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Abstract. Fluorescence microscopy has become an important tool in
biological and medical sciences for imaging thin specimen, even living
ones. Due to Out-of-focus blurring and noise the acquired images are
degraded and therefore it can be difficult to analyse them. In the last
decade many methods have been proposed to restorate these images. One
of the most popular methods to restore microscopy images is an iterative
Richardson-Lucy Algorithm with Total Variation Regularization. Besides
there are some new approaches based on Bregman Iteration to improve
the quality of restored images in general. In this paper we formulate a new
algorithm for restoring fluorescense microscope images using Bregman
Iteration with special attention to the microscopy specific properties.
We can proof that the quality of the restored images increases by using
the I-divergence and the mean square error criteria.

1 Introduction

1.1 Image Formation Model

Any optical system degrades the acquired images due to the physical properties
of the optical aperture and of light itself on the one side and due to the detection
process on the other side. These degradations contain two separate parts: the
blurring of the image which can be described by a PSF (point spread function)
convolution and the additional noise in the image. The type of noise that can
be found in the image is dependent on the acquisition process. For fluorescence
microscopy it is well-known that there is Poisson noise in the acquired images
because it is a low-photon imaginary technique. The Poisson noise will be rep-
resented by φ(.) in this paper. Thus the suitable image formation model where
i is the observed image, o the original image, h represents the PSF and ⊗ the
convolution operator is given by:

i = φ(o⊗ h) (1)

In this paper we assume that the PSF is already known. It is possible to use a
second image with beads to estimate the PSF in a preceding step or to calculate
the PSF due to the physical properties of the used microscope.
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1.2 Restoration of Fluorescence Microscope Images

To restore the degradation due to Poisson noise, as mentioned before, it is com-
mon to use a Richardson-Lucy (RL) algorithm consisting of an expectation max-
imization algorithm which calculates the maximum likelihood estimation [1, 2].
Basically the algorithm contains the iterative minimization of the following en-
ergy functional H applying the know variables form formula (1):

H(o, i) =

∫
o⊗ h− i · log(o⊗ h) (2)

The basic RL algorithm has a huge disadvantage. It amplifies noise after several
iterations while first improving the image. In order to overcome this problem
one can denoise the image first and use the RL algorithm to deblurr the image
afterwards but it is a better solution to add a separate regularization functional.
This additional term is weighted with a regularization parameter. A very popular
choice for a regularization term is the Tikonov-Miller (TM) regularization which
can be combined with the RL energy functional [3].

RTM (o) =

∫
|∇o|2 (3)

∇ is the gradient of the image o and |.| decribes the L2 norm. The TM regulariza-
tion allows the RL algorithm to converge to a suitable solution but it smoothes
the edges. This is a well-known problem and it is possible to use another regu-
larization technique named Total Variation (TV) regularization which preserves
the edges. A combined RL and TV algorithm for microscopy contains the TV
term [4] which is again weighted with a regularization parameter. This method
has another drawback because it rounds corners.

RTV (o) =

∫
|∇o| (4)

Both techniques are very popular and commonly used. The choice for the regu-
larization term should depend on what one wants to analyse in the reconstructed
image.

1.3 Restoration Approach using the L2 Norm and the Bregman
Iteration

Another modified approach to reconstruct blurred and noisy images is using
the Bregman distance introduced in [5]. This distance was added to a blind
deconvolution algorithm [6] and later also used to reconstruct a high resolution
image on basis of a set of low resolution images [7]. In both approaches a L2 norm
based deblurring functional with TV is used. The blind deconvolution algorithm
[6] consists of two independend parts where alternately the image is deblurred
and the PSF is estimated. Here it is assumed that the PSF is already known
and so only the deblurring of the image is of interest. To reconstruct the image
first a common minimization of the combined energy functional containing the
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deblurring and regularization functional is used. Then the observed image i is
modified using i = i + vm for the (m + 1)th Bregman iteration with vm =
i + vm−1 − h ⊗ om being a result of the additional Bregman distance in the
reconstruction algorithm.

2 Materials and Methods

2.1 New Algorithm for Restoring Fluorescence Microscope Images

The new algorithm is using the bregman distance D [5] which is defined as shown
in formula (5).

Dϑ(x, y) = ϑ(x) − ϑ(y) − 〈x− y, ∂ϑ(y)〉 (5)

In this definition < ., . > denotes the inner product and ∂ the sub-gradient of ϑ.
In the new algorithm a RL term H is used for deblurring according to the Poisson
noise in the observed image as already described in formula (2). Then the TV
regularization term R already known from formula (4) is added in order to get
a stable and suitable solution. The TV term is weighted with a regularization
parameter λ. The general formula to calculate the result of the reconstruction
iteratively using the Bregman distance is then:

om = argmino {H(o, i) + λ ·DR(o, om−1)} (6)

As mentioned before H(o, i) shall be the RL deblurring term containing the PSF
and the functional R used in the Bregman distance D is the TV regularization
term. It is necessary to start this approach with an empty image and to do the
first step without using the Bregman distance and only apply the regularization
term R. In order to formulate the algorithm a new term named Breg is intro-
duced which contains an additional image with the same size as the observed
image and is supposed to be filled with zeros at the beginning.

The algorithm itself consists of two separate steps which have to be executed
in every Bregman iteration. The first step is to reconstruct the image iteratively
starting with an empty image and then using the result of the previous step as
start image afterwards. This reconstruction is done according to the following
formula for m = 1...n with n being the requested amount of Bregman iterations.

om = argmino {H(o, i) + λRTV (o) − λ 〈o,Breg〉} (7)

The formula (7) has its origin in formula (6) with the constant parts being
removed and the additional Breg term. The second step of the algorithm in
each iteration step is the modification of the Breg term according to the Bregman
distance in formula (5) and formula (6). This modification is given by the fact
that the minimization of the considered functional in formula (7) yields the
property that the derivative is zero for a minimum of a functional.

Breg = Breg − 1

λ
∂H(om, i) (8)

In formula (8) ∂H(om, i) describes the gradient of the RL functional H(o, i).
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Table 1. Results

I-div MSE

Original & Degraded 1.304.030 22.459.100
Original & Reconstructed (RL & TV) 67.671 21.536.600
Original & Reconstructed (New algorithm) 56.951 18.058.600

2.2 Measure the Quality of the Results

To quantify the quality of the restored images it is usual to use the I-divergence
and the mean square error (MSE) criteria, as you can see in formulas (9,10),
measured between two images A and B (both are 3D and of the same size):

IA,B =
∑

ijk

{
Aijkln(

Aijk

Bijk
) − (Aijk −Bijk)

}
(9)

MSEA,B =
∑

ijk

{Aijk −Bijk}2
(10)

It is a problem to use these criteria on real images because the original image
is not known exactly. However, for simulated data it is a good measurement
of the quality of the restoration comparing the original image and the restored
one. The original image is degraded according to the physical assumptions of the
fluorescence microscopy serving as basis for the restoration algorithm.

3 Results

The results of simulated images can be seen in table 1. In the first row the I-div
and the MSE of the original and the degraded image is shown. In the second
row the quality measurement of the well-known RL approach with TV is listed
and in the last row the results of the new algorithm can be seen.

In figure 1 the result of the algorithms can be seen. In 1a) the original image
is shown and in 1b) the noisy and blurry image used for the simulation. Figure
1c) shows the result of the RL with TV algorithm and 1d) the result of the new
developed algorithm.

4 Discussion

We have proved that the quality of the reconstructed images can be improved
by using the new algorithm compared with RL and TV, as shown in table 1.
Both the I-div and the MSE show an approximately 15% better value for the
reconstructed images. The new algorithm is able to reconstruct finer structures
in the image as well.

The result of the new algorithm is highly dependent on the amount of Breg-
man iterations. With a very high number of iterations the algorithm would re-
construct the degraded image itself which is not the requested result. To start
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Fig. 1. a) original image b) blurry and noisy c) RL & TV d) new algorithm

the algorithm an empty image is used which is reconstructed iteratively. In every
step finer structures are reconstructed which means that after some iterations
the noise is reconstructed as well. During the iterative process before the noise
is reconstructed the intermediate result is very close to the original image which
is a very good solution for the reconstruction. It is difficult to stop the algorithm
in case of real images where the original image is not known. One possibility is
to use the discrepancy principle [8] to stop the algorithm and we plan to add
that to the new algorithm in future.
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