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Abstract. The general idea of the presented work is to overcome known
problems with segmentation and analysis of 2D radiographs by regis-
tering a 3D appearance-model. Therefore this paper introduces a novel
method to register 2D x-rays with 3D appearance-models by optimizing
the appearance and pose of the model until a virtual radiograph of the
generated model-instance optimally fits the investigated x-ray. The ap-
proach was tested on a sample set of 15 human femur specimen using
different metrics and optimization techniques to investigate the impact
on the resulting implicit 2D-segmentation. The first promising results are
presented and discussed in detail.

1 Introduction

2D radiographs suffer from considerable information loss compared to the asso-
ciated real patient anatomy. This is mainly due to overlaps and summation of
organs as a consequence of an x-ray’s projective nature. In addition, the missing
depth information results in ambiguity concerning the origin of 2D shape vari-
ation which is a mixture of pose and 3D shape variation leading to insufficient
segmentation results. To overcome these problems registration of radiographs
with CT-datasets of the patient can help and methods for this approach have
been proposed frequently. For instance, a pre-operative CT-scan of the investi-
gated anatomical region can be aligned with an intra-operative x-ray of the same
patient to verify the 3D patient position during interventions [1, 2]. Nevertheless,
in many clinical situations a CT-image is not indicated and therefore not avail-
able. In these cases, it would be desirable to reconstruct the 3D anatomy based
on x-ray images without relying on pre-acquired CT-scans of the same patient by
substituting the CT-image with a statistical 3D model. In this context Lamecker
et al. [3] presented a semi-automatic approach for extracting the 3D geometry
of the pelvis from coronal and sagittal x-rays based on a 3D statistical shape
model and a known camera calibration. As a consequence of the usage of a pure
shape model in this and similar approaches the 3D intensity-distribution of the
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modeled region is not reconstructed. Hence it is often desired to derive not only
3D shape information on certain structures of a patient from radiographs, but
also 3D intensity reconstruction. This is useful in situations were the intensity
values are used, e.g. estimating the local anchorage quality of osteoporotic bone
in order to enable efficient surgical planning of femoral fracture fixations.

To overcome these limitations of using shape models an approach to use a 3D
appearance-model (AM) [4] of the investigated anatomical region for intensity-
based 2D/3D-registration will be proposed in this work. By continuously varying
the appearance of the model, the 3D anatomy is successively approximated. This
approach is expected to allow analyses directly based on the shape, pose and
intensity-distribution of the resulting 3D model-instance. In the following we will
focus on the human femur. More precisely, we zoom in on the femur’s implicit
2D-segmentation in x-rays which can be achieved by projecting the resulting
model-instance onto the x-ray-plane.

In the past, different metrics for intensity-based registration [1, 5] were sug-
gested which significantly influence the registration accuracy. Therefore our goal
was to study these metrics regarding their suitability for the described approach.

2 Materials and Methods

The underlying AM is a so-called ’InShape’-model [4] of the human femur. It
is a combined shape-intensity model S generated from 15 manually segmented
CT-scans Si of femur specimen. By parameterizing the model S(α) = S̄ ·Ukα
with a k-dimensional coefficient vector α the shape-intensity instances Si of the
training set can be approximated. S̄ denotes the mean shape-intensity pair and
Uk defines a matrix whose columns represent the first k orthogonal modes of
shape-intensity variation within the training set.

In our approach the registration process is divided into two stages: In a
first step the spatially initialized mean shape-intensity instance of the ’InShape’-
model is projected onto a virtual image-plane using ray-casting. This digitally
reconstructed radiograph (DRR) is then rigidly aligned with the investigated
x-ray during an intensity-based 2D/2D-registration sub-procedure (e.g. [1, 2]).
The DRR’s image-plane is pre-configured and does not need any preparative cal-
ibration procedures. The resulting 2D transformation of the 2D/2D-registration
is used for initializing the model’s pose in the next step. In this second step, a
2D/3D-registration process, the model’s pose and appearance is optimized un-
til the DRR of the generated model-instance optimally matches the examined
x-ray as illustrated in Fig. 1(a). The six degrees of freedom of the involved rigid
3D transformation together with k model parameters used for determining the
shape and intensity-distribution of the actual model-instance are optimized. This
is done with respect to an intensity-based measure calculated from the overlay
of the actual DRR and the investigated radiograph.

In both registration stages different metrics and optimization methods have
been applied including powell optimization (P) [6], 1+1 evolutionary optimiza-
tion (OE) [7], mean reciprocal square difference metric (MD) [8], mattes mutual
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information metric (MM) [9] and normalized mutual information metric (NM)
[5]. The result of the complete registration process is a geometrical 3D trans-
formation (3 rotational and 3 translational components) on the one hand and a
specific appearance of the model (k-dimensional vector) on the other hand.

3 Results

The approach described in section 2 was tested on a training set of 15 hu-
man femur specimen. Both CT-scans and x-ray images of all specimen have
been available at original resolutions of 0.254 mm and 0.1 mm respectively. An
’InShape’-model [4] of the femur with a final resolution of 1.0 mm was generated
based on these manually segmented CT-scans. The resulting AM comprised the
upper regions of the femur and a short part of the shaft (Fig. 1(a)).

Two study settings were used for evaluation. In the first setting, the spatial
position of the mean-shape instance for 2D/2D-registration was manually ini-
tialized as accurate as possible using the femoral head midpoint as reference.
In the second setting the initial spatial position of the mean-shape instance for
the first stage was interactively altered up to 6.0 mm in x- and y-direction in
order to simulate manual initialization by an expert. For both settings the intro-
duced two-stage registration process was applied utilizing different combinations
of optimization techniques and metrics.

After a total number of 600 optimization-iterations (termination condition)
the final output of the presented two-stage strategy is a specific model-instance
whereof a DRR is calculated. The x-ray of the investigated femur specimen as

Fig. 1. (a) 2D/3D-registration scheme and (b) two exemplary qualitative results
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Table 1. Results of the first setting on a set of femur specimen radiographs (n = 15)

Registration SI [1] HD [mm] CD [mm]
2D/2D 2D/3D mean SD max mean SD max mean SD max

MD,OE MM,OE 0.902 0.038 0.953 7.114 2.655 12.011 3.741 1.351 6.094
MD,OE MD,OE 0.911 0.036 0.959 5.498 2.197 11.517 3.371 1.405 5.610
MD,OE NM,OE 0.933 0.024 0.968 4.239 1.502 6.223 2.778 1.000 4.748
NM,OE MM,OE 0.891 0.041 0.972 6.188 2.548 10.644 4.197 1.519 6.092
NM,OE MD,OE 0.899 0.042 0.962 4.913 1.465 6.958 3.778 1.450 7.341
NM,OE NM,OE 0.895 0.046 0.969 5.597 1.891 10.035 4.127 1.758 6.375
MM,P MM,OE 0.913 0.038 0.961 4.970 1.770 7.685 3.618 1.129 6.105
MM,P MD,OE 0.839 0.246 0.962 10.057 16.546 67.006 6.888 12.646 50.417
MM,P NM,OE 0.926 0.031 0.965 4.018 1.203 6.223 3.008 1.365 5.507

well as the generated output DRR can be binarized using a threshold. Fur-
thermore the investigated x-ray must be cropped to the size of the femur’s
bounding box in the DRR (see dashed lines in images iii in Fig. 1(b)). Three
common similarity measures can be calculated from the superimposed cropped
binarized x-ray A and the binarized DRR B: the κ-statistic-based similarity in-
dex SI = 2|A ∩B|/(|A| + |B|) where | · | denotes the size of a set, the directed
hausdorff distance HD = maxa∈A minb∈B ||a−b|| and the contour mean distance
CD = max(h(A,B), h(B,A)) where h(A,B) = maxa∈A minb∈B ||a − b||. These
measures rate the 2D-segmentation quality of our approach.

Table 1 lists the results of the first study setting. The first two columns
show the applied combinations of metrics and optimizers in the two registration
stages. Next, the values of arithmetic mean, standard deviation and maximum
for each considered similarity measure over the complete set of investigated femur
specimen radiographs (n = 15) are depicted. The best results were achieved by
applying the combinations MD/OE (2D/2D) and NM/OE (2D/3D) resulting in
SI = 0.933 ± 0.024, HD = 4.239 ± 1.502 mm, and CD = 2.778 ± 1.000 mm.

In the second setting with less accurate initialization the combinations
MD/OE (2D/2D) and NM/OE (2D/3D) also performed best. Over the spec-
imen training set the investigated measures amounted to SI = 0.928 ± 0.026,
HD = 4.736 ± 1.959 mm and CD = 3.406 ± 0.693 mm.

Fig. 1(b) shows two exemplary qualitative results (upper images: first setting,
lower images: second setting). The investigated femur specimen images (i), loga-
rithmic overlays showing the initial spatial position of the mean shape-intensity
instance (ii), the resulting segmentations as binary difference images (iii) and
the DRRs of the final model-instances (iv) are depicted.

4 Discussion

The combinations of MD/OE for 2D/2D-registration and NM/OE for 2D/3D-
registration perform best in both studies. Furthermore it can be stated that the
loss of precision in the second study setting, due to a less accurate initialization,
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is only marginal. These results show that the described two-stage registration in
general is suited for the segmentation of femur structures in radiographs. As seen
on Fig. 1(b), the 2D-segmentation quality in the femoral head region tends to be
better than in the region of the greater trochanter which may be a consequence
of stronger appearance variations in this anatomical area. Behiels et al. [10] com-
pared three different 2D-segmentation approaches based on active shape models
(ASM) over a set of proximal femur x-rays. Our segmentation method’s perfor-
mance is comparable to the results presented in [10]. As a consequence of the low
number of outliers, the maximum segmentation errors (HD) of our method are
relatively small. Therefore our approach appears to be more robust compared
to [10]. Another advantage of our approach is that variations in shape (actually
appearance) and changes in pose of the investigated anatomical structure are
modeled separately. Hence the result also reflects these two aspects explicitly in
contrast to ASMs. Currently, the DRR quality is still not optimized. Thus, the
next step in this project will be the generation of more realistic DRRs by con-
sidering the implicitly modeled electron densities of the investigated anatomical
structure. This enhancement of the virtual x-ray is expected to further increase
the total reconstruction quality. Since the sample size is too low for validated
statements, we currently started to evaluate the presented two-stage registration
in the course of a clinical study (n = 340). Besides the 2D-segmentation quality
we will also evaluate the accuracy and robustness of the reconstructed 3D model
appearances compared to the acquired CT-scans of the patients. First results of
this study will be available in the near future.
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