
Improving Data Independence, Efficiency and
Functional Flexibility of Integration Platforms

Matthias Böhm1, Jürgen Bittner2, Dirk Habich3, Wolfgang Lehner3, and Uwe Wloka1

1 Dresden University of Applied Sciences, Database Group
mboehm@informatik.htw-dresden.de

wloka@informatik.htw-dresden.de
2 SQL Gesellschaft für Datenverarbeitung mbH Dresden

juergen.bittner@sql-gmbh.de
3 Dresden University of Technology, Database Technology Group

dirk.habich@inf.tu-dresden.de
wolfgang.lehner@inf.tu-dresden.de

Abstract. The concept of Enterprise Application Integration (EAI) is widely
used for integrating heterogeneous applications and systems via message-based
communication. Typically, EAI servers provide a huge set of specific inbound
and outbound adapters used for interacting with the external systems and for con-
verting proprietary message formats. However, the main problems in currently
available products are the monolithic design of these adapters and performance
deficits caused by the need for data independence. First, we classify and discuss
these open problems. Second, we introduce our model-driven DIEFOS (data in-
dependence, efficiency and functional flexibility using feature-oriented software
engineering) approach and show how the feature-based generation of dynamic
adapters can improve data independence, efficiency and functional flexibility. Fi-
nally, we analyze open research challenges we see in this context.

Keywords: Enterprise Integration Platform, Application Integration, Adapter Ar-
chitecture, Dynamic Adapters, DIEFOS Approach

1 Introduction

The trend towards heterogeneous environments comes with an increase in importance
of Enterprise Application Integration (EAI). Such an integration platform consists of a
set of inbound adapters, a core message broker and a set of outbound adapters. The
large number of supported external system types results in the need for data inde-
pendence (independent-system-type data representations for internal processing) and,
simultaneously, for efficient integration task processing (minimum overhead for data
independence). These requirements—but particularly the first one—typically result in
very generic inbound and outbound adapter architectures. There, the architecture of
such adapters is quite monolithic, which results in low functional flexibility of such
software components. This means that for each external system type, a single adapter
is needed, though specific functional modules could be reused. An example for this
is a TCP connection handler which sends the specific messages to the physical target
systems—it might be reused by several adapters like HL7 and B2MML adapters.

98 Proceedings of CAiSE’08 Forum

In order to solve this problem of monolithic adapters (which affects the functionality
as well as the performance), we describe the problem characteristics in Section 2 from
a pragmatic perspective, influenced by the commercial enterprise integration platform
TransConnect R©. Further, we propose our DIEFOS approach and explain its core phases
in Section 3. In general, one of the main questions in this context is whether or not
model-driven approaches can be applied in the field of application integration. Finally,
in Section 4, we conclude our paper and highlight open research challenges we see.

Although there is a lot of related work concerning MDA techniques [1] and MDA
tools (e.g., AndoMDA, MOFLON [2] and Fujuba), only a very low support for model-
driven development can be recognized in application integration platforms (e.g., SQL
GmbH TransConnect, SAP XI, BEA Integration, MS Biztalk and IBM Message Bro-
ker). In this context, the so-called RADES approach [3] tries to give an abstract view on
EAI solutions using technology-independent and multi-vendor-capable model-driven
engineering methodologies. Unfortunately, this approach does not focus the problems
considered here (data independence, efficiency and functional flexibility). Further, also
approaches for automatic generation of Web service adapters [4–6] and BPEL adapters
[7]. These techniques are too specific to the integration technology used. In addition, the
semi-automated generation of adapters for legacy applications is addressed in [8]. How-
ever, such a semi-automated approach is not suitable. The dynamic adapter generation
approach [9] addresses the dynamic adding of new data sources and their invocation
rather than the functional flexibility of adapter generation.

2 Problem Description

Here, we introduce a gener- proprietary message formats

External

System

Scheduler

Outbound

Adapter 1

Outbound

Adapter k
Process Engine

External

System

External

System

Operational Datastore (ODS)

Inbound

Adapter 1

Inbound

Adapter n
External

System

proprietary message formatsuniform XML message formats

Fig. 1. Generalized EAI Server Architecture

alized EAI server architecture and
describe the addressed problems.
As illustrated in Figure 1, an EAI
server consists of typical com-
ponents. There is a set of Inbound
Adapters, which listen passively
to incoming messages and con-
vert these into internal represen-
tations. Further, the internal messages are processed by the runtime environment. This
environment uses a set of Outbound Adapters to actively interact with external
systems. According to the layers of transformations [10], the adapters realize the layers
transport and data representation. The main problem is the monolithic adapter archi-
tecture with very generic message interfaces, which cause the use of uniform message
representations (e.g., XML messages). This also causes the problem of P1: Poor Per-
formance. Further problems include P2: Functional Restrictions (chosen technology),
P3: Development Effort (redundant functionality) and P4: Data Independence (depen-
dencies between adapter interactions). To overcome these problems, message represen-
tations (alternative representations, schemas) as well as adapter architectures (generic
adapters, adapter generation) have to be reconsidered. We follow an adapter generation
approach that allows different alternative message representations.

Proceedings of CAiSE’08 Forum 99

Model-Driven Development

 DIEFOS Adapter Generation Framework

Phase 1:

Specification

Phase 2:

Generation &

Compilation

Phase 3:

Configuration &

Instantiation

Adapter type

specification

PSM

Generated

adapter type

CODE

Instantiated

adapter object

available functional

properties and

dependencies

Setup

choice

PIM

generator

templates

linked

functional

modules

subsection 5.1 subsection 5.2 subsection 5.3

Problem

specification

CIM

Fig. 2. DIEFOS Generator Framework - Macro-Architecture

3 DIEFOS Approach

The DIEFOS approach (Data Independence, Efficiency and functional flexibility using
a Feature-Oriented Software-development) solves the problems described in Section
2. Basically, this framework—whose macro-architecture is illustrated in Figure 2—
comprises the three phases 1: Specification, 2: Generation & Compilation and 3: Con-
figuration & Instantiation.

First, an informal problem specification (CIM) is provided. It is manually trans-
formed into a setup choice (the applicable alternatives are given by feature diagrams
similar to Figure 3), which represents the platform-independent model (PIM). This
choice—in conjunction with available functional properties and dependencies—is used
in order to create the formal adapter type specification (PSM) using an XML model
representation. Second, within the generation step, a java class (CODE) is generated
from the adapter type specification input, using specific code templates. Finally, this
class is compiled and loaded into the JVM. Third, the created instance of the generated
adapter as well as the linked functional modules have to be configured. We use an ap-
proach where specific functionality can be reused in function modules almost without
any overhead. So, during runtime, these hard-coded modules are used as a library.

Adapter

Connector
Protocol

Handler

Format

Converters

Processing

Models

Inbound Outbound

Async Sync

Zip/Unzip

En-/Decrypt

...

XML/TupleFTP

HL7 MLLP

SWIFT

...

JDBC

...
Client

Interface

Basic APIApplication

TCP

...

JDBC

...

Fig. 3. Adapter Type Specification Feature Diagram

100 Proceedings of CAiSE’08 Forum

4 Summary and Open Challenges

The overall motivation for this work was the existence of the four pragmatical prob-
lems: (1) poor performance, (2) functional restrictions, (3) development effort and (4)
need for data independence. The goal was to realize an adapter architecture which en-
sures data independence with minimal overhead concerning the processing efficiency.
Further, the functional flexibility should also be maximized while minimizing the de-
velopment effort at the same time using model-driven development.

In order to solve the given problems, we first observed the adapter problem charac-
teristic of real-world integration platforms. Second, we proposed the DIEFOS approach,
which overcomes the given problems using a model-driven generation approach. This
allows for dynamic composition of adapters and comprises the three phases: 1: Speci-
fication, 2: Generation & Compilation and 3: Configuration & Instantiation. The goal
is to generate adapter types in a feature-oriented manner. The dynamic combinations of
format converters, protocol handlers and physical connectors make it possible to ensure
the data independence, functional flexibility and even the efficiency can be ensured.
However, there are open problems and challenges. Those include but are not limited
to: (1) a conceptual adapter specification model, (2) the debugging and testing of gen-
erated dynamic adapters, (3) the use of a configuration history for consistent recovery
processing, (4) the self-configuration for the generation of adapter specifications based
on workflow descriptions and (5) the separation of data and meta data for functional
correctness and avoidance of runtime errors. Due to the practical relevance, we want to
invite interested research groups and industry vendors to participate in the discussion
on this approach and open challenges.

References
1. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. The Model Driven Architecture: Practice

and Promise. Addison-Wesley (2003)
2. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: Moflon: A standard-compliant meta-

modeling framework with graph transformations. In Rensink, A., Warmer, J., eds.: Model
Driven Architecture - Foundations and Applications. (2006)

3. Dorda, C., Heinkel, U., Mitschang, B.: Improving application integration with model-driven
engineering. In: ICITM. (2007)

4. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing adapters
for web services integration. In: CAiSE. (2005) 415–429

5. Lee, K., Kim, J., Lee, W., Chong, K.: A tool to generate an adapter for the integration of web
services interface. In: CBSE. (2006) 328–335

6. van den Heuvel, W.J., Weigand, H., Hiel, M.: Configurable adapters: the substrate of self-
adaptive web services. In: ICEC. (2007) 127–134

7. Brogi, A., Popescu, R.: Automated generation of bpel adapters. In: ICSOC. (2006) 27–39
8. Pieczykolan, J., Kryza, B., Kitowski, J.: Semi-automatic creation of adapters for legacy

application migration to integration platform using knowledge. In: International Conference
on Computational Science (4). (2006) 252–259

9. Gong, P., Gorton, I., Feng, D.D.: Dynamic adapter generation for data integration middle-
ware. In: SEM. (2005) 9–16

10. Hohpe, G., Woolf, B.: Enterprise Integration Patterns : Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley (2004)

