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Abstract
Boolean function minimization techniques try to find, for a given formula, a smaller equivalent formula.

In this work, we present a novel technique for heuristic boolean function minimization. By using an

algebraic encoding, we embed the minimization problem into an algebraic domain, where algorithms

for computing Gröbner bases are applicable. A Gröbner basis usually forms a compact representation

of our encoded function. From the Gröbner basis, we then reconstruct an equivalent, more compact

boolean formula. Our approach is the first to use Gröbner bases for function minimization. Combined

with advances of algebraic Gröbner bases in satisfiability checking, this motivates further research on

applications of Gröbner bases in the context of boolean logic.
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1. Introduction

Boolean function minimization algorithms find, given a boolean formula, a small equivalent

boolean formula. This, for example, is a central problem in circuit synthesis [1, 2].

In general, the exact boolean minimization problem is NP-hard, it even is Σ𝑃
2 -complete [3].

Hence, exact approaches quickly become infeasible. Thus, approaches in this area often have

trade-offs between result quality and runtime. Previous work often focused on minimizing

disjunctive normal forms (DNF) or used syntactical heuristics to simplify functions (Section 1.1).

Our contribution is a novel heuristic approach for multi-level boolean function minimization.

Given an input formula in DNF, our approach encodes it as a system of equations over F2, using

a modification of previous encodings [4]. This representation allows computing a Gröbner basis

with common algorithms [5]. The resulting Gröbner basis, then, can again be interpreted as

an empirically smaller, equivalent boolean formula. This process is repeated recursively to

further minimize the formula. Contrary to other minimization algorithms, our encoding over

F2 can efficiently represent the exclusive-or (⊕) operator, allowing exponentially more compact

representations compared to DNF. Thus, our approach works particularly well for formulas

which contain many exclusive-or operations. In practice, such formulas occur, for example, in
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microarchitectural hash functions [6]. Some proprietary hash functions, e.g. used for cache slice

indexing in modern microprocessors have been reversed (i.e. a compact representation has been

found) by using our approach (work under submission). In practice, we observe more compact

representations than a minimized DNF even on random formulas, Section 3. Furthermore, for

some classes of formulas, nearly optimal results are provable (Theorem 2).

In addition to previous applications of Gröbner bases in logic [4, 7] that focus on preprocessing

for satisfiability checking, our approach is a novel, complementary application of Gröbner bases

for boolean logic. This motivates further research in this direction.

1.1. Related Work

Boolean Minimization Usually, a boolean logic minimizer is given a formula in DNF, which

can be easily obtained from a truth table. Then, it produces a small, equivalent formula. Existing

tools can be classified by the shape of the output formula:

Two-level logic optimization tools produce again a formula in DNF. Classically, Quine and

McCluskey [8, 9] focus on optimal two-level minimization. However, their optimal approach

quickly becomes infeasible [1]. Thus, later approaches such as ESPRESSO [1] make use of a

heuristic search for producing a compact DNF. Still, representing a formula in DNF can have

exponential overhead. For example, any DNF of 𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑥1⊕· · ·⊕𝑥𝑛 is exponentially

larger in 𝑛 than 𝑓 . This motivates more general minimization approaches.

Multi-level logic optimization allows minimized formulas of arbitrary shape. Still, some tools

produce only formulas of a fixed structure. For example, EXORCISM [10] always produces

formulas of the shape “exclusive-sum-of-products”. Other tools produce formulas of arbitrary

depth and structure, for example MIS [11] or LSS [12]. Most multi-level optimization tools rely on

two-level optimization and apply syntactic transformations such as subexpression recognition and

replacement to the resulting formula [13]. More recently, approaches for multi-level synthesis

based on satisfiability [14, 15] have been studied. They provide optimal solutions but are only

feasible for small instances. Our presented approach provides a heuristic method for multi-level

logic optimization which, contrary to previous work, does not rely on syntactic recognitions.

Gröbner Bases are special generating sets for ideals and are widely used in computer al-

gebra [16], for example for ideal membership testing of a polynomial. However, we focus on

applications of Gröbner bases in logic. For example, Gröbner bases are used in the context of

satisfiability checking and model counting, as well as in verification and SMT solving.

In satisfiability checking, Gröbner bases can be used for pre-processing clause sets in con-

junctive normal form (CNF) [4, 7]. Concretely, it is possible to encode a (sub-)set of clauses of a

CNF formula as a system of polynomials. Then, a Gröbner basis for this system is computed.

The resulting system of polynomials is then, again, interpreted as a set of clauses. The resulting,

usually more compact set of clauses is equivalent to the original set. Hence, it is possible to

replace sets of clauses with more compact, equivalent sets. Satisfiability checking on the pre-

processed clauses is usually faster than on the original CNF [4]. However, the cost of computing

the Gröbner bases outweighs the benefits. A similar encoding can be used for model counting

for boolean formulas [17]. Given a set of clauses reduced by the above technique, it becomes

(computationally) easy to count satisfiable assignments. In contrast to the above approaches,
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we apply Gröbner bases to formulas in disjunctive normal form (DNF), and in the context of

logic minimization.

Other applications of Gröbner basis are verification of arithmetic gates [18, 19, 20] and SMT

solving over finite fields [21, 22] or real numbers [23]. However, note that both applications do

not directly encode boolean formulas as polynomials, but use Gröbner bases for theory solving.

Still, combined with our work, this suggests that Gröbner bases have multiple applications in

logic and could be worthwhile to investigate further.

2. Gröbner Bases for Logic Minimization

Given a boolean DNF 𝜙 =
⋁︀

𝑖

⋀︀
𝑗 𝑦𝑖𝑗 with literals 𝑦𝑖𝑗 ∈ {𝑥1, . . . , 𝑥𝑛,¬𝑥1, . . . ,¬𝑥𝑛}, we want

to find an equivalent smaller formula. Our idea is to switch from boolean formulas 𝜙 to ideals

𝐼 in the polynomial ring F2[𝑥1, . . . , 𝑥𝑛]. Then, Gröbner bases of 𝐼 correspond empirically to

smaller equivalent formulas of 𝜙.

2.1. Encoding Boolean Formulas as Polynomials

In the following, we will identify the truth-values {false, true} with the set F2 = {0, 1}, where

false corresponds to 0 and true corresponds to 1. Note that F2 has the structure of a field

with multiplication given by ∧ and addition is given by ⊕. Hence, we can view a polynomial

𝑓 =
∑︀

𝑖

∏︀
𝑗 𝑦𝑖𝑗 ∈ F2[𝑥1, . . . , 𝑥𝑛] with 𝑦𝑖𝑗 ∈ {1, 𝑥1, . . . , 𝑥𝑛} as a boolean formula of the form⨁︀

𝑖

⋀︀
𝑗 𝑦𝑖𝑗 . Conversely, we can encode any boolean formula 𝜙 as a polynomial over F2 by

additionally using the identities ¬𝑥 = 𝑥⊕ 1 and 𝑥 ∨ 𝑦 = ¬(¬𝑥 ∧ ¬𝑦), which will be encoded

as 𝑥+1 and 1+ (1+ 𝑥) · (1+ 𝑦) = 𝑥𝑦+ 𝑥+ 𝑦 respectively. We call this the algebraic encoding

of 𝜙.

The previous relationship between boolean formulas and polynomials can be further ex-

tended to a correspondence between equivalent formulas and ideals in F2[𝑥1, . . . , 𝑥𝑛]. Re-

call that an ideal 𝐼 in a polynomial ring 𝑅 is a subset 𝐼 ⊆ 𝑅 which can be written as

𝐼 = {
∑︀𝑚

𝑖=1 𝑔𝑖𝑓𝑖 | 𝑔1, . . . , 𝑔𝑚 ∈ 𝑅} for some polynomials 𝑓1, . . . , 𝑓𝑚 ∈ 𝑅. Such polynomi-

als are called generators of 𝐼 , and we write 𝐼 = (𝑓1, . . . , 𝑓𝑚).

Theorem 1. There is a bijection between equivalence classes of boolean formulas [𝜙] and ideals

𝐼 ⊆ F2[𝑥1, . . . , 𝑥𝑛] containing 𝑥21+𝑥1, . . ., 𝑥2𝑛+𝑥𝑛, such that 𝜙(𝑥) = 0⇐⇒ ∀𝑓 ∈ 𝐼, 𝑓(𝑥) = 0.

Proof. Let [𝜙] be an equivalence class of boolean formulas in 𝑛 variables. Then it is uniquely

determined by its zero set {𝑥 ∈ F𝑛
2 | 𝜙(𝑥) = 0}. Conversely, any set 𝑌 ⊆ F𝑛

2 is the zero set

of the formula

⋀︀
𝑦∈𝑌

⋁︀𝑛
𝑖=1(𝑥𝑖 ⊕ 𝑦𝑖). Hence, there is a bijection between equivalent formulas

and subsets of F𝑛
2 . Similarly, any ideal containing 𝑥21 + 𝑥1, . . . , 𝑥2𝑛 + 𝑥𝑛 is uniquely determined

by its zero set {𝑥 ∈ F𝑛
2 | ∀𝑓 ∈ 𝐼, 𝑓(𝑥) = 0} by Hilbert’s Nullstellensatz for finite fields [24].

Additionally, every subset 𝑌 ⊆ F𝑛
2 is finite and hence a zero set of an ideal by elementary

results from algebraic geometry. Further, this ideal can always be assumed to contain 𝑥21 + 𝑥1,

. . . , 𝑥2𝑛 + 𝑥𝑛, such that we have a bijection between ideals containing 𝑥21 + 𝑥1, . . . , 𝑥2𝑛 + 𝑥𝑛 and

subsets 𝑌 ⊆ F𝑛
2 . By combining this bijection which the first one, we obtain the statement of

the theorem.
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Importantly, we can explicitly convert a boolean formula to generators of the corresponding

ideal and vice versa. Let 𝜙 =
⋁︀

𝑖

⋀︀
𝑗 𝑦𝑖𝑗 be a formula in DNF, then its corresponding ideal 𝐼

is generated by 𝑥21 + 𝑥1, . . ., 𝑥2𝑛 + 𝑥𝑛 and 𝑓𝑖 =
∏︀

𝑗 𝑦𝑖𝑗 , where we identify a literal 𝑦𝑖𝑗 with a

polynomial via our algebraic encoding. This can be verified by using Theorem 1 and observing

that 𝜙(𝑥) = 0 if and only if 𝑓𝑖(𝑥) = 0 for all 𝑓𝑖, which is equivalent to 𝑓(𝑥) = 0 for all 𝑓 ∈ 𝐼 .

Similarly, an ideal 𝐼 = (𝑓1, . . . , 𝑓𝑚, 𝑥21 + 𝑥1, . . . , 𝑥
2
𝑛 + 𝑥𝑛) corresponds to the boolean formula⋁︀

𝑖 𝑓𝑖, where the polynomials 𝑓𝑖 are again identified with a boolean formula.

Note that the polynomials 𝑥2𝑖 + 𝑥𝑖 represent the idempotency law 𝑥𝑖 ∧ 𝑥𝑖 = 𝑥𝑖 and allow

the elimination of all higher powers of 𝑥𝑖 during the Gröbner basis computation. Thus, there

exist only 2𝑛 different leading monomials besides 𝑥2𝑖 , which implies that the size of a reduced

Gröbner basis is bounded by 2𝑛+𝑛. Further, it is possible to compute this Gröbner basis in time

2𝑂(𝑛)
using Buchberger’s algorithm, see Proposition 4.1.1 in [17]. This provides a significant

improvement compared to the usual double exponential bound for Gröbner bases.

2.2. Gröbner Basis Minimization

Empirically, Gröbner bases are relatively small if the ideal is not too complex. Hence, we simplify

a boolean formula by converting it to an ideal 𝐼 . Then, we compute a Gröbner basis of 𝐼 to obtain

a set of generators 𝐺. 𝐺 is then converted back to a formula of the form

⋁︀
𝑔∈𝐺 𝑔 ∼=

⋁︀
𝑔∈𝐺 ¬¬𝑔.

We can apply this approach recursively to the terms ¬𝑔 to further reduce the size and obtain a

formula of the form

⋁︀
𝑖 ¬

⋁︀
𝑗 ¬

⋁︀
𝑘 . . .

∼=
⋁︀

𝑖

⋀︀
𝑗

⋁︀
𝑘 . . ., as depicted in the following algorithm:

1: functionMinimize(𝜙)

2: 𝐺← GröbnerBasis(Ideal(𝜙))
3: for 𝑔 ∈ 𝐺 do
4: if 𝑔 is linear or recursion limit is reached then
5: 𝜙𝑔 ← Formula(𝑔)
6: else
7: 𝜙𝑔 ← ¬Minimize(DNF(¬Formula(𝑔)))
8: return

⋁︀
𝑔∈𝐺 𝜙𝑔

Note that it is not guaranteed that our algorithm produces a smaller formula and by the previous

bound the Gröbner bases can have a size exponential in the number of variables. However,

empirically we observed very compact formulas. Furthermore, for special classes of formulas,

better bounds can be proven.

Theorem 2. Let 𝜙 be a formula in DNF which is equivalent to

⋁︀
𝑖

⨁︀
𝑗 𝐴𝑖𝑗𝑥𝑗 for a matrix 𝐴 ∈

F𝑛×𝑛
2 . Then |Minimize(𝜙)| < 2 · 𝑛 · rank(𝐴), where | · | denotes the number of boolean operators

and variables in a formula.

Proof. Consider a boolean formula 𝜙 which is equivalent to

⋁︀𝑛
𝑖=1

⨁︀𝑛
𝑗=1𝐴𝑖𝑗𝑥𝑗 for a matrix

𝐴 ∈ F𝑛×𝑛
2 . Then the corresponding ideal 𝐼 from Theorem 1 is generated by 𝑥2𝑖 + 𝑥𝑖 and

the linear terms

∑︀𝑛
𝑗=1𝐴𝑖𝑗𝑥𝑖 defined by the rows of 𝐴. Denote with 𝑚 the rank of 𝐴 and let

𝐴′ ∈ F𝑚×𝑛
2 the be matrix given by the non-zero rows in the reduced row echelon form of
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Figure 1: Comparison of output size and runtime.

𝐴, which can be computed using Gaussian elimination. Then one can check that a reduced

Gröbner basis of 𝐼 is given by the terms

∑︀𝑛
𝑗=1𝐴

′
𝑖𝑗𝑥𝑖 corresponding to the rows of 𝐴′

and the

terms 𝑥2𝑖 + 𝑥𝑖 for which 𝑥𝑖 is not a leading monomial of one of the first terms. Since a reduced

Gröbner basis is unique, it will also be computed by our minimization algorithm. Further, the

terms of the form 𝑥2𝑖 + 𝑥𝑖 are redundant and will be removed, such that a formula of the form⋁︀𝑚
𝑖=1

⨁︀𝑛
𝑗=1𝐴

′
𝑖𝑗𝑥𝑗 is returned. By counting the number of operators and variables, we obtain

that the size of such a formula is always less than 2𝑛𝑚.

Further Improvements In addition to our main algorithm, we implemented the following

two improvements: First, minimizing the DNF with a two-level minimization algorithm during

preprocessing reduces the size of the input. This does not change result quality, but can

significantly speed up the algebraic computations. Second, some elements of the Gröbner

basis can be redundant in the sense that a subset of the Gröbner basis already generates the

corresponding ideal. Finding a minimal generating subset of the Gröbner basis can be formulated

as a weighted set-cover problem, which we solve in a post-processing step to improve result

quality. Eliminating these redundant terms directly during the computation of the Gröbner

basis is subject to further work.

3. Evaluation

A first prototype of this algorithm has been implemented in SageMath [25], using SINGULAR

[26] for computing Gröbner bases, as well as ESPRESSO [1] for DNF preprocessing and GLPK

[27] for set-cover computations. Note that Gröbner bases are computed with respect to the

degree reverse lexicographic order. A basic benchmark in Figure 1 shows the average size of

a reconstructed formula, and the runtime of the minimization process. This is compared to a

minimized formula in DNF from ESPRESSO [1] and a minimal formula produced with ABC’s

‘exact’ command [28, 14]. The benchmark ran on 200 random formulas for each size. The
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formulas were sampled uniformly at random on a syntactic level, i.e. one syntax tree is sampled

uniformly at random out of all possible syntax trees for a specific size. Note that exact, optimal

synthesis with ABC is only possible for up to 7–8 variables, while our approach can deal with

up to 20 variables. Our resulting formulas are always more compact than a DNF produced

by ESPRESSO. However, our approach has a significantly greater runtime. We are currently

working on reverse-engineering microarchitectural hash functions used e.g. for cache indexing

in processors with our algorithm (to appear in [29]).

4. Conclusion

We have presented a novel technique for heuristic multi-level formula minimization based on

an algebraic encoding of formulas and Gröbner basis computations. Currently, our algorithm

can handle functions with up to 20 input bits, whereas exact synthesis can only handle up to 8
input bits. Empirically, our approach produces smaller formulas than two-level minimization

algorithms such as ESPRESSO. In particular, our idea works well for formulas with many

exclusive-or operations. Our algorithm shows a new application of Gröbner basis computations

in logic minimization. In addition to previous work on Gröbner bases in satisfiability [4, 7], this

result suggests that the use of our algebraic encoding, as well as Gröbner bases, brings benefits

to boolean logics and could be worthwhile to investigate further.

Acknowledgements: We thank our anonymous reviewers for their constructive comments.
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