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Abstract

In this article, our main objective is to address the issue of diversity in abductive explanations for decision

trees by studying the impact of different weight functions on preferred abductive explanations. We

acknowledge that users may have specific preferences regarding the explanations they prefer to receive.

Therefore, we propose several criteria to obtain high-quality subsets of abductive explanations that take

into account these preferences. These criteria are defined by the users themselves by assigning weights to

different preference criteria. To evaluate the impact of these preference criteria on abductive explanations

and the relationships between the obtained subsets, we propose an approach based on SAT encoding.

This allows us to enumerate more easily the different subsets of abductive explanations that meet the

user-defined preference criteria. Additionally, we use measures based on the distance between two sets

of explanations to assess the correlation between user preferences and the extent to which result sets

differ from each other for different preferences. In summary, this study represents the first step towards

providing a framework for selecting abductive explanations that cater to users’ preferences in a diverse

and high-quality manner. We aim to instill the necessary confidence in users to utilize these explanations

in their decision-making process by offering explanations tailored to their individual preferences.
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1. Introduction

Explaining Machine Learning (ML) models is an important challenge that has been a subject of

study of AI in recent years (see, for example, [1, 2, 3, 4]. In this article, we focus on abductive

explanations for binary decision tree models [5]. Abductive explanations aim to clarify why a

classifier classifies an instance as positive or negative. In contrast, contrastive explanations aim

to explain why the instance was not classified as expected (thus addressing the question "why

not the other classification?"). Several types of abductive explanations exist depending on the

used classifier. These include the direct reason [6], the prime implicant [7], also known as the

sufficient reason [8]. The quality of an explanation relies not only on the reason itself but often

depends on the person being explained to and the domain involved.

In this article, we focus on the diversity of abductive explanations, a crucial aspect when it

comes to user-guided explanations. When a user requests an explanation for the classification of

an example by a machine learning model, they may have specific preferences regarding the form

or content of that explanation. For instance, some users prefer concise and succinct explanations,

while others prioritize more detailed and comprehensive explanations. Our study primarily
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centers on preferred abductive reasons, which are considered the most anticipated explanations

by users. We have chosen to investigate the diversity of preferred explanations within the context

of decision trees, which are widely used machine learning models. Diversity, in this context,

can be perceived as a mean to account for different priorities among users. In other words, the

objective of this study is to consider user preferences, specially when they vary from one another.

We first propose a SAT encoding based on the encoding proposed by Jabbour et al. [9] to

enumerate the preferred sufficient reasons. Several weight functions based on XAI methods

known in the literature have been considered to calculate the preferred reasons based on the

weights provided by these functions. These weight functions allow us to calculate the preferred

sufficient reasons for a given method (or a given user) using a gradual preference model expressed

by weights. Finally, we evaluate the impact of different weight functions on the preferred sufficient

reasons for a given decision tree, by first counting their number and then calculating the distance

between two sets of preferred explanations. This measure allows us to quantify the gap between

two subsets of explanations and thus measure the impact of user preference diversity on the

produced explanations.

2. Decision Trees and Abductive Explanations

2.1. Preliminaries

For an integer 𝑛, let [𝑛] be the set {1, . . . , 𝑛}. We denote ℱ𝑛 as the class of all Boolean

functions from {0, 1}𝑛 to {0, 1}, and we use 𝑋𝑛 = {𝑥1, . . . , 𝑥𝑛} to represent the set of Boolean

input variables. Any assignment 𝑥 ∈ {0, 1}𝑛 is called an instance. If 𝑓(𝑥) = 1 for 𝑓 ∈ ℱ𝑛,

then 𝑥 is called a model of 𝑓 . 𝑥 is a positive instance if 𝑓(𝑥) = 1, and a negative instance if 𝑓(𝑥) = 0.

We refer to 𝑓 as a propositional formula when it is described using the Boolean connectors

∧ (conjunction), ∨ (disjunction), ¬ (negation), as well as the Boolean constants 1 (true) and

0 (false). Other connectors, such as implication →, may also be considered. As usual, a

literal ℓ is a variable 𝑥𝑖 (a positive literal) or its negation ¬𝑥𝑖, also denoted 𝑥𝑖 (a negative

literal). 𝑥𝑖 and 𝑥𝑖 are complementary literals. A positive literal 𝑥𝑖 is associated with a posi-

tive feature (i.e., 𝑥𝑖 is assigned to 1), while a negative literal 𝑥𝑖 is associated with a negative feature.

A term 𝑡 is a conjunction of literals, and a clause 𝑐 is a disjunction of literals. Lit(𝑓) denotes

the set of all literals in 𝑓 . A DNF (Disjunctive Normal Form) formula is a disjunction of terms,

and a CNF (Conjunctive Normal Form) formula is a conjunction of clauses. The set of variables

appearing in a formula 𝑓 is denoted by Var(𝑓). A formula 𝑓 is consistent if and only if it has a

model. A CNF formula is monotone when each literal of a given variable in the formula has the

same polarity (i.e., each time a literal appears in the formula, the complementary literal does not

appear in the formula). A formula 𝑓1 implies a formula 𝑓2, denoted 𝑓1 |= 𝑓2, if and only if every

model of 𝑓1 is a model of 𝑓2. Two formulas 𝑓1 and 𝑓2 are equivalent, denoted 𝑓1 ≡ 𝑓2, if and

only if they have the same models. Given an assignment 𝑧 ∈ {0, 1}𝑛, the corresponding term is

defined as:

𝑡𝑧 =

𝑛⋀︁
𝑖=1

𝑥𝑧𝑖𝑖 où 𝑥0𝑖 = 𝑥𝑖 et 𝑥1𝑖 = 𝑥𝑖

A term 𝑡 covers an assignment 𝑧 if 𝑡 ⊆ 𝑡𝑧 . An implicant of a Boolean function 𝑓 is a term that

implies 𝑓 . A prime implicant of 𝑓 is an implicant 𝑡 of 𝑓 such that no proper subset of 𝑡 is an

implicant of 𝑓 . Conversely, an implicant of a Boolean function 𝑓 is a clause that is implied by 𝑓 ,
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Figure 1: A decision tree 𝑇 for classifies the allocation of a bank loan.

and a prime implicant of 𝑓 is an implicant 𝑐 of 𝑓 such that no proper subset of 𝑐 is an implicant of

𝑓 .

Definition 1 (Boolean decision tree). A Boolean decision tree over 𝑋𝑛 is a binary decision tree,

where each internal node is labeled with one of the 𝑛 Boolean input variables, and each leaf is labeled

with either 0 or 1. Each variable appears at most once along any path from the root to a leaf. The

value 𝑇 (𝑥) ∈ {0, 1} of 𝑇 for the input instance 𝑥 is determined by the label of the leaf reached from

the root as follows: at each node, we follow the left or right child depending on whether the input

value of the corresponding variable is 0 or 1. The size of 𝑇 (denoted |𝑇 |) is the number of nodes.

The class of decision trees over 𝑋𝑛 is denoted DT𝑛. It is well-known that any tree 𝑇 ∈ DT𝑛
can be transformed into an equivalent disjunction of terms in linear time, denoted DNF(𝑇 ),
where each term corresponds to a path from the root to a leaf labeled 1. Similarly, 𝑇 can be

transformed in linear time into a conjunction of clauses, denoted CNF(𝑇 ) [10], where each clause

is the negation of a term corresponding to a path from the root to a leaf labeled 0.

The tree shown in Figure 1 will be used as an running example in the rest of the paper.

Example 1. The decision tree in Figure 1 classifies bank loans using the following attributes: 𝑥1:

"does not have a permanent contract", 𝑥2: "is over 50 years old", 𝑥3: "has annual income below 35K"

and 𝑥4: "has not repaid a previous loan".

2.2. Abductive explanations

We consider the concept of abductive explanation. Formally, for 𝑓 ∈ 𝐹𝑛 and x ∈ {0, 1}𝑛, an

abductive explanation (reasons) of x given 𝑓 is an implicant 𝑡 of 𝑓 (or of ¬𝑓 in the case where

𝑓(x) = 0) that covers x. There always exists an abductive explanation 𝑡 of x given 𝑓 because

𝑡 = 𝑡x is such a trivial explanation. Therefore, in the remainder of this section, we will focus on

more concise forms of abductive explanation.

Direct reasons [10, 6] are abductive explanations specific to decision trees and random forests

(see [11]). Other abductive explanations exist that are not specific to a particular classifier, such

as sufficient reasons [8]. In the following, we will define sufficient reasons.

Definition 2 (Sufficient reason). Let 𝑓 ∈ ℱ𝑛 and 𝑥 ∈ {0, 1}𝑛 such that 𝑓(𝑥) = 1 (resp. 𝑓(𝑥) = 0).

A sufficient reason for 𝑥 given 𝑓 is a prime implicant 𝑡 of 𝑓 (resp. ¬𝑓 ) that covers 𝑥. sr(𝑥, 𝑓)
denotes the set of all sufficient reasons for 𝑥 given 𝑓 .

A sufficient reason [8] (or PI-explanation [7]) for an instance 𝑥 given a Boolean function 𝑓 is

a subset 𝑡 of 𝑥 that is minimal with respect to set inclusion, and such that any instance 𝑥′
that
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shares the set 𝑡 is classified by 𝑓 as 𝑥. Thus, when 𝑡 covers 𝑥, when 𝑓(𝑥) = 1, 𝑡 is a sufficient

reason for 𝑥 given 𝑓 if and only if 𝑡 is a prime implicant of 𝑓 , and when 𝑓(𝑥) = 0, 𝑡 is a sufficient

reason for 𝑥 given 𝑓 if and only if 𝑡 is a prime implicant of ¬𝑓 . Sufficient reasons do not contain

any redundant attributes. We refer to a minimal-size sufficient reason for 𝑥 given 𝑓 as a sufficient

reason for 𝑥 given 𝑓 that contains the minimum number of literals.

Example 2. Going back to Example 1, we can observe that 𝑇 (𝑥) = 0 (Bank loan rejected.) for

the instance 𝑥 = (1, 1, 1, 1). The direct reason for 𝑥 is 𝑡𝑇𝑥 = 𝑥1 ∧ 𝑥2 ∧ 𝑥3 ∧ 𝑥4, 𝑥1 ∧ 𝑥2 ∧ 𝑥4,
𝑥1 ∧ 𝑥3 ∧ 𝑥4 and 𝑥2 ∧ 𝑥3 ∧ 𝑥4 are the sufficient reasons for 𝑥 given 𝑇 . They are also the only

minimal-size sufficient reasons for 𝑥 given 𝑇 .

3. Computing All Abductives Explanations

The number of sufficient reasons in an instance may be exponential [10]. In the following,

we remind that even for the restricted class of decision trees with logarithmic depth, an instance

𝑥 can have an exponential number of sufficient reasons. By definition, the number of minimal

sufficient reasons for 𝑥 cannot be greater than the number of its sufficient reasons. However,

restricting ourselves to minimal sufficient reasons does not guarantee a significant reduction to

their number [12, 10] because an instance can have an exponential number of minimal sufficient

reasons. We shall recall a proposition that confirms the exponential nature of the number of

minimal sufficient reasons which was proposed by Audemard et al. [10].

Proposition 1. For any 𝑛 ∈ N such that 𝑛 is odd, there exists a decision tree 𝑇 ∈ DT𝑛 with depth

𝑛+1
2 , containing 2𝑛+ 1 nodes, and an instance 𝑥 ∈ {0, 1}𝑛 such that the number of minimum-size

sufficient reasons for 𝑥 given 𝑇 is equal to 2
√
𝑛−1

.

3.1. Compute all minimum-size sufficient reasons.

In order to synthesize the set of sufficient reasons, we first focus on the minimum-size sufficient

reasons. Although the set of minimum-size sufficient reasons for an instance given a decision

tree can be exponential, this number cannot exceed the total number of sufficient reasons, and

in practice, it can be significantly smaller. However, unlike sufficient reasons, which can be

generated in polynomial time [10, 12], computing the minimum-size reasons is not an easy task.

Proposition 2. Let 𝑇 ∈ DT𝑛 and 𝑥 ∈ {0, 1}𝑛. Computing a minimum-size sufficient reason for 𝑥
given 𝑇 is NP-hard.

Despite this result of intractability in the general case, computing a set of minimum-size

sufficient reasons is possible in many practical cases. For this purpose, we rely on recent

advancements in combinatorial optimization related to SAT.

First, let us recall that the Partial MaxSAT problem consists of a pair (𝐶soft, 𝐶hard), where

𝐶soft and 𝐶hard are (finite) sets of clauses. The objective is to determine, if it exists, an assignment

of variables that maximizes the number of satisfied clauses from 𝐶soft, while satisfying all clauses

from 𝐶hard. We can utilize a Partial MaxSAT solver to compute minimal-size sufficient reasons:

Proposition 3. Let 𝑇 decision trees in DT𝑛 and 𝑥 ∈ {0, 1}𝑛 an instance such that 𝑇 (𝑥) = 1. Let

(𝐶soft, 𝐶hard) instance of Partial MaxSAT problem such that :

𝐶soft = {𝑥𝑖 : 𝑥𝑖 ∈ 𝑡𝑥} ∪ {𝑥𝑖 : 𝑥𝑖 ∈ 𝑡𝑥}

and

𝐶hard = {𝑐 ∩ 𝑡𝑥 : 𝑐 ∈ CNF(𝑇 )}.
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The intersection of 𝑡𝑥 with 𝑡𝑥* , where 𝑥*
is an optimal solution for (𝐶hard, 𝐶soft), is a minimal-size

sufficient reason for 𝑥 given 𝑇 .

A Partial MaxSAT solver can also be used to compute a predefined number of minimal-size

sufficient reasons. The process involves generating an initial reason 𝑡, adding the negation of 𝑡 (¬𝑡)
to 𝐶hard, and including a cardinality constraint to ensure that the subsequent computed reasons

have the same size as 𝑡. This process is repeated until the desired number of reasons is reached

or no solution exists. Calculating a single explanation is often insufficient to fully understand

the behavior of a classifier. On the other hand, providing millions of explanations would not be

practical for the user. Reasons can vary greatly from one another, and the quality of a reason also

depends on the person to whom it is explained. The authors of the article [13] propose leveraging

user preferences to select the most relevant reasons and thus reduce their number. This restricted

set of explanations has two advantages: it aligns as closely as possible with the user’s preferences

and can drastically reduce the overall number of explanations. However, it is important to note

that even two experts on the same field may have different preferences. In our work, we focus

on the impact of different weighting functions on the set of preferred sufficient reasons given a

decision tree 𝑇 , in order to better understand the diversity of abductive explanations.

4. Preferred abductive explanations

One rational way to address this question is to focus on a subset of explanations, referred to

as the preferred ones [13]. Defining what makes an explanation "preferred" or "good enough"

is challenging in general, and there is no consensus on this matter, as seen in [14]. Preferred

explanations can be either the complete set of abductive explanations [15] or subsets thereof,

particularly those containing only sufficient reasons. Although the notion of preferred reasons

makes sense for any Boolean classifier, our results are specific to decision trees since they concern

sufficient reasons. The authors of the paper [13] have defined several preference models, and in

the following, we focus on one of them: Maximum-Weight Explanations.

4.1. Maximum-Weight Explanations

A model of preference relation on a combinatorial domain is by using a utility function (or cost

function). In our context, this involves assigning a utility value (weight) to each feature. This

approach leads to a total preorder on explanations, where the best explanations are those with

the highest weight.

The idea behind a utility function is to measure the importance of each feature in the

explanation. For example, one can assign a weight to each feature corresponding to its

usefulness or relevance to the considered problem. The larger the utility value of a feature,

the more important it is in the explanation. By associating a utility value with each fea-

ture, one can calculate an overall utility value for each explanation by summing the utility

values of its features. This allows ranking explanations based on their utility value and

determining the best explanations, those with the highest utility value. The advantage of

this approach is that it allows for more complex preferences to be taken into account than

simply ranking features in order of importance. Indeed, each user may have different pref-

erences, and a personalized utility function allows for these preferences to be modeled more finely.

In the general case, computing a maximum-weight sufficient reason is NP-hard in the broad

sense. This follows from the fact that a minimum-size sufficient reason 𝑡 for a given instance of a

decision tree is a minima-weight preferred reason 𝑡 for a given instance and decision tree with
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a weight mapping 𝑤1 such that for each 𝑖 ∈ [𝑛], 𝑤1(𝑥𝑖) = 1. Computing a maximum-weight

sufficient reason 𝑡 for a given instance of a decision tree is NP-hard [11, 16]. Nevertheless, the

approach presented in [12] can be generalized to compute minimum-size sufficient reasons for the

case of maximum-weight sufficient reasons. This amounts to solving an instance of the Weighted

Partial MaxSAT problem.

Definition 3. Let 𝑇 ∈ DT𝑛. Let 𝑤 : 𝑋𝑛 → N*
a weight vector associated with each feature. A

maximum-weight reason for 𝑥 given 𝑇 et 𝑤 is a term 𝑡 for 𝑥 and 𝑇 that maximize Σ𝑥∈Var(𝑡)𝑤(𝑥).

Proposition 4. Let 𝑇 ∈ DT𝑛 and an instance 𝑥 ∈ {0, 1}𝑛 suche that 𝑇 (𝑥) = 1. Let 𝑤 : 𝑋𝑛 → N*

weights application. Maximum-weight sufficient reason for 𝑥 given 𝑇 et 𝑤 is given by 𝑡𝑥 ∩ 𝑡𝑣* ,

where 𝑣*
is the solution of (𝐶soft, 𝐶hard) of Weighted Partial MaxSAT problem such that :

𝐶soft = {(𝑥𝑖, 𝑤(𝑥𝑖)) : 𝑥𝑖 ∈ 𝑡𝑥} ∪ {(𝑥𝑖, 𝑤(𝑥𝑖)) : 𝑥𝑖 ∈ 𝑡𝑥}
𝐶hard = {(𝑐[𝑥],∞) : 𝑐 ∈ CNF𝑠(𝑇 )}

where : 𝐶hard : is the CNF encoding proposed by [9] of the CNF encoding of decision tree 𝑇

In the following, we will refer to "maximum-weight sufficient reason" as the explanation with

the highest weight and "preferred sufficient reason" as the explanation preferred.

Remark. We would like to clarify that the encoding proposed in this article (Proposition 3) is

different from the one proposed by the authors in [13], even though both are based on MaxSAT.

The aim of the encoding in [13] is to minimize the sum of weights to obtain preferred reasons,

while our approach aims to maximize it. Another major difference is the exploitation of the

encoding by [9] to preferred sufficient reasons for the decision tree. This encoding allows for

easier enumeration of preferred sufficient reasons for decision tree.

Example 3. Let’s consider the example of a banker 1 using a decision tree to decide whether to

approve or reject a loan for a client. Suppose the decision tree is represented by Example 1, and

the banker wants to understand why a particular instance, 𝑥 = (1, 1, 1, 1), was classified as a

rejection (𝑇 (𝑥) = 0). In this case, there are multiple sufficient reasons to explain this classification.

These reasons are all combinations of attributes that, if true, result in a negative classification. For

𝑥 = (1, 1, 1, 1), the sufficient reasons are: 𝑥1 ∧ 𝑥2 ∧ 𝑥4, 𝑥1 ∧ 𝑥3 ∧ 𝑥4, and 𝑥2 ∧ 𝑥3 ∧ 𝑥4. However,

the banker prefers an explanation without the attribute 𝑥2 because it is a non-actionable attribute,

meaning the client cannot change it. In this case, we can use a weight function for each attribute

to find the best explanation. In this example, we use the weight function 𝑤1 = (5, 1, 8, 4), which

assigns higher weights to attributes considered more important for the decision. Using this weight

function, the solver returns that the best explanation of maximum-weight is 𝑥1 ∧ 𝑥3 ∧ 𝑥4, which

does not include the non-actionable attribute 𝑥2.

5. Weight Functions and Distance Between Two Finite Subsets of
Explanations

The main idea of this section is to address the variations in user preference aggregation modalities

regarding preferred abductive reasons. It is acknowledged that even two experts in the same

domain can have different preferences. However, in the absence of a real-world application with

actual user preferences, the study focuses on exploring different weight measures, both local

and global. The weight functions used in this study are based on different approaches such as

Shapley values, Banzhaf values, LIME, Anchors, Explanatory, as well as Wordfreq and Feature

importance. These weight functions allow quantifying the relative importance of different features
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or attributes in explaining the results of the classification model. By using these weight measures,

it is possible to take into account user preferences when aggregating abductive explanations,

assigning different weights to features based on their perceived importance.

5.1. Weight Functions

Global Weight Measures: Global weight measures focus on the contribution of features by

considering all predictions of all instances. We will present some of the global weight measures

used in the literature to aggregate user preferences regarding preferred sufficient reasons.

• Wordfreq : Zipf’s law states that the frequency 𝑓 of a word in a corpus is inversely

proportional to its rank 𝑟, i.e., 𝑓 ∝ 1
𝑟 . This law is often used to model the distribution

of word frequencies in a linguistic corpus. The Zipf frequency 𝑓 of a word is given by:

𝑓 = log10
(︀
𝑁
𝑟

)︀
, where 𝑁 is the total number of words in the corpus and 𝑟 is the rank of

the word, i.e., its position in the ranking of most frequent words.
1

• Features importance : The "Mean Decrease Impurity" (MDI) method is used to evaluate

the importance of attributes in a classification task by measuring the average decrease in

impurity (e.g., entropy or Gini index) in the decision tree when the attribute is used to

divide the data into subgroups. The importance of an attribute is then evaluated by taking

the average and standard deviation of this decrease in impurity over all divisions of the

tree that use that attribute [17].

Local Weight Measures: Local measures focus on the contribution of features to a specific

prediction, individual predicted instance. We now present some local weight measures:

• Local Surrogate Models (LIME): LIME allows for the explanation of individual predictions

made by non-interpretable machine learning models. This technique was proposed and

implemented by Ribeiro et al. in 2016 [1]. LIME focuses on constructing local surrogate

models to explain individual predictions. The idea is to train an interpretable surrogate

model on a new dataset composed of locally perturbed samples.

• SHAP (SHapley Additive exPlanations): The Shapley value is based on cooperative

game theory. The goal of SHAP is to explain the prediction of an observation by calculating

the contribution of each variable to that prediction. We used the method proposed by [3].

• Anchors: Anchors [2] is an interpretability technique that aims to find sets of rules that

best summarize the behavior of the model under study. The objective is to identify the

largest possible local regions where predictions are as consistent as possible.

• Explanatory: It involves calculating the number of models for each variable 𝑥𝑖 given the

instance 𝑥 and a decision tree 𝑇 using D4 [18].

Example 4. Two other bankers have different preferences for explanations compared to the banker

in Example 2. The second banker believes that if the client has not repaid a previous loan, they will

never be able to repay a new loan, so they prefer an explanation with attribute 𝑥4. These preferences

are expressed with 𝑤2 = (1, 1, 1, 10). On the other hand, a third banker thinks that if the client has

an annual income below 35𝐾 and is over 50 years old, it is preferable not to grant them a loan due

to their low salary relative to their age, so they prefer an explanation with 𝑥2 ∧ 𝑥4.

• For 𝑤2 = (1, 1, 1, 10), the reasons 𝑥1 ∧ 𝑥2 ∧ 𝑥4, 𝑥1 ∧ 𝑥3 ∧ 𝑥4, and 𝑥2 ∧ 𝑥3 ∧ 𝑥4 are preffered

sufficient reasons based on the preferences of the second banker.

1

You can find more information at https://pypi.org/project/wordfreq/.
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• The two reasons 𝑥1∧𝑥2∧𝑥4 and 𝑥2∧𝑥3∧𝑥4 are two preffered sufficient reasons based based

on the preferences of the third banker.

Example 4 demonstrates that subsets of preferred reasons can be very different from each other.

For instance 𝑥, the two subsets of preferred reasons based on the preferences of bankers 1 and 3
do not share any common reasons.

Monotone Transformation. We know that the operation of SAT solvers requires integer

and positive weights, while the values of SHAP, LIME, etc., are not necessarily positive or

integer initially. In order to satisfy this constraint for SAT solvers and still maintain the same

preference order based on SHAP, LIME, etc., values, we will perform a monotonically increasing

transformation on the values of different weight functions. The Explanatory method does not

require a monotone transformation as the number of models for each literal is already a positive

and integer value. Given a weight vector 𝑤 ∈ Rn
, the monotone transformation is given by the

following formula: 𝑤 ←− 𝑤 −min𝑖∈[𝑛]𝑤(𝑥𝑖) + 1. Then, we multiply 𝑤 by 10𝑘, where 𝑘 is the

maximum number of decimal places. This transformation allows us to convert all the weights

into positive integers.

Example 5 (monotone transformation). Let 𝑇 ∈ DT𝑛 be a decision tree and 𝑥 ∈ 𝑋4 be an

instance, and let SHAP(x, 𝑇 ) = (0.5,−0.2,0.3,−0.1) be the Shapley values for the instance 𝑥 given

𝑇 . Then, a monotone increasing transformation gives 𝑤(x) = (8,1,6,2).

5.2. Distance Between Two Finite Sets of Explanations

When it comes to evaluating the impact of user preferences on preferred abductive explanations,

several evaluation criteria can be considered. One of these criteria is a distance measure based on

the symmetric difference between two explanations. This distance measure allows quantifying

the proximity between two explanations. The symmetric difference between two explanations

involves considering the literals that are present in one explanation but not in the other, that is,

the literals that are specific to each explanation. By comparing the cardinality of this symmetric

difference, we can assess the degree of similarity or difference between these two explanations.

Additionally, we will consider the distance between two finite subsets of explanations as the

minimum distance between the explanations within these two subsets.

The idea behind this distance measure is to provide an estimation of the proximity between

sets of explanations, allowing us to understand how these sets come closer to or move away from

each other. This can be useful for evaluating the similarities or divergences in user preferences

regarding abductive explanations.

Definition 4. The distance between two finite subsets of explanations 𝑆1 and 𝑆2 is defined as

𝑆𝑑(𝑆1, 𝑆2) = min
𝑥∈𝑆1,𝑦∈𝑆2

|𝐷𝑠𝑟(𝑥, 𝑦)|, where |.| represents the counting measure, and 𝐷𝑠𝑟 is the

symmetric difference between two explanations 𝑡1 and 𝑡2, denoted as 𝐷𝑠𝑟(𝑡1, 𝑡2), given by the

formula 𝐷𝑠𝑟(𝑡1, 𝑡2) = {𝑙 : 𝑙 ∈ Lit(𝑡1) ∪ Lit(𝑡2) ∧ 𝑙 /∈ Lit(𝑡1) ∩ Lit(𝑡2)} = Lit(𝑡1)△Lit(𝑡2).

Note that the larger the value of 𝑆𝑑(𝑆1, 𝑆2), the farther apart the two sets 𝑆1 and 𝑆2 are from

each other. If 𝑆1∩𝑆2 ̸= ∅, then 𝑆𝑑(𝑆1, 𝑆2) = 0. From a topological perspective, 𝑆𝑑 expresses the

geometric distance between two finite subsets of explanations, taking into account the topological

nature of explanations, which are terms composed of literals.

Lemma 1. The complexity of calculating the distance between two subsets of explanations, 𝑆1 and

𝑆2, is quadratic.

8
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The computational complexity of calculating the distance between two sets of explanations, 𝑆1

and 𝑆2, depends on the sizes of these sets. Let’s assume that 𝑚1 represents the size of 𝑆1 and 𝑚2

represents the size of 𝑆2. For each element in 𝑆1, we need to compare it with each element in 𝑆2

to calculate the distance between them. This implies a comparison between 𝑚1 elements of 𝑆1

and 𝑚2 elements of 𝑆2, resulting in a complexity of the order of 𝑂(𝑚1 ·𝑚2), which is quadratic

when 𝑚1 and 𝑚2 are sufficiently large.

Example 6. Based on Example 4, let’s denote 𝑆𝑤1 , 𝑆𝑤2 , and 𝑆𝑤3 as the subsets of preferred expla-

nations based on the preferences of bankers 1, 2, and 3, respectively. We have 𝑆𝑑(𝑆𝑤1 , 𝑆𝑤2) = 0 and

𝑆𝑑(𝑆𝑤2 , 𝑆𝑤3) = 0 because 𝑆𝑤1 ∩ 𝑆𝑤2 ̸= ∅ and 𝑆𝑤3 ∩ 𝑆𝑤2 ̸= ∅, while 𝑆𝑑(𝑆𝑤1 , 𝑆𝑤3) = 2.

6. Experiments

Figure 2: Statistics on the computation of preferred sufficient reasons using a global measures for instances
from various datasets.

Experimental setup. We considered 18 well-known binary classification datasets available

on Kaggle, OpenML, and UCI. No data preprocessing was performed for numerical attributes,

and the attributes were binarized in-line by the decision tree learning algorithm used. For each

benchmark 𝑏, we evaluated the classification performance using standard evaluation metrics. We

used the CART algorithm and its implementation in Scikit-Learn to learn decision trees, with

default parameter settings. For each benchmark 𝑏 and a subset of up to 250 randomly selected

instances 𝑥 from the test set, unless the dataset contains fewer than 250 instances, in which case

the entire dataset was used. We computed the number of sufficient reasons using the encoding

proposed by [9] and the number of minimum-size sufficient reasons using the Partial MaxSAT

solver (with a 60-second timeout per instance). Finally, we computed the number of preferred

sufficient reasons using the encoding detailled in the section 4 and the WEIGHTED PARTIAL
MAXSAT solver from OpenWBO [19].

Regarding the weight functions, for each tree 𝑇𝑏, we used the exact method proposed by [20]

to compute the SHAP score as well as the scores for LIME [1] and Anchors [2]. We also used

feature importance with Scikit-Learn [17], the number of models "Explanatory" with [18], and

the Zipf frequency of each feature viewed as a word in the wordfreq library. Two weight

functions (random local and global) based on random weight sampling were added to clarify the

9
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nature of preferred explanations for different weight functions. We report the classical statistics,

the average number and variance of sufficient reasons and minimal sufficient reasons, and the

preferred sufficient reasons for each weight function method. Finally, for the "placement" and

"compas" datasets, we report the distance between different preferred subsets for the different

weight functions.

Figure 3: Statistics on the computation of preferred sufficient reasons using a local measures for instances
from various datasets

6.1. Experimental results

Tables 2 and 3 present an excerpt of the results. The tables present results on datasets, decision

trees, and global weight measures, based on 18 datasets. For each benchmark, the table provides

the dataset name (name), the accuracy of the decision trees (𝑎𝑐𝑐(%)), the number of binary

variables (#𝐵), and the number of instances (#𝐼). The columns |𝑠𝑟(𝑥, 𝑇 )| and |𝑠𝑚(𝑥, 𝑇 )|
respectively indicate the mean and standard deviation (std) of the number of sufficient reasons

and the number of preferred sufficient reasons. Then, for each benchmark 𝑏, the columns #wordf,

#f_imp, (𝑅[1,10], 𝑅[1,100], 𝑅[1,1000]) correspondingly represent the number of preferred sufficient

reasons for wordfreq, feature importance, and global random sampling over the intervals [1,10],

[1,100], and [1,1000]. The columns of Table 3 represent the mean and standard deviation (std) of

the number of preferred sufficient reasons for the local weight measures in the following order:

Lime, Shapely, Anchors, Explanatory, and local random sampling over the intervals [1,10], [1,100],

and [1,1000]. We clarify that the concept of "random sampling local" consists of selecting integer

weights for each instance, while respecting a specified interval. Let’s consider the illustrative

example: suppose we have a dataset with instances of size 𝑛 = 5, meaning that there are five

elements in each instance. The specified interval is [1, 10], indicating that the chosen weights

must be integer values ranging from 1 to 10. For each individual instance, we perform a random

draw to determine the corresponding weights. In our example, the weight vector 𝑤 = (9, 4, 7, 5)
is generated from this random draw. Each weight in the vector is an integer chosen randomly

within the interval [1, 10].

First. We would like to emphasize that computing preferred reasons given a decision tree and

instance is feasible in practice. In fact, for many datasets and instances, the computation of all

preferred reasons has been completed in less than 20 seconds, regardless of the type of weight

10
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/ Lime Shap Anchor Exp "R_[1,10]" "R_[1,100]" "R_[1,1000]"
Lime 0.0 0.16 0.2 0.28 0.2 0.28 0.38
Shap . 0.0 0.32 0.4 0.32 0.4 0.5
Anchor . . 0.0 0.32 0.22 0.3 0.4
Exp . . . 0.0 0.32 0.4 0.5
"R_[1,10]" . . . . 0.0 0.3 0.4
"R_[1,100]" . . . . . 0.0 0.36
"R_[1,1000]" . . . . . . 0.0

Figure 4: Statistics on the symmetric distance between the subsets of preferred sufficient reasons using
local measures for the compas dataset.

/ Lime Shap Anchor Exp "R_[1,10]" "R_[1,100]" "R_[1,1000]"
Lime 0.0 0.17 0.23 0.01 0.23 0.17 0.2
Shap . 0.0 0.23 0.0 0.23 0.2 0.2
Anchor . . 0.0 0.23 0.23 0.23 0.23
Exp . . . 0.0 0.23 0.17 0.2
"R_[1,10]" . . . . 0.0 0.23 0.23
"R_[1,100]" . . . . . 0.0 0.2
"R_[1,1000]" . . . . . . 0.0

Figure 5: Statistics on the symmetric distance between the subsets of preferred sufficient reasons using
local measures for the placement dataset.

function used. It is evident that the use of different weight function types has a significant impact

on the number of reasons, making it easier to compute all preferred reasons by reducing their

quantity compared to sufficient reasons and minimum-size reasons.

Furthermore, it is important to note that for each dataset 𝑏, each instance in the benchmark

of 𝑏, and each type of weight function, enumerating the preferred sufficient reasons has been

feasible. Leveraging user preferences offers a significant advantage by substantially reducing the

number of generated explanations. By focusing solely on the explanations preferred by the user,

information overload is avoided, and attention is directed towards the most relevant and useful

explanations.

Second. Tables 4 and 5 present a matrix that visualizes the average distances between different

subsets of explanations. These subsets of explanations are obtained using various methods of

local and global weight assignment. The values in the matrices correspond to the distances

between pairs of subsets, where the coordinates (𝑥, 𝑦) represent the weight assignment methods

used. When examining the diagonal entries of the matrix, we observe that the distances are

zero. This is because a subset is identical to itself, so the distance between a subset and itself is

always 0. Additionally, it is important to note that the matrices are symmetric. This is because

the distance used is symmetric, which is typically the case for all distances.

By observing the distances between the different subsets of explanations, we notice that they

are generally less than 1. This indicates that the explanations are relatively close to each other in

terms of distance. Topologically, this suggests that the set of sufficient reasons forms a compact

structure, where the explanations are closely grouped and interconnected. This observation

represents an initial step in studying the diversity of formal explanations. It indicates that the

11



Louenas Bounia et al. ICCBR’23 Workshop Proceedings

different methods of local and global weight assignment used to generate the explanations do

not result in explanations that are very distant from each other. This raises questions about the

variety and extent of possible explanations, as well as how local weight assignment methods can

influence the diversity of the obtained explanations.

7. Conclusion

To summarize the contributions highlighted in this article, we first proposed a CNF-encoding

approach to compute preferred sufficient reasons for decision trees. This approach involves

representing the reasons in a logical form that facilitates their calculation. Additionally, we

introduced the concept of distance between preferred explanations and examined the impact of

weight functions on preferred abductive explanations. Namely, we investigated how different

methods of assigning weights affect the proximity of preferred explanations to each other.

Our focus was on the quantity and diversity of these explanations. We found that a classified

instance, whether positive or negative, can have an exponential number of reasons, including

an exponential number of minimum-sized reasons or preferred reasons. This means that there

can be numerous possible explanations for a single classified instance. However, despite this

potential diversity, the number of preferred reasons is significantly smaller than the number

of sufficient reasons, regardless of the weight function used. Generally, there is a restricted

selection of preferred explanations that are considered the most relevant or useful. Furthermore,

we observed that the distances between different sets of explanations are generally not large.

This indicates that abductive explanations for decision trees tend to be close to each other in

terms of similarity or proximity. In other words, the explanations often share similar features or

partially overlap. These findings suggest that despite the potential diversity of explanations, there

are commonalities and trends among preferred explanations for decision trees. This can be useful

in understanding how decisions are made by these models and in providing comprehensible

explanations to users.

Studying the impact of weight functions on preferred abductive explanations for decision trees

is just the first step in our research on the diversity of abductive explanations. We intend to apply

a similar approach to other models, particularly random forests. Concurrently, we are developing

a SAT encoding to compute the SAT Distance between preferred sets of sufficient reasons. The

aim of this endeavor is to provide users with a framework for selecting preferred explanations

that align with their personal preferences and are closer to the model’s output. In other words,

through this SAT encoding, users will be able to measure the proximity between different sets of

explanations and identify those that are most relevant and consistent with their expectations. This

will enhance their understanding of the model’s results and enable the provision of explanations

that are better suited to the users needs.

12



Louenas Bounia et al. ICCBR’23 Workshop Proceedings

References

[1] M. T. Ribeiro, S. Singh, C. Guestrin, "why should I trust you?": Explaining the predictions of

any classifier, in: Proc. of SIGKDD’16, 2016, pp. 1135–1144.

[2] M. T. Ribeiro, S. Singh, C. Guestrin, Anchors: High-precision model-agnostic explanations,

in: Proc. of AAAI’18, 2018, pp. 1527–1535.

[3] S. Lundberg, S.-I. Lee, A unified approach to interpreting m(ijcaiodel predictions, in: Proc.

of NIPS’17, 2017, pp. 4765–4774.

[4] C. Molnar, Interpretable Machine Learning, Leanpub, 2020.

[5] L. Breiman, Random forests, Machine Learning 45 (2001) 5–32.

[6] Y. Izza, A. Ignatiev, J. Marques-Silva, On explaining decision trees, CoRR abs/2010.11034

(2020).

[7] A. Shih, A. Choi, A. Darwiche, A symbolic approach to explaining bayesian network

classifiers, in: Proc. of IJCAI’18, 2018, pp. 5103–5111.

[8] A. Darwiche, A. Hirth, On the reasons behind decisions, in: Proc. of ECAI’20, 2020.

[9] S. Jabbour, J. Marques-Silva, L. Sais, Y. Salhi, Enumerating prime implicants of propositional

formulae in conjunctive normal form, in: Logics in Artificial Intelligence, 2014.

[10] G. Audemard, S. Bellart, L. Bounia, F. Koriche, J.-M. Lagniez, P. Marquis, On the explanatory

power of boolean decision trees, Data & Knowledge Engineering 142 (2022) 102088. URL:

https://www.sciencedirect.com/science/article/pii/S0169023X22000799. doi:https://doi.
org/10.1016/j.datak.2022.102088.

[11] G. Audemard, S. Bellart, L. Bounia, F. Koriche, J.-M. Lagniez, P. Marquis, Trading complexity

for sparsity in random forest explanations, in: Proc. of AAAI’22, 2022.

[12] G. Audemard, S. Bellart, L. Bounia, F. Koriche, J.-M. Lagniez, P. Marquis, Sur le pouvoir

explicatif des arbres de décision, EGC’2022 38 (2022).

[13] G. Audemard, S. Bellart, L. Bounia, F. Koriche, J. Lagniez, P. Marquis, On preferred abductive

explanations for decision trees and random forests, in: Proc. of IJCAI’22, 2022.

[14] F. Doshi-Velez, B. Kim, Towards a rigorous science of interpretable machine learning, 2017.

arXiv:1702.08608.

[15] G. Audemard, S. Bellart, L. Bounia, F. Koriche, J.-M. Lagniez, P. Marquis, Les raisons

majoritaires: des explications abductives pour les forêts aléatoires, EGC’2022 38 (2022).

[16] G. Audemard, S. Bellart, L. Bounia, F. Koriche, J. Lagniez, P. Marquis, On the computational

intelligibility of boolean classifiers, in: Proc. of KR’21, 2021, pp. 74–86.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine

Learning Research 12 (2011) 2825–2830.

[18] J.-M. Lagniez, P. Marquis, An Improved Decision-DNNF Compiler, in: Proc. of IJCAI’17,

2017, pp. 667–673.

[19] R. Martins, V. M. Manquinho, I. Lynce, Open-wbo: A modular maxsat solver„ in: International

Conference on Theory and Applications of Satisfiability Testing, 2014.

[20] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb,

N. Bansal, S.-I. Lee, Explainable ai for trees: From local explanations to global understanding,

arXiv preprint arXiv:1905.04610 (2019).

13

https://www.sciencedirect.com/science/article/pii/S0169023X22000799
http://dx.doi.org/https://doi.org/10.1016/j.datak.2022.102088
http://dx.doi.org/https://doi.org/10.1016/j.datak.2022.102088
http://arxiv.org/abs/1702.08608

	1 Introduction
	2 Decision Trees and Abductive Explanations
	2.1 Preliminaries
	2.2 Abductive explanations

	3 Computing All Abductives Explanations
	3.1 Compute all minimum-size sufficient reasons.

	4 Preferred abductive explanations
	4.1 Maximum-Weight Explanations

	5 Weight Functions and Distance Between Two Finite Subsets of Explanations
	5.1 Weight Functions
	5.2 Distance Between Two Finite Sets of Explanations

	6 Experiments
	6.1 Experimental results

	7 Conclusion

