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Abstract  
The electroencephalogram (EEG) modelling and classification methods are very important in 
medical diagnostics and in creating complex information systems using brain-computer 
interface-based solutions for Industry 4.0. The mathematical model of the EEG signal has 
been presented in the paper in the form of a linear random process. The corresponding 
estimation procedure using the autoregressive model has been considered. The new 
informative features have been justified as the downsampled kernel of linear random process 
model representation. The comparative analysis of binary classification machine learning 
techniques has been performed based on autoregressive coefficients and new extracted 
informative features. The improvement of classification metrics has been shown. 
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1. Introduction 

Electroencephalography (EEG) signals are recordings that capture the electrical potentials of the 
brain's activity [1, 2]. These measurements are generally non-invasive, using electrodes placed on the 
scalp, although intracranial electrodes may also be used. Examining the EEG data can yield important 
information about various brain disorders that affect a wide area of the brain.  

Another great area of EEG analysis is related to the creation of complex information systems 
based on the brain-computer interface (BCI) concept [3, 4], including utilizing the classification of 
steady-state visual evoked potentials [5]. Several studies, related to EEG-based BCI applications for 
Industry 4.0 have been presented recently, including e.g. [6, 7]. The authors [6] categorized the 
possible industrial applications of safety at work, adaptive training, and device control.  

Usually, EEG analysis for both medical applications and BCI applications includes mathematical 
modelling, features extraction, and classification methods. Linear models and techniques are 
significant in the field of EEG signal processing [1]. Discrete-time univariate and multivariate linear 
random sequences in the form of autoregressive moving average models are especially important and 
widely used [8, 9, 10]. Moreover, the continuous-time linear random process [11, 12] is the 
biophysically reasonable mathematical model of EEG representing the signal as the sum of many 
stochastically independent excitatory and inhibitory postsynaptic potentials which are generated by 
the pyramidal neurons in the cerebral cortex in response to the spike train [2] that can be considered 
as the Poisson arrival process. Another useful EEG signal model is a conditional linear random 
process considering the stochastic dependence between the postsynaptic potentials forming the EEG 
[2, 12]. All the above linear models can be analyzed using the characteristic function methods. 
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Staying within the linear paradigm it is important to extract the new diagnostic features and find 
modern machine-learning classification techniques to improve the classification performance. 
Because of main elements of a linear random process is the kernel of its representation and generative 
white noise, the idea is to consider the first one as the source of informative characteristics for EEG 
analysis. We consider only binary classification problems in our paper. 

The primary objective of the paper is to justify the informative features of EEG signals based on 
the kernel of its representation as a linear random process and to investigate the machine learning 
classification techniques based on the extracted features. 

2. Methodology of modelling, features extraction and estimation 

Continuous-time linear random process ( , ), ( , ),t tξ ω ∈ −∞ ∞ given on some probability space 
{ }, ,PΩ F  is defined using the following integral representation [12]: 

 ( , ) ( , ) ( , ), , ( , )t t d t
∞

−∞

ξ ω = ϕ τ η ω τ ω∈Ω ∈ −∞ ∞∫ , (1) 

where ( , ), ( , )η ω τ τ∈ −∞ ∞ , ( ( ,0) 0) 1P η ω = =  is a stochastically continuous random process with 
independent increments; 

( , ), , ( , )t tϕ τ τ ∈ −∞ ∞  is a nonrandom function (kernel of representation (1)) such that the following 
conditions hold (the integral (1) is convergent in the mean-square sense under that conditions): 
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ϕ τ κ τ < ∞ ∀ =∫ , where ( )pκ τ  is a cumulant function of the p th order of given 

process with independent increments ( , )η ω τ . 
The linear random process (1) is the mathematical model of continuous-time EEG signal, 

representing it as a sum of large number of excitatory and inhibitory postsynaptic potentials, 
occurring at Poisson time moments. In the context of the model the process ( , )η ω τ  is compound 
Poisson process, and ( , )tϕ τ  represents the time-dependent properties of postsynaptic potentials. 

The discrete-time counterpart of linear random process (LRP) (1) is denoted by ( ), , Zt tξ ω ω∈Ω ∈  
which is defined as a random sequence in the following form: 
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where ( ),τζ ω  Zτ∈  is a sequence of independent infinitely divisible random variables (infinitely 
divisible strict-sense white noise) with finite expectation and variance [ ] 2( ) , Var ( )E aτ τ τ τζ ω = ζ ω = σ ; 

, , , Zt tτϕ τ ∈  is a nonrandom function (kernel) satisfying the following conditions:  
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(the conditions are important to guarantee the mean-square convergence of the stochastic series (2)). 
The expectation ( )E tξ ω  and covariance function 

1 2,t tR , 1 2, Zt t ∈  of linear random process (2) are 
represented by the following expressions:    
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If ( )τζ ω , Zτ∈  is strict-sense stationary white noise, and the kernel ,tτϕ  depends only from the 
difference of its arguments, that is ,t tτ −τϕ = ϕ , then LRP (2) is strict-sense stationary and can be 
represented in the following form: 
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The expectation and covariance function of the stationary LRP are represented as: 

 2( ) , ,E Zt s sa R s
∞ ∞
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ξ ω = ϕ = σ ϕ ϕ ∈∑ ∑ ,  (3) 

where ( )E aτζ ω = , [ ] 2Var ( )τζ ω = σ . 
Among linear random processes the autoregressive models are the most important for applied 

problems of signal processing, especially when it is necessary to identify, predict, simulate, or classify 
the stochastic signals [13, 14].  

In most important for practical application cases, a stationary discrete-time linear random process 
can be represented as a linear stochastic difference equation which is known as autoregressive moving 
average model of the order ( , )p q : 
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where , 1, ; , 0,  k ka k p b k q= =  are the real coefficients. 
If 0q =  and 0 1 b =  we obtain the autoregressive (AR) model of the order p , which is represented 

in the following form: 
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Autoregressive model is stationary if the complex roots , 1, kz k p=  of the equation 
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It is well known [13, 14] that covariance function of the stationary autoregressive model satisfies 
the following recurrent relation:   
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Representing the above equation for 0, pτ =  the system of linear equations is obtained, the matrix 
expression of the system is called Yule-Walker equations for AR model: 
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The Yule-Walker equations system (6) is the base for the EEG features extraction and estimation 
using the model of a linear random process. And autoregressive model coefficients are used 
successfully in the problems of EEG classification.  

Our idea is to use the samples of the kernel of stationary discrete-time LRP representation of EEG, 
because, as it follows from the biophysical reasoning, the kernel represents the integral properties of 
the postsynaptic potentials forming EEG signal.  

The general methodology of EEG analysis then consists of the following steps: 
• EEG signal acquisition and preprocessing, 
• order estimation of AR model [15], 
• covariance function ,Rτ  0, pτ =  estimation, 
• solving the linear equations (6) to find the AR coefficients, 
• estimating the samples of the kernel of LRP representation of EEG signal as an impulse 
response of corresponding linear stationary recursive filter with parameters equal to coefficients of 
autoregressive model. 



The extracted and estimated parameters can be used then in the algorithms of statistical hypotheses 
testing or machine learning classification [16]. The last approach is considered in the next section of 
the paper. We evaluate and compare the performance of binary classification algorithms for the case 
of using AR parameters as informative features versus set of samples of the kernel of LRP 
representation while keeping the same dimensionality of the features space. 

3. Results  

Several binary classification techniques have been compared using the dataset which is described 
in [17]. The length of each EEG realization is 23.6 sec, and it consists of 4097 samples. The 
realizations have passed the wide sense stationary test, and the eye movement and muscle activity 
artefacts have been removed. The binary classification tests have been analyzed based on healthy 
persons with open eyes (Class A) and closed eyes (Class B). The dataset consists of 100 elements in 
each of the classes. The representatives of Class A and Class B have been shown in Figure 1.  

 
 

 
Figure 1: Open eyes EEG (A) and closed eyes EEG (B) 

 
The covariance function estimations of open eyes EEG and closed eyes EEG have been 

represented in Figure 2. The above realizations have been utilized to calculate the estimations.  
 
 

 
Figure 2: Covariance function estimations of open eyes EEG (A) and closed eyes EEG (B) 

 
The kernel of EEG representation in the form of discrete-time linear random process has been 

estimated as the impulse response of corresponding recursive filter related to autoregressive model of 
the order 4. The coefficients of autoregressive model have been estimated using Yule-Walker 



approach. The estimations (based on realizations which have been shown in the Figure 1) of the 
kernel for open eyes EEG and closed eyes EEG have been represented in Figure 3. 

 
 

 
Figure 3: Kernel estimations of LRP representation of open eyes EEG (A) and closed eyes EEG (B) 

 
The performance measures of different binary classification algorithms [18, 19, 20] based on AR 

parameters as informative features have been calculated using a 10-fold cross-validation approach and 
represented in Table 1. The best results are highlighted. 
 
Table 1 
Performance of the classifiers using AR parameters 

Model Accuracy Recall Precision F1 score 
Quadratic Discriminant Analysis 0.9286 0.9143 0.9446 0.9261 
Linear Discriminant Analysis 0.9071 0.9143 0.9210 0.9092 
Extra Trees Classifier 0.9071 0.9143 0.9121 0.9066 
Random Forest Classifier 0.8929 0.9143 0.8918 0.8948 
Ada Boost Classifier 0.8929 0.9143 0.8899 0.8941 
Gradient Boosting Classifier 0.8857 0.9143 0.8821 0.8890 
K Neighbors Classifier 0.8571 0.8143 0.9127 0.8455 

 
The performance measures of the same classifiers based on the set of kernel samples 

{ }1 5 9 13, , ,ϕ ϕ ϕ ϕ  as informative features have been calculated using a 10-fold cross-validation 
approach and represented in Table 2. The best results are highlighted. 
 
Table 2 
Performance of the classifiers using downsampled kernel 

Model Accuracy Recall Precision F1 score 
Quadratic Discriminant Analysis 0.8643 0.7714 0.9500 0.8471 
Linear Discriminant Analysis 0.8143 0.7143 0.9086 0.7833 
Extra Trees Classifier 0.9357 0.9429 0.9403 0.9354 
Random Forest Classifier 0.9000 0.9143 0.9000 0.9032 
Ada Boost Classifier 0.8929 0.8857 0.9300 0.8978 
Gradient Boosting Classifier 0.9143 0.9143 0.9264 0.9145 
K Neighbors Classifier 0.9214 0.8429 1.0000 0.9128 

 
Comparing the above results, we can conclude that Extra Trees Classifier based on the second 

features set outperforms the other considered algorithms based on the first features set. 

4. Discussion 

The analysis of the above results shows that the kernel of linear random process representation of 
EEG signal can be used as an informative feature in the problems of its binary classification using 
machine learning techniques. We used the number of kernel samples equal to the order of the 



corresponding autoregressive model to compare the classification performance of different feature 
sets of the same dimensionality. The study of the dependence of classification accuracy on the number 
of informative features is a goal of future research. Still, we suppose that the dimensionality of the 
feature space should be equal to the order of the autoregressive model, but the kernel samples 
included in this space should be justified.  

The main result of our research is the justification of new information features and corresponding 
binary classifier (the extra trees classifier) that can be used in medical diagnostics and in the problems 
of brain-computer interface based on EEG analysis. The results can be further extended to the 
alternative case of the autoregressive process with random coefficients [2], taking into account the 
nonlinear dynamics of EEG. 

Being an ensemble method, the extra trees classifier combines predictions from multiple decision 
trees to make the final classification. This ensemble approach improves generalization and reduces the 
risk of overfitting, leading to better performance and more reliable results. There are also other 
advantages, such as fast training speed, efficient parallelization, and robustness to noisy data. It is 
important in the context of this paper that the extra trees classifier provides a measure of feature 
importance, gaining insights into the relevance and contribution of each feature to the classification 
task. This information can be useful for future research for feature selection, identifying the most 
influential kernel samples. 

5. Conclusion 

Methodology of features extraction and their estimation for EEG analysis based on the 
mathematical model in the form of linear random process has been considered. The set of informative 
characteristics has been identified consisting of the samples of the kernel of linear random process. 

The new set of informative features has been compared with the traditional classification 
characteristics which are the autoregressive coefficients. Several binary classification machine 
learning algorithms have been analyzed for the task of classification of open eyes EEG and closed 
eyes EEG. Extra Trees Classifier has appeared to perform the best with the set of new informative 
features. 

The prospective research should be related to the formal justification of the task of certain samples 
selection of the kernel which should be used as the classification features. 
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