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Abstract. The purpose of validating a conceptual schema is to check whether it 
specifies what the designer intended. Our approach to validation consists in 
translating the schema into logic in such a way that any reasoning method can be 
used to perform the validation tests defined by the designer. An important 
contribution of this work is that it takes into account the operations defined in the 
schema.  

1. Introduction 

In software quality assurance, the purpose of the validation process is to answer to the 
question Am I building the right system?. In the context of conceptual modeling, 
validation can be used to assure the quality of a conceptual schema instead of a piece of 
code. To this end, it is desirable to provide the designer with some assistance, so that 
he can check whether the conceptual schema properly specifies what he intended.  

A conceptual schema consists of a structural schema, which defines the relevant 
static aspects of the domain, and a behavioral schema, which defines the only changes 
that can be performed on the information. It includes a set of system operations, which 
view the system as a black box and are not assigned to classes [4].  

Fig. 1 shows the structural schema of an on-line auction site that we will use as an 
example. The system stores information about users, and each user is the owner of a set 
of products. Users bid for products by specifying the amount they offer. Additionally, 
this structural schema includes some textual integrity constraints that must be satisfied.  

A test that the designer can perform to validate the schema is to check whether it 
accepts at least one instance satisfying all the constraints. For example, the following 
instantiation of the schema: "Mick is a user who owns a book, and bids 200$ for a 
bicycle, owned by Angie, who had set a starting price of 180$" satisfies all the 
graphical and textual constraints. However, the fact that the structural part of a schema 
is satisfiable does not necessarily imply that the whole conceptual schema also is. That 
is, when we take into account that the only changes admitted are those specified by the 
operations, it may happen that the properties fulfilled by the structural schema alone 
are no longer satisfied. For instance, if the schema does not contain any operation that 
successfully populates the class User¸ it will not be possible to populate any other class 
(instances of product will neither exist, since each Product needs an owner and, in turn, 
bids need products and users). 

                                                            
* This work has been partly supported by the Ministerio de Ciencia y Tecnología under projects 
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Fig. 1. The structural schema of an on-line auction site 

This means that our conceptual schema must include, for example, an operation 
registerUser that a designer could define by means of the following operation contract:   

Op: registerUser(id:String, e-mail:String) 
Pre:  
Post: User.allInstances()->exists(u | u.oclIsNew() and 

u.id=id and u.e-mail=e-mail) 

We assume a strict interpretation of the contracts [7], which prevents the application 
of an operation if a constraint is violated by the state satisfying the postcondition. 

In this work we propose an approach to validate a UML conceptual schema, with its 
constraints and operations specified in OCL1. To do this, we translate the schema into a 
set of logic formulas. The result of this translation ensures that the only changes 
allowed are those specified in the behavioral schema, and can be validated using any 
reasoning method or tool that is capable of dealing with negation of derived predicates. 

2. Translation of a Conceptual Schema into Logic 

When considering the behavioral schema in the validation, it must be taken into 
account that the population of classes and associations at a certain time t is just the 
result of all the operations that have been executed before t. For instance, Angie may 
only be an instance of User at a time t if the operation registerUser has created it at 
some time before t and no other operation has removed it between its creation and t. 

For this reason, it must be guaranteed that the population of classes and associations 
at a certain time depends on the operations executed up to that moment. To do this, we 
propose that operations are the basic predicates of our logic formalization. Classes and 
associations will be represented by means of derived predicates, and their derivation 
rules will ensure that their instances are precisely given by the operations executed. 

Then, an instance of a predicate p representing a class or association exists at time t 
if it has been added by an operation at some time t2 before t, and has not been deleted 
by any operation between t2 and t. Formally, the general derivation rule is:  

p([P,],P1,...,Pn,T) ← addP([P,]P1,...,Pn,T2) ∧ ¬deletedP(Pi,...Pj,T2,T) ∧ T2≤T 
deletedP(Pi,...,Pj,T1,T2) ← delP(Pi,..,Pj,T) ∧ T>T1 ∧ T≤T2 

where P is the OID (object identifier), which is included if p is a class. Pi,...,Pj are the 
terms of p that suffice to identify an instance of p. In particular, if p is a class or 
association class, P=Pi=Pj. Predicates addP and delP are also derived predicates that 
hold if some operation has created or deleted an instance of p at time T, respectively.  

                                                            
1 The subset of OCL considered consists of all the OCL operations that result in a boolean value, 

including select and size, which can also be handled by our method. 

Integrity constraints: 

- Users and Products are identified by 
their id 

- The amount of a bid must be greater 
than the starting price of the product 

- The owner of a product cannot bid for it 
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Let op-addPi be an operation, with parameters Par1,...,Parn and precondition prei 
such that its postcondition specifies the creation of an instance of a derived predicate p. 
For each such operation we define the following rule:  

addP([P,]Pari,...,ParkT) ← op-addPi([P,]Par1,...,Parm,T) ∧ prei(Tpre) ∧ Tpre=T-1 
where Pari,..,Park are those parameters of the operation that indicate the information 
required by the predicate p, and T is the time in which the operation occurs. The literal 
prei(Tpre) is the translation of the precondition of the operation [6].  

Similarly, for each operation op-delPi(Par1,...,Parn,T) with precondition prei that 
deletes an instance of p we define the derivation rule: 

delP(Pari,...Parj,T) ← op-delPi(Par1,...,Parn,T) ∧ prei(Tpre) ∧ Tpre=T-1 
where Pari,...,Parj are those parameters that identify the instance to be deleted. 

For instance, the class User of our example will be represented by:  
user(U,Id,Email,T) ← addUser(U,Id,Email,T2) 
addUser(U,Id,Email,T) ← registerUser(U,Id,Email,T) 

where U corresponds to the unique OID. In turn, addUser is a derived predicate whose 
definition depends on the operations of the behavioral schema that create instances of 
User. In particular, it will hold if the operation registerUser has been executed.  

Since our schema does not include any operation to remove users, the derived 
predicate deletedUser must not be defined in this case.  

Additionally, a set of constraints must be added to the translation to ensure the 
correct occurrence of the operations. In particular, since two operations cannot occur at 
the same time, for each operation O with parameters p1,...,pn we define the following 
constraint for each parameter pi: ← o(P11,...,Pn1,T) ∧ o(P12,...,Pn2,T) ∧ Pi1 <> Pi2. 

And for each pair O, O2 of operations:  ←o(P1,...,Pn,T) ∧ o2(Q1,...,Qm,T). 
Moreover, all constraints of the UML structural schema are also translated into 

formulas in denial form according to [6], but now they are defined in terms of derived 
predicates instead of basic ones.  

3. Our Approach to Validation 

Our approach to validation is aimed at providing the designer with the ability to define 
his own tests to see how the schema behaves in a particular situation, and then compare 
the results obtained with the ones expected according to the requirements. This will be 
done taking into account both the structural and the behavioral parts of the schema. 

Our method consists in reducing the problem to checking the satisfiability of a 
derived predicate. In this way, a derived predicate that formalizes the desired test is 
defined. With this input, together with the translated schema itself, any satisfiability 
checking method that is able to deal with derived predicates can be used to validate the 
schema. For instance, an interesting question could be “Can all the classes of the 
schema be populated?". The following derived predicate formalizes this test:  

populated←user(U,Uid,Em,T) ∧ product(P,Pid,Price,Own,T) ∧ bid(B,Pr,Us,Amt,T)  
It can easily be seen that the schema of our example does not satisfy this property, 

since its behavioral schema does not allow creating an instance of User owning at least 
one Product, as required by the cardinality constraint in Offered by. This means that the 
conceptual schema is not correct and the designer must solve this situation either by 
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making the operation registerUser responsible of creating instances of the association 
Offered by, or by changing the cardinality constraint from 1..* to *.  

By studying the results of the tests, and with his knowledge about the requirements, 
the designer will be able to decide if the schema is correct, and modify it if necessary. 

4. Related Work 

We briefly summarize the work related to the validation of conceptual schemas with a 
behavioral part. One of the first methods to do this belongs to the area of deductive 
databases [2], and proposes a framework to validate a schema using planning methods.  

In the context of UML, there is an approach that combines two methods: UML-B [8] 
to translate a UML schema into B, and ProB [5], to validate it. However, UML-B only 
accepts a subset of the UML, and does not admit OCL. Moreover, ProB requires that 
the possible values of types are enumerated, which does not guarantee completeness.  

The rest of existing UML/OCL approaches that somehow consider the behavioral 
part may report as valid a state satisfying all the constraints but that is impossible to 
construct using the operations defined in the schema [1, 3].  

5. Conclusions  

We have proposed a new approach to validate a complete UML conceptual schema, 
with its textual constraints and operations expressed in OCL. Our approach helps the 
designer to check that the schema defined correctly specifies the requirements. 

This is achieved by translating the conceptual schema, including its behavioral part, 
into a logic representation such that any satisfiability checking method able to deal 
with derived predicates can be used to validate the schema. 
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