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Siegfried Beller1, Peter M. Schlag1

1Department of Surgery and Surgical Oncology, Charité - Universitätsmedizin Berlin
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Abstract. Validation of non-rigid registration methods is still a chal-
lenging task. Different evaluation criteria were published, yet no widely
accepted gold standard exists. The aim of this paper is to provide quan-
titative evaluation metrics suited for clinical 3D images containing vessel
trees, such as liver or brain data. We present a method to identify corre-
sponding points on different vessel trees by extracting consistent graph
minors interactively. Four different metrics based on these corresponden-
cies are proposed.

1 Introduction

Validation of non-rigid registration approaches is a difficult problem. While an
accepted gold standard exists for validation of rigid registration methods[1] only
few papers address this issue for non-rigid registration [2, 3]. The published
methods are based on simulated data or physical phantoms [4] on the one hand
and a restriction of the validation to some important anatomical structures that
can be identified in real clinical data on the other hand. The restricted validation
on anatomical structures can be based on richly annotated (labeled, segmented)
real images [3] or interactively assigned corresponding anatomical landmarks [5].

Since it is challenging to generate simulated data or physical phantoms, pos-
sessing realistic imaging and deformation properties, we focus on restricted val-
idation methods for real clinical data. Often vessel trees are suitable anatomical
structures for registration validation in particular in liver and neurosurgery.

In a first step corresponding vessel branchings in both modalities are identi-
fied interactively. Then an automatic algorithm determines corresponding sub-
structures (graph minors) of the vessel trees while verifying their consistency.
Four evaluation metrics are defined on those substructures. To validate a non-
rigid registration result the vessels in the model data are deformed with the
computed transformation and the metrics measure how close corresponding ves-
sel parts in the reference data are after the transformation.



83

2 Methods

It is assumed, that a segmentation and center line extraction (via skeletonization)
of the vessel trees from two different data sets (e.g. CT and 3D ultrasound)
exists. In our case the center lines consist of linearly interpolated 3D node point
sequences. Based on those nodes the vessels can be represented as a tree (Fig
1a). Let T = (V,E) and T̂ = (V̂ , Ê) be directed trees for the reference resp.
model data. All edges point in the direction to the given root nodes r ∈ V and
r̂ ∈ V̂ . The node subsets B ⊆ V and B̂ ⊆ V̂ contain all branching nodes (node
degree δ(v) > 2). Let P (v, w) be the unique path from node v to node w. We call
a path between two branching nodes or a branching and an end node (δ(v) = 1)
a (vessel) segment path.

The trees T, T̂ are not identical and only parts of the underlying anatomical
vessel tree (supertree) can be identified in both modalities. There is no subtree
isomorphism of T, T̂ to a common supertree and even no homeomorphism. Due
to missing branches a segment path in T might be represented by several segment
paths in T̂ and vice versa (Fig. 1a). In addition the order of branching points
or other topological changes might occur (Fig.1b) caused by inaccuracies in the
image processing pipeline. To get a subtree isomorphism the contraction of some
segment paths to one single node is necessary. This means a supertree contains
T and T̂ as a minor. Intuitively, a graph G is a minor of a graph H, if G can be
obtained from H by a series of vertex/edge deletions and edge contractions.

As the consistent assignment of branching nodes and segment paths is only
heuristically solvable based on geometric properties [6], we interactively define

a subset of corresponding branching points (bi, b̂i), i = 1, . . . , n, bi ∈ B, b̂i ∈ B̂.

Let Bcorr, B̂corr contain all bi resp. b̂i. To ease the interaction, a mouse click
can be set onto the vessel surface nearby the branching point and the nearest
branching point on the center line graph is determined automatically.

2.1 Determination of corresponding segment paths

Algorithm 1 determines for two given vessel center line trees T, T̂ and a subset of
corresponding branching node pairs (bi, b̂i), i = 1 . . . n corresponding path pairs

Fig. 1. a) Reference T and model tree T̂are minors of the underlying anatomical tree
(grey). b) Caused by inaccuracies the order of the branching nodes might be exchanged.
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(Pi, P̂i). As the directed path to the root is unique, the algorithm starts from each
corresponding branching point and ends, if another corresponding branching
point or a point, which has already been visited, has been reached. The second
termination criterion is necessary because not all branching points might have
been interactively assigned. It is important to check if the reached points are an
assigned branching point pair in order to detect topological or assignment errors.
Most of the inconsistencies can be resolved by automatic contraction of very

Algorithm 1 CorrespondingPaths

1: All nodes in V and V̂ are unmarked.
2: for n = 1 to n do

3: Let v := bi, v̂ := b̂i {Start with corres. node pair}
4: repeat

5: Mark v, v := parent(v)
6: until v is already marked or v ∈ Bcorr or v is root r
7: repeat

8: Mark v̂, v̂ := parent(v̂)
9: until v̂ is already marked or v̂ ∈ B̂corr or v̂ is root r̂

10: if (v, v̂) is a corresponding node pair (bj , b̂j) then

11: Set Pi := P (bi, v) and P̂i := P (b̂i, v̂)
12: else

13: Set Pi := ∅ and P̂i := ∅
14: print Resolve topological inconsistency at paths starting at (bi, b̂i)
15: end if

16: end for

short segment paths. Remaining problems are eliminated interactively. Based
on the resulting path pairs each model path P̂i is reparameterized according
to the reference path Pi. This means the relative distances between successive
reference nodes are transfered to the length of the model path. Now each node on
a reference line corresponds to a point on the model line. Let (pj , p̂j), j = 1, . . . ,m
be all corresponding point pairs on all segments.

2.2 Evaluation metrics

Distance of corresponding points on center lines: The most simple metric
is the average distance between corresponding point pairs.

Mdist(T, T̂ ) :=
1

m

m∑

j=1

‖pj − p̂j‖ (1)

Weighted point distance: The corresponding center line points are generated
with some location uncertainties. The uncertainties along the lines are usually
higher than perpendicular to the lines. In particular location uncertainties of the
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branching points lead to translations of the correspondences along the lines. Let
Σj be an estimated covariance matrix of the anisotropic location uncertainty for
the point pair (pj , p̂j). Based on these weighting matrices a weighted distance
measure can be defined [7]:

Mweighted(T, T̂ ) :=
1

m

m∑

j=1

(pj − p̂j)
TΣ−1

j (pj − p̂j) (2)

Directional deviation metric: From the vessel center lines in each correspond-
ing point pair (pj , p̂j) (except in the branching points) a normalized tangential

vector pair (dj , d̂j) can be computed. The sine of the angle between the direction
vectors is a measure for the deviation of the two directions. As the cross product
(×) is related to the sine an evaluation metric can be defined by:

Mdir(T, T̂ ) =
1

m

m∑

j=1

∥∥∥dj × d̂j

∥∥∥ (3)

Segment-wise relative volume overlap: A metric that is less dependent on
the center line extraction is the relative volume overlap of corresponding vessel
segments. Each voxel is assigned to the closest segment path point. For all points
on corresponding segment paths Pi, P̂i the assigned voxels define the volumes
Vi, V̂i of the particular segments.

Mvol(T, T̂ ) :=
1

n

n∑

i=1

Vi ∩Wi

Vi ∪Wi
(4)

3 Results

The corresponding path algorithm has been exemplarily applied to the portal
veins extracted from preoperative contrast-enhanced CT (Fig. 2a) and intraop-

Fig. 2. a) Portal veins extracted from contrast-enhanced CT data and b) from 3D
Powerdoppler ultrasound data (black: corresponding vessel segments). c) Vessel center
lines from ultrasound data (black) and corresponding points in CT data (small spheres
and grey lines) determined from corresp. branching nodes (big spheres).
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erative 3D powerdoppler ultrasound data (Fig. 2b). Based on the corresponding
center line point pairs a rigid transformation was computed. The remaining de-
viations of the vessels are illustrated in Fig. 2c) and are on average 4.5 mm.

4 Discussion and Future Work

In computer assisted liver surgery one important task is to non-rigidly register
preoperative 3D models of anatomical structures to intraoperative 3D ultrasound
data [8, 9] which are the reference data for navigation systems in liver surgery
[10]. We introduced validation methods for the accuracy of non-rigid registra-
tion approaches on image pairs containing vessel trees. Each validation metric
stresses a different aspect of registration accuracy. The metrics can be applied for
registration validation of preoperative CT with intraoperative ultrasound data
or pre- and postoperative CT data of the liver for follow-up studies. The aim is
to generate a database of corresponding segment paths for portal and hepatic
veins from 20-25 cases for each of the two applications. One important future
task is to improve the precision of the center line extraction and to investigate
the remaining uncertainties of the correspondences more rigorously. In particular
the segmentation of the vessels might be improved by fitting local vessel models.
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