝑜𝑛𝑒← 𝑜𝑛𝑒𝑅𝐶

1

5
:: 𝑡𝑤𝑜𝑅𝐶 ← 𝑝𝑙𝑎𝑦,¬𝑜𝑛𝑒𝑅𝐶

𝑡𝑤𝑜← 𝑡𝑤𝑜𝑅𝐶

1

4
:: 𝑡ℎ𝑟𝑒𝑒𝑅𝐶 ← 𝑝𝑙𝑎𝑦,¬𝑜𝑛𝑒𝑅𝐶 ,¬𝑡𝑤𝑜𝑅𝐶

𝑡ℎ𝑟𝑒𝑒← 𝑡ℎ𝑟𝑒𝑒𝑅𝐶

1

3
:: 𝑓𝑜𝑢𝑟𝑅𝐶 ← 𝑝𝑙𝑎𝑦,¬𝑜𝑛𝑒𝑅𝐶 ,¬𝑡𝑤𝑜𝑅𝐶 ,¬𝑡ℎ𝑟𝑒𝑒𝑅𝐶

𝑓𝑜𝑢𝑟 ← 𝑓𝑜𝑢𝑟𝑅𝐶

1

2
:: 𝑓𝑖𝑣𝑒𝑅𝐶 ← 𝑝𝑙𝑎𝑦,¬𝑜𝑛𝑒𝑅𝐶 ,¬𝑡𝑤𝑜𝑅𝐶 ,¬𝑡ℎ𝑟𝑒𝑒𝑅𝐶 ,¬𝑓𝑜𝑢𝑟𝑅𝐶

𝑓𝑖𝑣𝑒← 𝑓𝑖𝑣𝑒𝑅𝐶

1 :: 𝑠𝑖𝑥𝑅𝐶 ← 𝑝𝑙𝑎𝑦,¬𝑜𝑛𝑒𝑅𝐶 ,¬𝑡𝑤𝑜𝑅𝐶 ,¬𝑡ℎ𝑟𝑒𝑒𝑅𝐶 ,¬𝑓𝑜𝑢𝑟𝑅𝐶 , 𝑓𝑖𝑣𝑒𝑅𝐶

𝑠𝑖𝑥← 𝑠𝑖𝑥𝑅𝐶 (4)

Further, assume we “play” and just turn over the die to show the number four, i.e. we intervene
in our model and force the dice to show 𝑓𝑜𝑢𝑟. As already discussed, this results in the following
ProbLog program.

1

6
:: 𝑜𝑛𝑒𝑅𝐶 ← 𝑝𝑙𝑎𝑦

𝑜𝑛𝑒← 𝑜𝑛𝑒𝑅𝐶

1

5
:: 𝑡𝑤𝑜𝑅𝐶 ← 𝑝𝑙𝑎𝑦,¬𝑜𝑛𝑒𝑅𝐶

𝑡𝑤𝑜← 𝑡𝑤𝑜𝑅𝐶

1

4
:: 𝑡ℎ𝑟𝑒𝑒𝑅𝐶 ← 𝑝𝑙𝑎𝑦,¬𝑜𝑛𝑒𝑅𝐶 ,¬𝑡𝑤𝑜𝑅𝐶

𝑡ℎ𝑟𝑒𝑒← 𝑡ℎ𝑟𝑒𝑒𝑅𝐶

1

3
:: 𝑓𝑜𝑢𝑟𝑅𝐶 ← 𝑝𝑙𝑎𝑦,¬𝑜𝑛𝑒𝑅𝐶 ,¬𝑡𝑤𝑜𝑅𝐶 ,¬𝑡ℎ𝑟𝑒𝑒𝑅𝐶

𝑓𝑜𝑢𝑟 ←
1

2
:: 𝑓𝑖𝑣𝑒𝑅𝐶 ← 𝑝𝑙𝑎𝑦,¬𝑜𝑛𝑒𝑅𝐶 ,¬𝑡𝑤𝑜𝑅𝐶 ,¬𝑡ℎ𝑟𝑒𝑒𝑅𝐶 ,¬𝑓𝑜𝑢𝑟𝑅𝐶

𝑓𝑖𝑣𝑒← 𝑓𝑖𝑣𝑒𝑅𝐶

1 :: 𝑠𝑖𝑥𝑅𝐶 ← 𝑝𝑙𝑎𝑦,¬𝑜𝑛𝑒𝑅𝐶 ,¬𝑡𝑤𝑜𝑅𝐶 ,¬𝑡ℎ𝑟𝑒𝑒𝑅𝐶 ,¬𝑓𝑜𝑢𝑟𝑅𝐶 , 𝑓𝑖𝑣𝑒𝑅𝐶

𝑠𝑖𝑥← 𝑠𝑖𝑥𝑅𝐶 (5)



Querying the Program (5) for the probability of 𝑜𝑛𝑒 should now yield the probability
𝜋(𝑜𝑛𝑒| do(𝑓𝑜𝑢𝑟)) of the die showing one if we force it to show four. As a die normally can-
not show two numbers at the same time we expect 𝜋(𝑜𝑛𝑒|do(𝑓𝑜𝑢𝑟)) to be zero; however,

evaluating (5) yields 𝜋(𝑜𝑛𝑒|do(𝑓𝑜𝑢𝑟)) = 1

6
.

It is worth mentioning that CP-logic [6] is another causal semantics for LPAD-programs,
which also supports queries about the effect of external interventions. Moreover, the reasoning
about external interventions provided by CP-logic is implemented in cplint [7]. However, we
showed in Kiesel et al. [5] that evaluating counterfactal queries in CP-logic is the same as
translating a LPAD-program P into its associated ProbLog program and evaluating the query
there under the FCM-semantics. As determining the effect of external interventions is a special

case of counterfactual reasoning [4], we obtain the same result 𝜋(𝑜𝑛𝑒| do(𝑓𝑜𝑢𝑟)) = 1

6
if we

had evaluated the query under CP-logic.
In particular, let us encode a modified version of Program (1) into the following cplint program.

:- use_module(library(pita)).
:- use_rendering(graphviz).
:- pita.
:- begin_lpad.
:- action d/1.
d(1):1/6; d(2):1/6; d(3):1/6; d(4):1/6; d(5):1/6;d(6):1/6.
:- end_lpad.

Here, 𝑑(𝑖) means that the die shows the number 𝑖. As expected, we also obtain the wrong result
when querying for the probability that the dice shows one if we force it to show four.

?- prob(d(1),do(d(4)),P).
P = 0.16666666666666666

Discussion

The previous discussion reveals that the information about the mutually exclusiveness of the
events 𝑜𝑛𝑒, 𝑡𝑤𝑜, 𝑡ℎ𝑟𝑒𝑒, 𝑓𝑜𝑢𝑟, 𝑓𝑖𝑣𝑒 and 𝑠𝑖𝑥 encoded by the annotated disjunction (1) is lost by
intervening in the corresponding ProbLog program (4). In particular, the post-interventional
program (5) makes no statement to exclude the possible worlds in which the dice shows both
four and one.

In logic programming, one would fix this issue by adding an integrity constraint to the
Program (5) that encodes that the events 𝑜𝑛𝑒, 𝑡𝑤𝑜, 𝑡ℎ𝑟𝑒𝑒, 𝑓𝑜𝑢𝑟, 𝑓𝑖𝑣𝑒 and 𝑠𝑖𝑥 exclude each other.
However, in ProbLog, adding such an integrity constraint is equivalent to an observation [8].
This means we would not query the modified ProbLog Program (5) for the probability of 𝑜𝑛𝑒 but
for the marginal probability of 𝑜𝑛𝑒 given that we observe the mutual exclusiveness of all events
at hand. Hence, we expect that observing the mutual exclusiveness of the atoms occurring in
an annotated disjunction would resolve our bug in some cases.



However, if we reconsider the situation modelled in Program (6) and assume a sensor guar-
antees that the sprinkler is off if it rains, this could result in the following LPAD-program.

𝑠𝑧𝑛_𝑠𝑝𝑟_𝑠𝑢𝑚 : 0.5 𝑤𝑒𝑡← 𝑟𝑎𝑖𝑛

𝑟𝑎𝑖𝑛 : 0.1; 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 : 0.7← 𝑠𝑧𝑛_𝑠𝑝𝑟_𝑠𝑢𝑚 𝑤𝑒𝑡← 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟

𝑟𝑎𝑖𝑛 : 0.6← ¬𝑠𝑧𝑛_𝑠𝑝𝑟_𝑠𝑢𝑚 𝑠𝑙𝑖𝑝𝑝𝑒𝑟𝑦 ← 𝑤𝑒𝑡 (6)

In this case, switching the sprinkler on does not avoid raining. Hence, it now makes sense that
the mutual exclusiveness of an annotated disjunction is destroyed by an intervention.

Therefore, we think that a correct causal interpretation of annotated disjunctions requires to
operators to express the “Or” in head of a LPAD-clause. One operator for which the mutual
exclusivity pertains under an intervention and one for which it does not. Finally, one then
needs to find the right notion of intervention for either operators in the LPAD language.

Acknowledgements

The research leading to this publication was supported by LMUexcellent, funded by the Federal
Ministry of Education and Research (BMBF) and the Free State of Bavaria under the Excellence
Strategy of the Federal Government and the Länder.

References

[1] J. Vennekens, S. Verbaeten, M. Bruynooghe, Logic programs with annotated disjunctions,
in: Logic Programming, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 431–445.
doi:10.1007/978-3-540-27775-0_30.

[2] K. Rückschloß, F. Weitkämper, Exploiting the full power of pearl’s causality in probabilistic
logic programming, in: Proceedings of the International Conference on Logic Programming
2022 Workshops co-located with the 38th International Conference on Logic Programming
(ICLP 2022), Haifa, Israel, July 31st - August 1st, 2022, volume 3193 of CEUR Workshop
Proceedings, CEUR-WS.org, 2022. URL: http://ceur-ws.org/Vol-3193/paper1PLP.pdf.

[3] F. Riguzzi, Foundations of Probabilistic Logic Programming: Languages, Semantics, Infer-
ence and Learning, River Publishers, 2022. doi:10.1017/9781108770750.

[4] J. Pearl, Causality, 2 ed., Cambridge University Press, Cambridge, UK, 2000. doi:10.1017/
CBO9780511803161.

[5] R. Kiesel, K. Rückschloß, F. Weitkämper, “What if?” in probabilistic logic programming,
Accepted for TPLP Proceedings of ICLP (2023). URL: https://arxiv.org/abs/2305.15318.

[6] J. Vennekens, M. Denecker, M. Bruynooghe, CP-logic: A language of causal probabilistic
events and its relation to logic programming, Theory and Practice of Logic Programming 9
(2009) 245–308. doi:10.1017/S1471068409003767.

[7] F. Riguzzi, G. Cota, E. Bellodi, R. Zese, Causal inference in cplint, International Journal of
Approximate Reasoning 91 (2017) 216–232. doi:10.1016/j.ijar.2017.09.007.

[8] D. Fierens, G. Van den Broeck, M. Bruynooghe, L. De Raedt, Constraints for probabilistic
logic programming, in: D. Roy, V. Mansinghka, N. Goodman (Eds.), Proceedings of the NIPS
Probabilistic Programming Workshop„ 2012. doi:10.1145/377978.377983.

http://dx.doi.org/10.1007/978-3-540-27775-0_30
http://ceur-ws.org/Vol-3193/paper1PLP.pdf
http://dx.doi.org/10.1017/9781108770750
http://dx.doi.org/10.1017/CBO9780511803161
http://dx.doi.org/10.1017/CBO9780511803161
https://arxiv.org/abs/2305.15318
http://dx.doi.org/10.1017/S1471068409003767
http://dx.doi.org/10.1016/j.ijar.2017.09.007
http://dx.doi.org/10.1145/377978.377983

