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Abstract
Bayesian methods have become a popular way to incorporate prior knowledge and a notion of uncer-
tainty into machine learning models. At the same time, the complexity of modern machine learning
makes it challenging to comprehend a model’s reasoning process, let alone express specific prior as-
sumptions in a rigorous manner. While primarily interested in the former issue, recent developments
in transparent machine learning could also broaden the range of prior information that we can provide
to complex Bayesian models. Inspired by the idea of self-explaining models, this paper introduces a
corresponding concept for variational Gaussian Processes. While the proposed method is inherently
transparent, the bayesian nature of the underlying Gaussian Process allows to incorporate prior knowl-
edge about the underlying problem. In one sentence, the goal is to let the human expert explain how
to solve a supervised learning problem in a language that both the model and the user understand. For
now, we evaluate these capabilities on simple problems.
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1. Introduction

As the field of explainable machine learning is getting more and more traction, methods that
were once incomprehensible to human users are beginning to become more transparent. While
a general solution to the challenge of humanly tangible, yet sufficiently complex models still
seems to be far off in the future, recent developments have yielded promising results. The
primary advantages of interpretable models are, as noted in [1], (scientific) understanding on
the one hand and on the other hand safety, especially operational and ethical safety.

Typically, interpretable methods aim to encode the implicit decision process of a black-box1 in
a representation that humans can understand and evaluate. This begs, in particular, the following
research question: Can we use an interpretable representation to induce existing knowledge about
a complex modelling problem into a target model?. While there is no normed definition of what a
’complex’ modelling problem actually is, we can loosely define it as a task that, at least for now,
typically needs to be handled by a black-box. Under this definition, standard linear regression
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models lack the complexity characteristic as regression coefficients can be used by humans
to understand the underlying decision process. On the other hand, we can encode existing
knowledge about the modelling task in such models. This is usually done either via Bayesian
priors over the coefficients or constrained optimization.

Problem. For complex machine learning models, it is usually not as straightforward to
encode existing knowledge as in the linear example. Our goal for this paper is therefore twofold.
First, we want to derive an approach that can model complex problems in a transparent manner.
Subsequently, we want to be able to exploit the transparent representation to encode existing
prior knowledge and use it in the model’s training procedure.

Let us split these goals further into three concrete requirements: Transparency - The solution
needs to provide insights into its decision process that can be understood by a sufficiently trained
domain expert. Flexibility - In order to be useful for complex problems, the proposed approach
needs to be flexible, i.e. be able to handle a broad range of functional relations between input and
target variables. Teachability - Finally, we need to be able to use an interpretable representation
of existing knowledge and align the model’s decision process with that knowledge.

Apart from that, a practically relevant solution should also be able to handle with real-world
problem. This implies, in particular, that scalability to reasonably large datasets has to be
possible.

Contribution. To achieve the above desiderata, this paper proposes self-explaining varia-
tional GPs (SEVGPs). The self-explanatory component aims to solve the transparency require-
ment. By using the right kernel functions, GPs can handle complex functional relations as
demanded under the flexibility specification. Since GPs are part of the family of Bayesian
models, they are naturally able to incorporate prior knowledge, i.e. they also fall under the idea
teachability. The primary limitation in this regard is the representations in which we are able
to express our prior knowledge.

While GP models in their original form are unable to deal with large datasets, there exist
many scalable solutions nowadays. Our approach will apply the concept of sparse variational
GPs (SVGPs) in order to achieve scalability to big data problems as well.

Related work. The results of [2, 3, 4] directly inspired this approach from an explainability
and transparency point of view. In fact, the approach [3] relates to this work in a similar way as
GPs relate to SVGPs. However, as will be seen, this paper does not merely provide a scalable
variant of the former work via SVGPs.

In addition to the transparency component, our aim is to also create a tool that can be used
to provide human expert knowledge via transparent representations. [5, 6, 7, 8] all discuss the
potentially beneficial role of expert and domain knowledge in machine learning, yet either
mention Bayesian methods only briefly or not at all. Nevertheless, Bayesian non-parametrics
have already been applied successfully in countless classical statistical modeling problems with
an emphasis on incorporating prior knowledge - see [9] for a variety of examples.

Recent work on functional variational inference as discussed particularly in [10, 11] could be
a fruitful step towards a synthesis of meaningful prior models and modern Machine Learning
architectures.

Outline. In the next section we conduct a brief recap on transparent machine learning with
focus on varying coefficient and self-explaining methods. Thereafter, we proceed similarly
for GPs and SVGPs. The fourth section marks the main contribution of this paper where the



primary formulas of our approach are exposed and discussed. Experimental validation of the
approach is conducted in section five. Finally, we discuss limitations and potential extensions
of our methodology in the last section. Proofs and derivations, as well as additional details can
be found in the appendix.

2. Transparent Machine Learning

In regards to transparency in machine learning, terms like interpretable machine learning or
explainable artificial intelligence (XAI) have become quite widespread and popular. However,
up to this date, there is still no uniquely accepted definition for many terms in this field. In our
context, where we consider supervised learning problems, we will use the following definitions
of interpretation and explanation from [12]:

Definition 1. An interpretation is the mapping of an abstract concept into a domain that the
human can make sense of. An explanation is the collection of features of the interpretable domain,
that have contributed for a given example to produce a decision.

The corresponding authors particularly name images and text as interpretable domains. Expla-
nations, on the other hand, could be visualizations that highlight image regions or certain words
that contributed in favour of or against a given decision.

As we will see, it makes sense to allow for explanations to also quantify the strength of
contribution per interpretable feature. For example, consider a fixed grey-scale image and denote
the corresponding vector of the 𝐷 image’s pixels, encoded in the range [0, 1], as 𝑥 ∈ [0, 1]𝐷 . By
introducing a coefficient vector 𝛽 ∈ R𝐷 with the same dimensionality as 𝑥, we can derive the
usual linear model for a single example

𝑦 = 𝑥𝑇𝛽 (1)

The outcome scalar 𝑦 ∈ R could then be mapped to a valid probability via some monotone,
increasing function 𝜎 : R ↦→ (0, 1). This obviously results in a binary classification problem.
Notice that we can equally write (1) as the sum of pixel-coefficient products, i.e.

𝑦 =
𝐷∑︁

𝑑=1

𝑥(𝑑)𝛽(𝑑) (2)

With respect to the mentioned classification problem, (2) now implies the following logic for
quantifiable explanations:

Image pixels where 𝑥(𝑑)𝛽(𝑑) > 0 contribute towards a positive classification whereas pixels
where 𝑥(𝑑)𝛽(𝑑) < 0 contribute towards a negative classification2. Also pixels where |𝑥(𝑑)𝛽(𝑑)|
close to zero provide almost no contribution to the outcome and pixel where |𝑥(𝑑)𝛽(𝑑)| is large
provide large contribution. From now on, let us explicitly name the product 𝑥(𝑑)𝛽(𝑑) as the
contribution of the 𝑑-th feature.

2Notice that we might have to add a constant term to this representation in order to account for cases where
𝑥(𝑑) = 0. Otherwise, the contribution of those features will always be zero. For simplicity though, we will only
consider the model as in (2).



Obviously, the contribution of each pixel must be able to differ for different images. Even
under a mere translation of some baseline image, the corresponding contributions must also shift
accordingly. As a result, the static coefficients as implied in (1) are unrealistic when considering
multiple, different images. Rather, the 𝛽 should vary with the given input image, i.e.

𝑦 = 𝑥𝑇𝛽(𝑥) (3)

Equation (3) now implies that the coefficient vector is a function of the input vector; in the
context of the above grey-scale input: 𝛽 : [0, 1]𝐷 ↦→ R𝐷 . At this point, we should reiterate that
this formulation is not restricted to image classification but can easily be extended to other
domains that permit a similar representation of its input features. In fact, models like (3) were
proposed as early as in [13] for classical statistical regression problems with tabular data.

More recent work around these ’varying coefficient’ models has been done in [2], who
considered them, under the umbrella term self-explaining models, for modern machine learning
problems like image or text classification. The most important novelty is the replacement of
regression splines to model 𝛽(·) with a feedforward neural network with 𝐷 output neurons.

3. Gaussian Processes

The building blocks of GPs, see [14], are a prior distribution over functions, 𝑝(𝑓), and a likelihood
𝑝(𝑦|𝑓). Using Bayes’ law, we are interested in a posterior distribution 𝑝(𝑓 |𝑦) obtained as

𝑝(𝑓 |𝑦) = 𝑝(𝑦|𝑓)𝑝(𝑓)
𝑝(𝑦)

. (4)

The prior distribution is a Gaussian Process, fully specified by 𝑚(·) : 𝒳 ↦→ R, typically
𝑚(𝑥) = 0, and covariance kernel function 𝑘(·, ·) : 𝒳 × 𝒳 ↦→ R+

0 :

𝑝(𝑓) = 𝒢𝒫(𝑓 |𝑚(·), 𝑘(·, ·)) (5)

We assume the input domain for 𝑓 to be a bounded subset of the real numbers, 𝒳 ⊂ R𝐷.
Technically, this invalidates (5) as 𝑓 then becomes an infinite-dimensional object for which
a probability density does not exist. Since we are dealing with finite-dimensional datasets
only, this techincal inaccuracy does not pose a problem in our further treatment. To exemplify
our focus on finite dimensional marginals, we will make heavy use of subscripts to match
inter-related objects.

Most importantly, we denote the 𝑁 ×𝐷 matrix of input data-points as 𝑋𝑁 and the corre-
sponding marginal GP output as 𝑓𝑁 = 𝑓(𝑋𝑁 ). This allows us to discuss GPs either at their
multivariate Gaussian marginal output or as actual random functions. We will switch between
both concepts depending on the situation.

A common choice for 𝑘(·, ·) is the ARD3-kernel

𝑘𝐴𝑅𝐷(𝑥, 𝑥
′) = 𝜃 · 𝑒𝑥𝑝(−0.5(𝑥− 𝑥′)Σ(𝑥− 𝑥′))) (6)

3Automatic Relevance Determination



where Σ = 𝑑𝑖𝑎𝑔(𝑙21, ..., 𝑙
2
𝐾) is a diagonal matrix with entries in R+

0 and 𝜃 > 0. For 𝐾 = 1, (6)
is equivalent to an SE4-kernel. We denote by𝐾 the positive semi-definite Gram-Matrix, obtained
as 𝐾(𝑖𝑗) = 𝑘(𝑥𝑖, 𝑥𝑗), 𝑥𝑖 the 𝑖-th row of training input matrix 𝑋𝑁 . As before, we denote the
kernel gram-matrix belonging to 𝑋𝑁 as 𝐾𝑁𝑁 and a potential mean vector as 𝑚𝑁 = 𝑚(𝑋𝑁 ).

Provided that 𝑝(𝑦𝑁 |𝑓𝑁 ) =
∏︀𝑁

𝑖=1𝒩 (𝑦𝑖|𝑓𝑖, 𝜎2), i.e. training observations 𝑦𝑁 are i.i.d. univari-
ate Gaussian conditioned on 𝑓 , it is possible to directly calculate a corresponding posterior
distribution for new inputs 𝑋* as

𝑝(𝑓*|𝑦𝑁 ) = 𝒩 (𝑓*|Λ*𝑁𝑦𝑁 ,𝐾** − Λ*𝑁 (𝐾𝑁𝑁 + 𝐼𝜎2)Λ𝑇
*𝑁 ) (7)

where Λ*𝑁 = 𝐾*𝑁 (𝐾𝑁𝑁 + 𝐼𝜎2)−1, 𝐾*𝑁,(𝑖𝑗) = 𝑘(𝑥*𝑖 , 𝑥𝑗), 𝐾**,(𝑖𝑗) = 𝑘(𝑥*𝑖 , 𝑥
*
𝑗 ); 𝐼 is the

identity matrix with according dimension.
In order to make GPs feasible for large datasets, the work of [15, 16, 17] developed and

refined Sparse Variational Gaussian Processes (SVGPs). SVGPs, introduce a set of 𝑀 so called
inducing locations 𝑍𝑀 ⊂ 𝒳 and corresponding inducing variables 𝑓𝑀 . The resulting posterior
distribution, 𝑝(𝑓, 𝑓𝑀 |𝑦), is then approximated through a variational distribution 𝑞(𝑓, 𝑓𝑀 ) =
𝑝(𝑓 |𝑓𝑀 )𝑞(𝑓𝑀 ) - often 𝑞(𝑓𝑀 ) = 𝒩 (𝑓𝑀 |𝑎, 𝑆), 𝑆 = 𝐿𝐿𝑇 - by maximizing the evidence lower
bound (ELBO):

𝐸𝐿𝐵𝑂 =
𝑁∑︁
𝑖=1

E𝑝(𝑓 |𝑓𝑀 )𝑞(𝑓𝑀 ) [log 𝑝(𝑦𝑖|𝑓𝑖)]−𝐾𝐿(𝒩 (𝑎, 𝑆)||𝒩 (𝑚𝑀 ,𝐾𝑀𝑀 )) (8)

where 𝐾𝐿(𝒩 (·, ·)||𝒩 (·, ·)) denotes the KL-divergence between two (multivariate) Normal
distributions. Finally, let us recall the following distributional properties of the marginal
variational posterior process 𝑞(𝑓*) =

∫︀
𝑝(𝑓*|𝑓𝑀 )𝑞(𝑓𝑀 )𝑑𝑓𝑀 :

𝑞(𝑓*) = 𝒩 (𝑓*|Λ̃*𝑀𝑎,𝐾** − Λ̃*𝑀 (𝐾𝑀𝑀 − 𝑆)Λ̃*𝑀 ) (9)

where Λ̃*𝑀 = 𝐾*𝑀𝐾−1
𝑀𝑀 . Also, we will write 𝑚̃* := Λ̃*𝑀𝑎 and 𝐾̃** := 𝐾** −

Λ̃*𝑀 (𝐾𝑀𝑀 − 𝑆)Λ̃*𝑀 . If two input matrices, 𝑥𝑖 and 𝑥𝑗 each consist of a single datapoint,
𝑚̃𝑖, 𝑚̃𝑗 and 𝐾̃𝑖𝑗 can be viewed as the mean and kernel functions of the variational GP, evaluated
at 𝑥𝑖 and 𝑥𝑗 . We then denote the implicit GP mean and kernel functions as 𝑚̃(·) = Λ̃·𝑀𝑎 and

𝑘(·, ·) = 𝐾·· − Λ̃·𝑀 (𝐾𝑀𝑀 − 𝑆)Λ̃
𝑇
·𝑀 .

This allows us to hide the underlying dependencies on 𝑎 and 𝑆 in our notation and treat the
variational GP as a separate entity from the original GP whose posterior distribution we are
trying to approximate.

4. Self-explaining variational posterior distributions

The preceding two sections easily motivate the replacement of the feedforward neural network
in self-explaining models by a GP model. For a given matrix of training data 𝑋𝑁 and target
vector 𝑦𝑁 , we obtain the following likelihood model:

4Squared Exponential



𝑝(𝑦𝑁 |𝑓1, ..., 𝑓𝐷;𝑋𝑁 ) = 𝑝(𝑦𝑁 |𝑋𝑁 · 𝑓1,𝐷(𝑋𝑁 )) (10)

where "·" means matrix multiplication for clarity (we will omit the "·" from now),

𝑓1,𝐷(𝑋𝑁 ) =

⎡⎢⎣𝑓
1(𝑋𝑁 )𝑇

...
𝑓𝐷(𝑋𝑁 )𝑇

⎤⎥⎦
and we explicitly included the input matrix 𝑋𝑁 to exemplify the relation to self-explaining

models. Also, let us require independence between the individual GPs. Now, we are dealing
with a linear combination of 𝐷 independent GPs instead of a single one. Combining (10) and
the concept of SVGPs, we can introduce 𝐷 variational processes and approximate the respective
varying-coefficient GPs:

This directly implies the following ELBO:

𝐸𝐿𝐵𝑂 = E𝑞(𝑓1,𝐷)

[︁
log 𝑝

(︁
𝑦𝑁
⃒⃒
𝑋𝑇

𝑁𝑓1,𝐷
𝑁

)︁]︁
−

𝐷∑︁
𝑑=1

𝐾𝐿(𝒩 (𝑎𝑑, 𝑆𝑑)||𝒩 (𝑚𝑑
𝑀 ,𝐾𝑑

𝑀𝑀 )) (11)

where 𝑋𝑖 denotes the 𝑖-th row of 𝑋𝑁 . The derivation of (11) can be found in Appendix A.
Notice that we now have 𝐷 sets of inducing variables, 𝐼𝑀𝑑 . Obtaining a posterior predictive
distribution for a Gaussian likelihood is also straightforward under this model:

𝑝(𝑦*|𝑋*) =

∫︁
𝑝(𝑦*|𝑋*𝑓

1,𝐷
* )𝑞(𝑓1,𝐷

* )𝑑𝑓1,𝐷
*

= 𝒩

(︃
𝑦*

⃒⃒⃒⃒
⃒

𝐷∑︁
𝑑=1

𝑋𝑑
* ⊙ 𝑚̃𝑑

*,
𝐷∑︁

𝑑=1

𝑑𝑖𝑎𝑔

(︂
𝑋𝑑

*

(︁
𝑋𝑑

*

)︁𝑇
⊙ 𝐾̃

𝑑
**

)︂
⊙ 𝐼 + 𝜎2 · 𝐼

)︃ (12)

where ⊙ denotes element-wise multiplication, 𝐼 is a unit-diagonal matrix of according
dimension and 𝜎2 is the variance hyperparameter of the Gaussian likelihood. Finally, we can
calculate a posterior distribution of the contribution of the 𝑑-th feature for a given input vector
𝑋𝑖:

𝑋𝑑
𝑖 𝑓

𝑑
𝑖 ∼ 𝒩

(︁
𝑋𝑑

𝑖 · 𝑚̃𝑑(𝑋𝑖), (𝑋
𝑑
𝑖 )

2 · 𝑘𝑑(𝑋𝑖, 𝑋𝑖)
)︁

(13)

Now, let us introduce 𝐷 GPs - 𝑓
1
, ..., 𝑓

𝐷
- with the following finite dimensional marginal

distributions:

𝑓
𝑑
* ∼ 𝒩

(︂
𝑋𝑑

* ⊙ 𝑚̃𝑑
*, 𝑋

𝑑
*

(︁
𝑋𝑑

*

)︁𝑇
⊙ 𝐾̃

𝑑
**

)︂
(14)

with 𝑚̃𝑑
*, 𝐾̃

𝑑
** the mean vector and kernel Gram-matrices per GP as defined in (9). For a given

set of inputs and the underlying mean and kernel functions 𝑚𝑑(·), 𝑘𝑑(·, ·) fixed, the behavior of

the 𝑓
1
, .., 𝑓

𝐷
can be manipulated by adjusting 𝑎𝑑, 𝐿𝑑, the hyper-parameters of the underlying



inducing variables. Clearly, (14) can be interpreted as the attribution corresponding to the
respective marginal SVGP.

By summing up the 𝑓
𝑑
, we obtain yet another GP, 𝑔, with trivial marginal distribution:

𝑔* ∼ 𝒩

(︃
𝐷∑︁

𝑑=1

𝑋𝑑
* ⊙ 𝑚̃𝑑

*,

𝐷∑︁
𝑑=1

𝑋𝑑
*

(︁
𝑋𝑑

*

)︁𝑇
⊙ 𝐾̃

𝑑
**

)︃
(15)

Notice that 𝑔 yields a self-explaining GP whose 𝑑-th attribution can easily be queried via the
corresponding summand GP, 𝑓

𝑑
*.

Our goal now is to use 𝑔* as a variational posterior distribution for an arbitrary GP 𝑓 by
finding a set of parameters, namely 𝑎𝑑, 𝐿𝑑 (and potential hyperparameters for 𝑚𝑑(·), 𝑘𝑑(·, ·)),
for 𝑔* that minimize

𝐾𝐿(𝑞𝑔(𝑓)||𝑝(𝑓 |𝑦)) (16)

with 𝑞𝑔(·) the GP distribution as defined in (14). Unfortunately, the usual route for SVGP
inference is not possible since 𝑞𝑔(𝑓) =

∫︀
𝑝𝑔(𝑓 |𝑓𝑀 )𝑞𝑔(𝑓𝑀 )𝑑𝑓𝑀 , 𝑝(𝑓) =

∫︀
𝑝(𝑓 |𝑓𝑀 )𝑞(𝑓𝑀 )𝑑𝑓𝑀 ,

hence 𝑝𝑔(𝑓 |𝑓𝑀 ) ̸= 𝑝(𝑓 |𝑓𝑀 ) and therefore the conditional distributions do not cancel in the
derivation of the ELBO. To solve the resulting infinite dimensional variational problem between
the two respective GPs, we apply functional variational inference as proposed by [10]. The
authors show, that there exists a functional evidence lower bound (fELBO) which can be
maximized in order to solve the optimization problem in (16):

𝑓𝐸𝐿𝐵𝑂 = E𝑞(𝑓)[𝑝(𝑦𝑁 |𝑓𝑁 )]− E𝑝(𝐴)

[︀
𝐾𝐿(𝑞(𝑓(𝑁,𝐴))||𝑝(𝑓(𝑁,𝐴)))

]︀
(17)

where 𝑋𝐴 is a so-called measurement set, obtained by sampling uniformly from the space of
all possible inputs, 𝒳 . 𝑋(𝑁,𝐴) then denotes the union of 𝑋𝑁 and 𝑋𝐴 via row-wise stacking, i.e.

𝑋(𝑁,𝐴) =

[︂
𝑋𝑁

𝑋𝐴

]︂
. By applying the fELBO to our prior and variational processe, we obtain

𝑓𝐸𝐿𝐵𝑂1 =

E𝑞𝑔(𝑓𝑁 )[log 𝑝(𝑦𝑁 |𝑓𝑁 )]

−E𝑝(𝐴)

[︀
𝐾𝐿(𝒩 (𝑚𝑔,(𝑁,𝐴),𝐾𝑔,(𝑁,𝐴)(𝑁,𝐴))||𝒩 (𝑚(𝑁,𝐴),𝐾(𝑁,𝐴)(𝑁,𝐴)))

]︀ (18)

where 𝑚𝑔,(𝑁,𝐴),𝐾𝑔,(𝑁,𝐴)(𝑁,𝐴) denote the evaluation of the mean vector and Kernel-gram
matrix from (15), evaluated at 𝑋(𝑁,𝐴). 𝑚(𝑁,𝐴),𝐾(𝑁,𝐴)(𝑁,𝐴) denote the mean vector and Kernel-
gram matrix of the prior GP, evaluated accordingly.

In essence, this approach allows us to encode functional prior knowledge via the prior GP
as usual. By decomposing the variational posterior GP after optimizing (18) into its summand
attribution GPs, we obtain a transparent approximation of the true posterior distribution in the
tradition of varying coefficient or self-explaining models.

Another promising use-case arises, when we place prior distributions on the attribution GPs
themselves, e.g. for arbitrary input 𝑋 :

𝑓𝑑
𝑋 := 𝑋𝑑𝑓𝑑 ∼ 𝒢𝒫(𝑚𝑑

𝑋(·), 𝑘𝑑𝑋(·, ·))5 (19)
5𝑋𝑑 can be seen a linear operator on 𝑓𝑑 that transforms all finite-dimensional marginals of 𝑓𝑑 via 𝑋𝑑

𝑁 ⊙ 𝑓𝑑
𝑁 .



If the respective mean and kernel functions can be decomposed as 𝑥𝑖 · 𝑚𝑑(𝑥𝑖) and 𝑥𝑖𝑥𝑗 ·
𝑘𝑑(𝑥𝑖, 𝑥𝑗), (19) is a GPX problem as discussed before. If this not the case, however, and if we
want to retain transparency of the respective posterior distribution, we can approximate the
attribution GPs by 𝑓

1
, ..., 𝑓

𝑑
. As in (16) we want to minimize
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⃒⃒⃒
𝑦
)︁)︁

(20)

By invoking (17) again and by the fact that the KL-divergence of the joint distribution between
prior and variational GPs decomposes as the sum of the KL divergences for mutually independent
GPs, we get:

𝑓𝐸𝐿𝐵𝑂2 =
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)︁)︁]︃ (21)

As a brief example, we could choose 𝑚𝑑
𝑋(·) << 0 to exemplify the prior belief that the

attribution of the 𝑑-th feature is negative with high probability. Obviously, potential priors
could be much more complex. In fact, it might be fruitful to consider implicit processes as
introduced in [18] as a prior and use our self-explaining posterior as an approximation.

5. Experiments

In this section, we evaluate the proposed method on several experimental tasks. In particular,
we are interested in the explanations generated by our method, its ability to incorporate prior
assumption and its predictive performance. All experiments were conducted on regression
problems, where the likelihood could be assumed to be Gaussian.

Extended implementation details can be found in Appendix B.

5.1. Evaluation of explanations

In addition to point values for the varying coefficients, the SVGP components allow to also
evaluate the variance of varying coefficients. In accordance with the typical interpretation
of posterior variance in Bayesian models, this can be interpreted as a measure of coefficient
uncertainty or explanation uncertainty.

To evaluate these measures, the coefficient means and variances of a trained SEVGP model
(via (11) ) were calculated for two datapoints from the boston housing dataset. Figures 1. and
2. show the results. While the coefficient means are relatively stable for both examples, the
variances differ visibly. Interestingly, the coefficients of the left example show high uncertainty
for the most influential coefficient (feature CHAS). The respective outputs can be used to check
for hidden biases or erroneous reasoning in the respective model.



Figure 1: Coefficient means for two input datapoints from the boston housing dataset.

Figure 2: Coefficient var for two input datapoints from the boston housing dataset (corresponding to
coefficient means.)

5.2. Evaluation of inclusion of prior knowledge

To verify the model’s capability to incorporate existing prior knowledge, a random sample from
a quadratic function with gaussian noise was created in the interval [−2, 2]. A model that is
able to handle knowledge about the underlying quadratic function should be able to extrapolate
accordingly beyond the range of the observed data (often termed out-of-distribution problem).

In order to validate this claim for our approach, the three models implied in (11), (18) and (21)
were compared. For (18) (= prior knowledge about 𝑔) a GP prior with second-order polynomial
kernel was used. For (21) (= prior knowledge about the feature-wise effects) a GP prior with
linear kernel was placed on 𝑓𝑑, which is technically equivalent to placing a polynomial kernel
on 𝑋𝑑𝑓𝑑.

The results in Figure 3 indicate that the model is able to correctly handle the functional
prior knowledge about the underlying quadratic function. It can be see, that both models
that were trained with additional prior knowledge (middle and right) were able to correctly
extrapolate the quadratic function. Without such prior knowledge (left model), the resulting
posterior predictive distribution only fits the in-sample data but is unable to extrapolate out of
distribution.



Figure 3: Variational posterior predictive distributions for the approaches in (11) (left), (18) (middle), (21)
(right)

SVGP SEVGP (this paper)
Boston 0.1658± 0.1052 0.1531± 0.0736
Concrete 0.0099± 0.0027 0.0106± 0.0048
Wine red 0.6212± 0.0410 0.6564± 0.0563
Wine white 0.6512± 0.0256 0.7224± 0.0595

Table 1
MSE for SVGP and SEVGP posterior mean; average and standard deviation over 5-fold cross validation

5.3. Evaluation of predictive performance

To validate the predictive performance of the proposed method, it was evaluated over four
regression datasets (boston housing, concrete, wine red and wine white) via five-fold cross vali-
dation. For comparison, standard SVGP was also trained and evaluated on the same folds. Table
1 shows average MSE and MSE standard deviation over the folds. All GP models used an ARD
covariance kernel and zero-mean prior functions.

Since SEVGP uses one SVGP per coefficient, the amount of inducing points in the SVGP was
increased accordingly to account for the increased model capacity of SEVGP. See Appendix B
for more details.

It can be seen that our proposed method achieves comparable performance to SVGP. This
implies that problems where the latter perform well, allow for the SVGP to be replaced by
SEVGP in case the discussed benefits are deemed advantageous.

6. Limitations and discussion

This paper presented a method that combines GPs and recent developments in varying-
coefficient/self-explaining methods for machine learning. By taking advantage of the Bayesian
properties of GPs it is also possible to inject prior knowledge into respective models. One
area where both the transparency and the teachability aspects can be helpful is the field of
fair and unbiased machine learning. On the one hand, transparency allows to detect biased or
discriminating results on a per instance basis. On the other hand, teachability could help prevent
or eliminate potential biases by carefully encoding non-biasing prior knowledge into the model.
While this would certainly not be a silver bullet, there might nevertheless be considerable,
general potential at the intersection of explainable and human-in-the-loop machine learning.

A clear limitation is the fact that the idea of explainability that we considered in this paper is



a statistical one, with focus on local, per-pixel explanations. In complex problems like image
classification, this might not suffice if a class is inferred from multiple symbolic relations of
different objects that are present in a given image instance. Nevertheless, statistical approaches
have recently been shown to be quite successful on such complex problems despite possessing
no inherent capabilities for logic deduction.

Future work on the proposed method should try to find a way to make the proposed method
scalable to other, potentially high dimensional, supervised learning problems. Particularly
problems with image inputs, like image classification or reinforcement learning might greatly
benefit from external prior knowledge when training data is only sparsely available.
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A. Derivation of 𝐸𝐿𝐵𝑂 (11)
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𝑀 ) = 𝑝(𝑓1

𝑀 , ..., 𝑓𝐷
𝑀 ). Notice that 𝑝(𝑓1,𝐷) does

technically not exist as it involves the infinite dimensional stochastic processes where densities
don’t exist. As these objects will cancel out anyway and since such notation is commonly seen
in the GP literature, we will keep it here for simplicity. Otherwise, to be notationally exact, we
would have to work with KL divergences over probability measures which would make the
results much less convenient to derive.
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B. Implementation details

We write 𝑝(𝑓1,𝐷) = 𝑝(𝑓1, ..., 𝑓𝐷) and 𝑝(𝑓1,𝐷
𝑀 ) = 𝑝(𝑓1

𝑀 , ..., 𝑓𝐷
𝑀 ). Notice that 𝑝(𝑓1,𝐷) does

technically not exist as it involves the infinite dimensional stochastic processes where densities
don’t exist. As these objects will cancel out anyway and since such notation is commonly seen
in the GP literature, we will keep it here for simplicity. Otherwise, to be notationally exact, we
would have to work with KL divergences over probability measures which would make the
results much less convenient to derive.

𝐾𝐿
(︁
𝑞
(︁
𝑓1,𝐷, 𝑓1,𝐷

𝑀

)︁ ⃒⃒⃒⃒⃒⃒
𝑝
(︁
𝑓1,𝐷, 𝑓1,𝐷

𝑀

⃒⃒
𝑦𝑁

)︁)︁

=

∫︁
log

𝑝
(︁
𝑓1,𝐷
𝑁

⃒⃒
𝑓1,𝐷
𝑀

)︁
𝑞
(︁
𝑓1,𝐷
𝑀

)︁
𝑝
(︁
𝑓1,𝐷, 𝑓1,𝐷

𝑀

⃒⃒
𝑦𝑁

)︁ 𝑝
(︁
𝑓1,𝐷

⃒⃒
𝑓1,𝐷
𝑀

)︁
𝑞
(︁
𝑓1,𝐷
𝑀

)︁
𝑑𝑓1,𝐷𝑑𝑓1,𝐷

𝑀

=

∫︁
log

𝑝
(︁
𝑓1,𝐷
𝑁

⃒⃒
𝑓1,𝐷
𝑀

)︁
𝑞
(︁
𝑓1,𝐷
𝑀

)︁
𝑝 (𝑦𝑁 )

𝑝
(︁
𝑦𝑁
⃒⃒
𝑓1,𝐷, 𝑓1,𝐷

𝑀

)︁
𝑝
(︁
𝑓1,𝐷
𝑁

⃒⃒
𝑓1,𝐷
𝑀

)︁
𝑝
(︁
𝑓1,𝐷
𝑀

)︁𝑝(︁𝑓1,𝐷
⃒⃒
𝑓1,𝐷
𝑀

)︁
𝑞
(︁
𝑓1,𝐷
𝑀

)︁
𝑑𝑓1,𝐷𝑑𝑓1,𝐷

𝑀

=

∫︁
log

𝑞
(︁
𝑓1,𝐷
𝑀

)︁
𝑝 (𝑦𝑁 )

𝑝
(︁
𝑦𝑁
⃒⃒
𝑓1,𝐷, 𝑓1,𝐷

𝑀

)︁
𝑝
(︁
𝑓1,𝐷
𝑀

)︁𝑝(︁𝑓1,𝐷
⃒⃒
𝑓1,𝐷
𝑀

)︁
𝑞
(︁
𝑓1,𝐷
𝑀

)︁
𝑑𝑓1,𝐷𝑑𝑓1,𝐷

𝑀



=

∫︁
log

𝑞
(︁
𝑓1,𝐷
𝑀

)︁
𝑝
(︁
𝑓1,𝐷
𝑀

)︁𝑝(︁𝑓1,𝐷
⃒⃒
𝑓1,𝐷
𝑀

)︁
𝑞
(︁
𝑓1,𝐷
𝑀

)︁
𝑑𝑓1,𝐷𝑑𝑓1,𝐷

𝑀

−
∫︁

log 𝑝
(︁
𝑦𝑁
⃒⃒
𝑓1,𝐷, 𝑓1,𝐷

𝑀

)︁
𝑝
(︁
𝑓1,𝐷

⃒⃒
𝑓1,𝐷
𝑀

)︁
𝑞
(︁
𝑓1,𝐷
𝑀

)︁
𝑑𝑓1,𝐷𝑑𝑓1,𝐷

𝑀

+

∫︁
log 𝑝(𝑦)𝑝

(︁
𝑓1,𝐷

⃒⃒
𝑓1,𝐷
𝑀

)︁
𝑞
(︁
𝑓1,𝐷
𝑀

)︁
𝑑𝑓1,𝐷𝑑𝑓1,𝐷

𝑀

= 𝐾𝐿
(︁
𝑞
(︁
𝑓1,𝐷
𝑀

)︁ ⃒⃒⃒⃒⃒⃒
𝑝
(︁
𝑓1,𝐷
𝑀

)︁)︁
−E

𝑝
(︁
𝑓1,𝐷

⃒⃒
𝑓1,𝐷
𝑀

)︁
𝑞(𝑓1,𝐷

𝑀 )

[︁
log 𝑝

(︁
𝑦𝑁
⃒⃒
𝑓1,𝐷, 𝑓1,𝐷

𝑀

)︁]︁
+𝑝(𝑦)

= 𝐾𝐿
(︁
𝑞
(︁
𝑓1,𝐷
𝑀

)︁ ⃒⃒⃒⃒⃒⃒
𝑝
(︁
𝑓1,𝐷
𝑀

)︁)︁
−E

𝑝
(︁
𝑓1,𝐷

⃒⃒
𝑓1,𝐷
𝑀

)︁
𝑞(𝑓1,𝐷

𝑀 )

[︁
log 𝑝

(︁
𝑦𝑁
⃒⃒
𝑓1,𝐷
𝑁

)︁]︁
+𝑝(𝑦)

since 𝑦𝑁 depends on 𝑓1,𝐷
𝑀 only via 𝑓1,𝐷 and only on the marginals given by 𝑋𝑁 .

= 𝐾𝐿
(︁
𝑞
(︁
𝑓1,𝐷
𝑀

)︁ ⃒⃒⃒⃒⃒⃒
𝑝
(︁
𝑓1,𝐷
𝑀

)︁)︁
−E

𝑞
(︁
𝑓
1,𝐷

)︁ [︁log 𝑝(︁𝑦𝑁 ⃒⃒𝑓1,𝐷
𝑁

)︁]︁
+𝑝(𝑦)

by marginalizing out 𝑓1,𝐷
𝑀 and writing 𝑓

1,𝐷
for clarity as explained before.

=

𝐷∑︁
𝑑=1

𝐾𝐿(𝒩 (𝑎𝑑, 𝑆𝑑)||𝒩 (𝑚𝑑
𝑀 ,𝐾𝑑

𝑀𝑀 ))

−E
𝑞(𝑓

1,𝐷
)

[︁
log 𝑝

(︁
𝑦𝑖
⃒⃒
𝑓
1,𝐷
𝑖

)︁]︁
+𝑝(𝑦)

by independence of prior and variational GPs and by standard i.i.d. assumption about observed
datapoints



⇒ 𝑝(𝑦) ≥ E
𝑞(𝑓

1,𝐷
)

[︁
log 𝑝

(︁
𝑦𝑖
⃒⃒
𝑓
1,𝐷
𝑖

)︁]︁
−

𝐷∑︁
𝑑=1

𝐾𝐿(𝒩 (𝑎𝑑, 𝑆𝑑)||𝒩 (𝑚𝑑
𝑀 ,𝐾𝑑

𝑀𝑀 ))

𝐸𝐿𝐵𝑂 = E
𝑞(𝑓

1,𝐷
)

[︁
log 𝑝

(︁
𝑦𝑖
⃒⃒
𝑓
1,𝐷
𝑖

)︁]︁
−

𝐷∑︁
𝑑=1

𝐾𝐿(𝒩 (𝑎𝑑, 𝑆𝑑)||𝒩 (𝑚𝑑
𝑀 ,𝐾𝑑

𝑀𝑀 ))
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