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Abstract. Improved visualization of blood vessels by ultrasound con-
trast agents requires insonation that is adapted to the dynamics of the
contrast agent bubbles. To evaluate the interrelation between parame-
ters of the exciting pressure field and the contrast agent, the dynamics
of air filled microbubbles immersed in water are examined by numerical
evaluation of the Rayleigh-Plesset equation. Unsymmetrical oscillation
is obtained for resonant harmonic excitation, frequency doubling occurs
for subresonant excitation and nearly sinusoidal oscillation is exhibited
for superresonant excitation. Continuous harmonic and pulsed pressure
waves are shown to be unsuitable to excite a mixture of differently sized
bubbles due to their non-uniform resonance behaviour. As an alterna-
tive, excitation with a linear frequency modulated wave is examined and
shown to be a feasible option for adapted contrast agent insonation.

1 Introduction

Segmentation of vessels within an ultrasound image is a prerequisite for auto-
matic image analysis or three dimensional visualization in vascular applications.
Small vessels can frequently not clearly been identified in an ultrasound image
since they appear buried between stronger echogenic surrounding tissue. Auto-
matic segmentation of those vessels can be simplified by the use of ultrasound
contrast agents which significantly enhance the echo amplitudes. Further im-
provement can be achieved by specifically adapted imaging algorithms such as
harmonic imaging or pulse inversion that make use of the contrast agent’s non-
linear behaviour [1].

Ultrasound contrast agents are realized as gas-filled microbubbles. The radii
of these bubbles oscillate when exposed to sonic waves emitted from an ultra-
sound transducer [1, 2, 3]. While the bubble’s oscillation is nearly linear for small
exciting pressures, higher pressures cause asymmetric oscillation and thereby
nonlinear bubble dynamics. These asymmetric oscillations are due to a reduced
compressibility of the filling gas with decreasing bubble bubble radius.

In order to create oscillation amplitudes large enough to be detected at the
body surface by the transducer in receive mode, additionally to a sufficiently
high amplitude, the frequency of the exciting wave must be adjusted to the
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resonance properties of the bubbles [4]. Furthermore, careful adaption of the sig-
nal processing i.e. imaging algorithm to the specific nonlinear bubble oscillation
can increase the visibility of small vessels. Therefore realistic simulation of the
bubble dynamics is a crucial task in the development of contrast agent imaging
modalities.

In this paper, the oscillations of air-filled microbubbles in water due to har-
monic resonant, subresonant and superresonant forcing as well as due to pulsed
and frequency modulated excitation are examined. Real contrast agents consist
of a mixture of differently sized bubbles, which hence show non-uniform res-
onance behaviour. The consequences for parameters of the exciting wave are
examined and a proper setting is derived.

2 Materials and Methods

The dynamic behaviour of a single spherically symmetrical gas-bubble immersed
in an incompressible fluid can be modelled by a nonlinear differential equation of
second order, called Rayleigh-Plesset equation [1, 3]. Properties of the numerical
solver and results for defined physical wave propagation and bubble parameters
are investigated.

2.1 Rayleigh-Plesset Dynamics

The Rayleigh-Plesset equation
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relates outer pressure changes ∆p(t) to a time varying bubble radius R(t). Under
equilibrium conditions ∆p(t) = 0, the pressure inside the surrounding liquid is
p0. The static bubble radius under equilibrium conditions is R(t) = R0. The sur-
rounding liquid is characterized by its density ρ, dynamic viscosity η, and vapour
pressure pv. The quantity σ is the surface tension of the liquid-gas interface, and
γ denotes the polytropic exponent of the gas inside the bubble.

2.2 Numerical Solver

The Rayleigh-Plesset equation has been implemented in Matlab (The Mathworks
Inc., Natick, MA, USA) and numerically solved in the time domain using a vari-
able order BDF (backward differentiation formula) method. The algorithm uses
a variable step size ∆t that depends on the local rate of change of the solution.
This enables detection of quasi-discontinuities as they occur when the bubble
radius R(t) approaches zero. Cubic spline interpolation of the solution advances
processing steps that require regularly sampled data such as the discrete Fourier
transform.
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Table 1. Characteristic values of gas (air) and surrounding liquid (water) that have
been used for the simulation

Liquid pressure p0 100 kPa
Liquid density ρ 998 kg/m3

Dynamic liquid viscosity η 1mPa
Vapour pressure pv 5945Pa
Surface tension σ 72.5 mN/m
Polytropic exponent γ 1

2.3 Simulation Settings

The equation parameters have been set to model an air filled bubble immersed
in water at ambient temperature and pressure. Adiabatic gas behaviour γ = 1
has been assumed. An overview of the simulation settings is given in Tab. 1.

3 Results

The modelled bubble of equilibrium radius R0 = 2.26µm exhibits a nonlinear
resonance frequency fexc = 1260 kHz. In Fig. 2(a) resonant bubble dynamics is
visualized in the phase plane for harmonic excitation

∆phar(t) = ∆p0 sin(2πfexct) (2)

with ∆p0 = 36 kPa. The steady state phase diagram for excitation of the first
and second subharmonic and the first harmonic is shown in Fig. 2(b). The fig-
ures reveal that frequency doubling occurs for frequencies below resonance, while
excitation with the first harmonic frequency causes nearly sinusoidal oscillation.
Simple albeit unsymmetrical oscillation occurs for excitation at resonance. Ap-
proaching the minimal bubble radius coincides with a large oscillation velocity.
Unsymmetrical oscillation and frequency doubling can also be clearly obtained
in the time domain as is shown in Fig. 2, where the varying bubble radius is
depicted as a function of time for excitation with the resonance frequency and
half the resonance frequency.

Harmonic pressure waves excite only bubbles of distinct size, as can be
seen in Fig. 3 where the relative amplitude of oscillation ∆R/R0 with ∆R =
max

(
R(t)

)
−min

(
R(t)

)
is charted as a function of the equilibrium bubble radius

R0 for continuous harmonic excitation with frequency fexc = 1260 kHz (black
line). The oscillation amplitude rises very sharply towards its maximum at the
resonance radius R0 = 2.26µm, while the falling edge of the curve is less steep
such that considerable oscillation occurs for a small band of radii above the res-
onance radius. Radii around R0 = 4.65µm show harmonic oscillation due to the
excitation frequency fexc = 1260 kHz. Also subharmonic excitation of bubbles
with radii aroundR0 = 1.4µm can be noticed.

Pressure pulses that normally excite bubbles in pulse echo ultrasound imaging
have a broader frequency content and are thus capable to excite bubbles of a
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Fig. 1. Phase diagrams of bubble oscillations. (a) Oscillation at resonance
fexc = 1260 kHz. (b) Oscillation for excitation with fexc = 420 kHz (black line),
fexc = 630 kHz (dark grey line), fexc = 2520 kHz (light grey line)
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Fig. 2. Bubble radii R(t) as func-
tions of time t for resonant excita-
tion fexc = 1260 kHz (black line) and
subharmonic excitation fexc = 630 kHz
(grey line)
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Fig. 3. Relative amplitudes of oscil-
lations ∆R/R0 as functions of the
equilibrium bubble radius R0 due to
continuous harmonic excitation (black
line) and pulsed excitation (dark grey
line) with frequency fexc = 1260 kHz,
and due to excitation with a chirp
signal whose frequency rises from
fexc1 = 300 kHz to fexc2 = 3000 kHz
(light grey line)
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greater radius range than harmonic excitation does. In Fig. 3 the dark grey line
shows relative oscillation amplitudes due to excitation with a sinusoidal pulse of
fexc = 1260 kHz and three periods length tapered by a Hann window.

The light grey curve in Fig. 3 shows the relative oscillation amplitudes due
to excitation with a chirp signal
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(
2π

(
fexc1 +

fexc2 − fexc1

2T
t

)
t

)
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whose frequency rises linearly from fexc1 = 300 kHz to fexc2 = 3000 kHz. The
signal amplitude and duration are ∆p0 = 36 kPa and T = 12.1µs respectively.
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The signal edges have been tapered to resemble smooth start and ending of sig-
nals from real, bandlimited ultrasound systems. Comparison of the three curves
in Fig. 3 reveals that - in contrast to harmonic or pulsed excitation - the chirp
signal is capable to excite an ensemble of differently sized contrast agent bubbles
if its spectrum is adapted to the radius distribution.

4 Discussion

A single microbubble shows distinct resonant behaviour, with moderate excita-
tion pressures causing large oscillation amplitudes. Simulations show that am-
plitudes at resonance are of the same order as those for subresonant excitation.

In the more realistic case of an ensemble of bubbles with different sizes,
harmonic or pulsed pressure waves excite only a small subset of these bubbles.
Broadband signals with sufficient energy such as chirp signals proved to excite
more bubbles. The application of long duration broadband signals requires pulse
compression during the image formation process. For linear pulse echo imaging
this task can successfully be accomplished by matched filters [5]. Matched filter-
ing is however not directly adaptable for contrast agent enhanced imaging, since
the nonlinear response of the bubbles can not be handled.

The simulations give a general impression about the dynamics of ultrasound
contrast agent bubbles. A more realistic model must include the influence of the
bubble shells [6, 7], the interrelation between the members of a bubble ensemble,
and spherically asymmetric bubbles.
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