
Model Transformations powered by Rewriting

Logic ?

Francisco J. Lucas and Ambrosio Toval

Software Engineering Research Group
Department of Informatics and Systems

University of Murcia (Spain)
fjlucas@um.es,atoval@um.es

Abstract. This paper shows a rigorous approach based on algebraic
speci�cations and rewriting logic which makes up for the lack of current
transformation languages and o�ers a balanced rigour-versus-intuition
framework for model transformation, focusing on the MDA-QVT stan-
dards. To illustrate this approach, an example and some formal applica-
tions of these speci�cations are sketched.

1 Introduction

In recent years, the profound impact of the Model Driven Architecture (MDA)
proposal [1], promoted by the OMG as architecture for software development,
has meant that the model transformation becomes a very active research and
development direction. Within this scope, OMG also published the QVT stan-
dard [2], a language for the speci�cation of model transformations within the
MDA scope. Since transformations guide the whole software development cycle,
it is crucial to o�er a precise and rigorous infrastructure, in order to help to
verify and guarantee correctness of them. However, current implementations of
transformations languages lack this necessary mathematical underpinning.

The aim of this short paper is: on the one hand, to show how a rigorous
approach based on algebraic speci�cation and rewriting logic [3] can o�er a suit-
able framework for model transformations; and on the other hand, to show how
proving theoretical properties of transformations is possible if the transformation
language or tool has a mathematical underpinning [4]. Maude [5] is the formal
language used in this work. To illustrate this approach, the formal speci�cations
of two metamodels, and a transformation between them, have been created.

2 Model Transformation based on a Rewriting Logic

Approach

The main idea of this work is to specify metamodels through OO Maude mod-
ules, and the transformation rules as rewriting rules that rewrite source model

? Partially �nanced by the Spanish Ministry of Science and Technology, project
DEDALO (Development of Quality Systems based on Models and Requirements)
TIN2006-15175-C05-03



42 Proceedings of CAiSE'08 Forum

elements (represented as terms) into other target model elements. In this section,
as well as explaining the main principles of this approach, we will illustrate it by
means of an example of transformation from UML Class diagram to a RDBMS
diagram (extracted from [2]).

2.1 Metamodel Formalization

In QVT, model transformations are de�ned in terms of metamodels, existing
source and target metamodels. Metamodel elements will be speci�ed in Maude

by means of the object oriented modules of Maude. Figure 1 summarizes the
elements that make up the approach. This Figure shows the OMG standards'
elements, the Maude elements and the relationship between them.

Fig. 1. Summary of the approach elements

The �rst metamodel speci�ed is the so-called simple UML metamodel (taken
from annex A of [2]) which represents a simpli�ed version of the UML Class
diagram. Each element of this metamodel is speci�ed by means of aMaude class.
Figure 2 shows an example of a simple UML diagram and how it is expressed
by means of objects in Maude; these objects are instances of Maude classes that
appear in the lefthand side of the �gure, as it was indicated in Figure 1.

Analogously, the textual description of the simple RDBMS metamodel (taken
from annex A of [2]) will be formalized in Maude.

2.2 QVT Relations Features in Maude

In this subsection, we analyze brie�y the basis of QVT Relations and how to
formalize them by means of the strengths o�ered by Maude.

On the one hand, a transformation is expressed in QVT Relations by means
of relations between metamodel elements. A relation declares constraints that
must be satis�ed by the two or more metamodels (or domains) that participate
in the relation. Each domain establishes a pattern that must be matched with
the candidate models in order to execute the transformation, known as object

template expressions that are directly expressed in Maude, since this language
o�ers pattern-matching in the simpli�cation of terms. Regarding the speci�cation
of QVT transformations in Maude, they can be speci�ed as rewriting rules that



Proceedings of CAiSE'08 Forum 43

change and create the elements of the target model. Finally, constraints over the
candidate models will be speci�ed as conditions in the rewriting rules.

Fig. 2. Example of UML diagram and their corresponding Maude objects

2.3 Simple UML to Simple RDBMS

In this section, we will study the transformation from UML diagrams to RDBMS
diagrams (taken from [2]). Basically this transformation has three main (top-
level) relations: Package to Schema, Class to Table and Association to Foreign
Keys. Due to lack of space only the �rst relation will be studied.

Package to Schema relation transforms a package of a UML diagram into a
schema of a relational data base diagram. Figure 3 shows this relation expressed
in QVT (a) and how it is speci�ed in Maude (b). In this relation, the object
template expression can be �directly� expressed in Maude. The pattern matching
binds the variable �pn� to a speci�c value that is used to create a new object
which represents a schema in the target model. On the other hand, since a model
is represented by means of objects in Maude, we have to use object identi�ers
in the rules. In the righthand side of the rule appears both the object of the
source model and the new object in the target model. Finally, once we have
speci�ed the metamodels and the QVT Relations in Maude, we can execute the
transformation over any UML model.

3 Applications in Practice

The main advantage of the use of this approach over other non-formal trans-
formation techniques is that some applications can be carried out only de�ning
the rewriting rules. The application shown checks if two models are semantically
equivalent. In general, various models are semantically equivalent if they have
similar meaning. Being more precise, in this work we consider that two models
are semantically equivalent if they hold all the equivalence relationships (de�ned
by means of QVT Relations) which, depending on the metamodels, express the
semantics equivalence of concepts as de�ned by the analyst. In this way, if the



44 Proceedings of CAiSE'08 Forum

(a) top relation PackageToSchema { pn: String;

checkonly domain uml p:Package {name=pn};

enforce domain rdbms s:Schema {name=pn}; }

(b)

rl [PackageToSchema] :

< packageOid(p:String) : Package | domain : "uml", name : pn:String,...> =>

< packageOid(p:String) : Package | domain : "uml", name : pn:String,...>

< schemaOid(p:String) : Schema | domain : "rdbms", name : pn:String > .

(c) (search UMLdiagram =>! C:Configuration C2:Configuration

such that (C:Configuration := RDBMSdiagram) .)

Fig. 3. (a) and (b) Package to Schema ((a) adapted from [2]); (c) Maude comand to
check if two models are equivalent

semantic equivalence between two models is expressed as a relation, we can use
Maude to infer if two particular models are equivalent using these rules.

If we de�ne a RDBMS model that is equivalent to the one in Figure 2, Figure
3 (c) shows the Maude command that checks this equivalence. We ask Maude

if it is possible to obtain the �RDBMSdiagram� model from the �UMLdiagram�

model using the speci�ed rules. This execution will �nd a solution since the
models are equivalent.

4 Conclusions

The research presented shows the feasibility of integrating formal techniques
with current software engineering standards (MDA-QVT). This approach may
be particularly useful in model-driven engineering processes to develop critical
or error-prone high quality systems. The metamodel speci�cations made in this
approach o�er a powerful way to verify type properties and the correctness of
the models without losing the legibility and practicality of other transformation
languages. Furthermore, in the formal framework proposed the transformations
are represented as mathematical entities and we can take advantage of all the
power of mathematical inference mechanisms. This allows us to infer information
and to prove properties of the transformations.

References

1. OMG: MDA Guide Version 1.0.1, http://www.omg.org/mda. (2001)
2. OMG: MOF QVT Final Adopted Speci�cation. Object Management Group., Re-

trieved from: http://www.omg.org/docs/ptc/07-07-07.pdf. (2007)
3. Meseguer, J.: Conditional rewriting logic as a uni�ed model of concurrency. Theo-

retical Computer Science, 96(1):73-155 (1992)
4. Mens, T., Czarnecki, K., Van Gorp, P.: A Taxonomy of Model Transformations.

Int. Workshop on Graph and Model Transformation (GraMoT). Estonia (2005)
5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcote,

C.: Maude 2.3 Manual., http://maude.csl.sri.com/. (2007)


