
Timed Transition Discovery from Web Service
Conversation Logs

Didier Devaurs1, Kreshnik Musaraj2, Fabien De Marchi2, and
Mohand-Säıd Hacid2

1 University of Windsor, School of Computer Science, Windsor, Ontario, Canada
ddevaurs@uwindsor.ca

2 Université Claude Bernard Lyon 1, LIRIS, UMR CNRS 5205, Villeurbanne, France
{kreshnik.musaraj, fabien.demarchi, mohand-said.hacid}@liris.cnrs.fr

Abstract. Despite their importance, Web service business protocols are
not always published with service interfaces, which hinders automatic
management. A solution is to extract them from past executions. One
of the raised issues is the discovery of temporal constraints called timed
transitions, which are not explicitly recorded. In this paper we present
our approach for discovering such transitions. We define a class of pat-
terns called proper timeouts which are equivalent to timed transitions,
and present a polynomial algorithm for extracting these patterns.3

Keywords: Web service, business protocol, knowledge extraction, tem-
poral constraint

1 Introduction

A very important ambition associated with Web services relates to loosely-
coupled integration, which is already partially carried out by the fact that ser-
vices use widespread standards. A good flexibility is possible only if users know
how to interact with a service. This requires to associate with services elaborate
descriptions (such as WSDL) enabling a good understanding of their execution
semantics. However descriptions like WSDL are not sufficient for a sophisticated
and automatic use of services because they provide only static properties [1]. This
is what motivated authors in [1] to define a higher level model, the so-called busi-
ness protocol, which specifies the conversations supported by a service, i.e. all
valid sequences of message exchanges. It is formalized by a deterministic finite-
state machine, where states represent the various service phases; transitions are
triggered when the service sends or receives messages. A timed business protocol
[2] is an enhanced version of the basic model allowing for the definition of timed
transitions, which are not related to the emission of explicit messages but to
temporal constraints (validity period, expiration date, etc); they are triggered
automatically after a time interval is elapsed or after some date is reached.
3 This work is partially funded by the ANR project Service Mozäıc (2007–2009,

JCJC06 134393) and by the EU Framework 7 STREP project COMPAS (215175,
FP7-ICT-2007-1).

54 Proceedings of CAiSE’08 Forum

Business protocols offer automatic reasoning mechanisms with many applica-
tions, such as correctness verification, compatibility testing, etc. However they
are not often specified in real life services. Potential reasons include lack of
time during implementation or uncontrolled evolution. A solution is then to
infer this protocol from the conversation logs of a service. Direct applications
are re-engineering issues, such as implementation correctness checking or service
evolution. Once automated this extraction process could be applied in service
discovery architectures [3] for automatic service composition or replacement.

Discovering service protocols includes many technical challenges: cleaning
logs from “noise”, identifying the different conversations, defining assessable
models, developing refining tools for an interactive extraction, etc. The first
contribution to this problem has been proposed in [4], but relates only to un-
timed business protocols. With the importance of temporal aspects in real life
services it becomes crucial to extend this work to timed business protocols, which
contain both explicit and timed transitions.

This paper presents our approach for extracting timed transitions from con-
versation logs.4 We define a class of patterns called proper timeouts which reveal
the presence of timed transitions in the protocol. We propose a characterization
of the set of proper timeouts satisfied by the logs, which leads to a polynomial
extraction algorithm. This work is an extension of [4], and both take part in
ServiceMosaic international project (http://servicemosaic.isima.fr) which aims at
developing a platform for modeling, analysing and managing Web services [6].

2 Associating Patterns with Timed Transitions

We define an episode as a sequence of two message names. Given an episode
α = 〈m,m′〉, an occurrence of α is a sequence of two consecutive occurrences
of m and m′ in the logs. The occurrence duration of an episode occurrence is
the difference between the message timestamps. The minimal (respect. maximal)
occurrence duration of an episode is the smallest (respect. greatest) occurrence
duration of all its occurrences. The occurrence duration interval (ODI) of
an episode is the interval which includes all its occurrence durations. The mini-
mal (respect. maximal) occurrence duration of a set of episodes is the minimum
(respect. maximum) of all the minimal (respect. maximal) occurrence durations
of these episodes. The occurrence duration interval (ODI) of a set of episodes
is the interval which includes all the occurrence durations of these episodes. For
each message m, we denote by Pm the set of episodes whose first message is m.

Given two sets of episodes A and B, we say that A precedes B (denoted by
A ≺ B) if ODI(A) is before ODI(B).5 We say that A and B are not comparable
(denoted by A ‖ B) if A ⊀ B and B ⊀ A. Given A,B ⊂ Pm, we show that:
if there exists a timed transition between the state from which the transitions
corresponding to the elements of A are going out, and the one from which the
4 Technical results are presented in an extended version of this paper [5].
5 ≺ is a strict order relation on sets of episodes.

Proceedings of CAiSE’08 Forum 55

transitions corresponding to the elements of B are going out, then A ≺ B.

We define a proper timeout as a triplet PT (m,A,B), where m is a message
and A,B ⊂ Pm. We say that logs L satisfy the proper timeout PT (m,A,B),
which is denoted by L � PT (m,A,B), if:A ≺ B

∀α ∈ Pm \ (A ∪B), {α} ∦ A ∪B
∀Z ∈ {A,B}, ∀X,Y ⊂ Z (X,Y 6= φ), (X ∪ Y = Z) ⇒ (X ⊀ Y) .

(1)

Given a message m and A,B ⊂ Pm, we show that: if there exists a timed
transition in the protocol, between two states s1 and s2 such that the sets of
transitions going out of s1 and s2 respectively are in bijection with A and B,
then there exist A′ ⊆ A and B′ ⊆ B such that L � PT (m,A′, B′). Since each
timed transition involves the satisfaction of a proper timeout, we can find all
of them. However we can discover more proper timeouts than there are timed
transitions, if some messages always take longer to be sent or received than mes-
sages associated with other transitions of the same state. Thus we will say that:
a satisfied proper timeout reveals the presence of a potential timed transition.

We show that: for practical purposes, proper timeouts are the best possible
representations of timed transitions. That justifies the relevance of the develop-
ment of a timed transition discovery method based on the research of the proper
timeouts satisfied by the logs.

3 Extracting the Proper Timeouts

The complexity of a basic “generate and test” method for extracting proper
timeouts is exponential. Instead, we propose a nice characterization of the set of
satisfied proper timeouts, which leads to a polynomial algorithm. This charac-
terization, formalized by Theorem 1, states that: the proper timeouts satisfied
by the logs and related to message m are exactly given by the pairs of consec-
utive elements of the partition of Pm satisfying (2). Thus, partitioning all sets
Pm gives us all the proper timeouts satisfied by the logs.

Theorem 1. Consider a mesage m, im ∈ IN∗, and {P (1)
m , P

(2)
m , . . . , P

(im)
m } a

partition of Pm. The following assertions are equivalent:{
P

(1)
m ≺ P (2)

m ≺ . . . ≺ P (im)
m

∀ 1 ≤ i ≤ im, ∀X,Y ⊂ P (i)
m (X,Y 6= φ), (X ∪ Y = P

(i)
m) ⇒ (X ⊀ Y) .

(2)

{
∀ 1 ≤ i < im, L � PT (m,P (i)

m , P
(i+1)
m)

∀A,B ⊂ Pm, L � PT (m,A,B)⇒ ∃ 1 ≤ i < im, A = P
(i)
m , B = P

(i+1)
m .

(3)

We propose a polynomial algorithm, called partitionPm, for constructing this
partition in an incremental way. The input of algorithm partitionPm comprises

56 Proceedings of CAiSE’08 Forum

a message m, the set Pm, and the ODIs of all episodes in Pm. The output is
the partition Π of Pm satisfying (2). Π is constructed by inserting one by one
the elements of Pm in such a way that (2) is satisfied at each step. In order
to describe the general step of the algorithm, let us consider that Π is already
partly constructed. Let α be an episode of Pm not yet considered. A single pass
is made over the partition to determine (i) whether the ODIs of some elements
of Π overlap ODI(α), and (ii) between which sets of Π α is situated according
to ≺. If there is no overlap, a new set containing α is created and inserted into
the partition in compliance with ≺. If the overlap takes place with only one
element of Π, α is simply inserted in this set. If the overlap occurs between α
and several parts of Π, they are necessarily consecutive according to ≺; as such
they are merged and α is inserted into the resulting set. As for each episode
α ∈ Pm only one pass is made over the partition, the complexity is O(|Pm|2).

The global method for extracting all the proper timeouts satisfied by the logs
is divided in two steps. The first one is a preprocessing of the data, performed
in order to obtain the set of messages, the set of episodes, and the ODIs of
all episodes. A single pass is made over the logs, during which the occurrence
duration of each sequence of two consecutive messages is calculated. The second
step consists in constructing all sets Pm, and running algorithm partitionPm for
each of them. The logs’ size being far greater than the number of episodes, the
first step is the most costly in term of running time. Thus the complexity of the
global algorithm is O(|L|).

We have implemented our discovery process to test its scalability. In order
to easily have a big amount of data, we have also implemented a log generator
which creates conversation logs from a given business protocol by mimicking
the behaviour of a service. Results of our experiments confirm the complexity
results we have established formally. The final test will be to run our algorithm
on real-life data in further experiments.

References

1. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing web
service protocols. Data & Knowledge Engineering 58(3) (2006) 327–357

2. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Fine-grained compatibility and
replaceability analysis of timed web service protocols. In: ER ’07. (2007) 599–614

3. Denaro, G., Pezzé, M., Tosi, D., Schilling, D.: Towards self-adaptive service-oriented
architectures. In: TAV-WEB ’06, Portland, Maine, USA, ACM (2006) 10–16

4. Motahari Nezhad, H.R., Saint-Paul, R., Benatallah, B., Casati, F.: Protocol discov-
ery from imperfect service interaction logs. In: ICDE ’07. (2007) 1405–1409

5. Devaurs, D., Musaraj, K., De Marchi, F., Hacid, M.S.: Timed transition discovery
from web service conversation logs (extended version). Technical Report RR-LIRIS-
2008-007, LIRIS UMR 5205 CNRS/Université Claude Bernard Lyon 1, Villeur-
banne, France (2008) http://liris.cnrs.fr/publis/?id=3369.

6. Benatallah, B., Casati, F., Toumani, F., Ponge, J., Motahari Nezhad, H.R.: Service
mosaic: A model-driven framework for web services life-cycle management. IEEE
Internet Computing 10(4) (2006) 55–63

