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Abstract. Deformable models are used for the segmentation of objects
in 3D images by adapting flexible meshes to image structures. The si-
multaneous segmentation of multiple objects often causes problems like
violation of spatial relationships. Here we present two methods for in-
cluding prior knowledge into the segmentation process: The first deals
with objects sliding with respect to each other, and the second considers
a pre-defined minimal distance between neighboring objects. Using this
prior knowledge improved segmentation results can be reached.

1 Introduction

Segmentation is still one of the main challeging problems in medical image analy-
sis. In order to improve the segmentation, prior knowledge in form of anatomical
models is frequently used. For this reason, deformable models of several organs
have been earlier developed and used for segmenting the corresponding objects in
medical images [1, 2, 3]. In model-based segmentation, flexible meshes, normally
triangle meshes, are adapted to the corresponding image structures. Usually this
adaptation is carried out for every object separately by optimizing a weighted
sum of two competing energies: an external energy Eext driving the mesh trian-
gles towards image features and an internal energy Eint preserving the form of
the model [4].

The segmentation is often complicated by various factors, like, e.g., no clear
boundaries of the object to be segmented, pathologies or intensity similarity
of adjacent structures, thus leading to wrong adaptation results. In most cases
the segmentation can be improved when not only using prior knowledge of the
object’s shape but also information about spatial relations to neighboring struc-
tures. First attempts to include object relations are described in [5, 6, 7] and
references therein. For instance, additional edges connecting neighboring meshes
are introduced, or non-overlapping constraints are used.

Here we propose a method for simultaneous segmentation of objects close
to each other by introducing additional edges similar to [5]. For these edges, a
connection energy is defined in different ways incorporating prior knowledge of
the corresponding anatomical region. Hence sliding organs or a required minimal
distance of two organs can be represented.
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2 Materials and Methods

Let Mi (i = 1, . . . , n) denote the pre-positioned meshes for n objects which
are to be segmented. Then for any two objects being near to each other, a
connecting object Ci is defined by a set of additional edges connecting points
of the two corresponding meshes Ma(i) and Mb(i). For each connecting object, a
transformation class Ti is chosen which describes the allowed deformations, or a
required minimal distance di is chosen. Then iteratively the following steps are
performed:

1. For each mesh Mi, a feature search is carried out, and the corresponding
external energy Eext,i is computed as in [4].

2. For each mesh Mi, a similarity transform, i.e. a rotation matrix ri and a
scaling factor si is computed, which best aligns the model mesh with the
actual mesh configuration. The remaining deformation results in an internal
energy Eint,i =

∑
(j,k)∈edges(Mi)

(x̂j − x̂k − siri(xj − xk))
2

[4], where the x̂j

denote the coordinate vectors of the corresponding mesh vertices in the pre-
positioned model and the xj denote the coordinate vectors of the actual mesh
configuration.

3. For each connecting object Ci (connecting the meshes Ma(i) and Mb(i))
(a) a transformation ti ∈ Ti is determined best aligning the pre-positioned

model connection object with the actual connection object, and the
connection energy Econ(a),i =

∑
(j,k)∈edges(Ci)

(x̂j − x̂k − ti(xj − xk))
2

is
computed, or

(b) two parallel planes are fitted through the vertices, one plane through the
vertices belonging to Ma(i) and the other plane through the vertices be-
longing to Mb(i). Let νi be the normal vector to these planes, going from
Ma(i) to Mb(i). For every edge (j, k) in Ci (j ∈Ma(i), k ∈Mb(i)), the sca-
lar product 〈xk −xj , νi〉 is computed, which results in the connection en-

ergy Econ(b),i =
∑

(j,k)∈edges(Ci)
(〈xk − xj , νi〉 − max(〈x̂k − x̂j , ν̂i〉, di))

2
.

4. The overall energy E =
∑n

i=1 αiEext,i +
∑n

i=1 βiEint,i +
∑m

i=1 γiEcon,i, with
weighting factors αi, βi and γi, is minimized, resulting in new coordinate
vectors for each mesh.

This iteration is repeated for a given number of steps, or it is stopped when the
new vertex coordinates do not differ significantly from the ones before.

The transformation class Ti in step 3a can for instance be the class of affine
transformations (without reflection). Then shearing is allowed which ensures that
the connected meshes can slide with respect to each other. If the distance of the
two meshes is to be preserved, the scaling factors of the affine transformation can
be restricted. Hence the transformation class can be defined in order to match
the requirements of the underlying application.

If two meshes are to have a given minimal distance but this distance can not
be reached by pre-positioning, step 3b can be applied. In this step, the connect-
ing edges are projected onto the normal vector of the parallel planes describing
the adjacent mesh surfaces. The connection energy penalizes a length of these
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Table 1. Mean dmean, maximum dmax and standard deviation σ of the distance of
the adapted vertebral meshes to the surface of the ground truth meshes for three CT
datasets (all numbers are given in mm)

connection energy dataset 1 dataset 2 dataset 3
dmean dmax σ dmean dmax σ dmean dmax σ

without 0.90 4.86 0.71 1.35 5.77 1.06 0.72 3.96 0.65

Econ(a) 0.83 4.11 0.62 1.24 5.31 0.93 0.57 3.23 0.46

Econ(b) 0.81 4.38 0.61 1.23 5.17 0.90 0.61 3.63 0.51

projections smaller than the given minimal distance. Hence an initial mesh over-
lap (indicated by a negative length of connecting edges) can be corrected during
the mesh adaptation process. If, on the other hand, the minimal distance con-
dition is fulfilled, then the projected length of the connecting edge is compared
with the projected length in the model, and a deviation is penalized. Hence in
this case the distance of the two connected mesh surfaces is to be preserved.

3 Results

A synthetic test example image (size 100×200×100mm3) contains two cubes (size
703mm3) with a light outer region like cortical bone and a dark inner region like
cancellous bone (Fig. 1). The two cubes are staggered as for instance vertebrae
in the spine may be. The two meshes are pre-positioned in such a way that the
upper surface of the lower mesh is closer to the cortex-marrow-transition of the
upper cube than to the surface of the lower cube, simluating a typical imper-
fect pre-positioning (Fig. 1a). Hence an adaptation without a connection energy

(a) (b) (c) (d)

Fig. 1. Synthetic example image of two cubes with two pre-positioned meshes (a),
adaptation results without connection energy (b) and with connection energies based
on rigid transformation (c) and affine transformation (d). Result (d) is also achieved
with the connection energy requiring a minimal distance of 7mm for both starting at
configuration (a) or starting at configuration (b)



255

will fail (Fig. 1b). In contrast, a connection energy Econ(a) based on a rigid or
affine transformation can ensure that the upper surface of the lower mesh finds
its correct cube surface, since the lower mesh is forced down- wards due to the
adaptation of the upper mesh. A rigid transformation keeps the relative posi-
tioning of the adjacent mesh surfaces (Fig. 1c), whereas an affine transformation
allows for shearing (Fig. 1d). The shearing result in Fig. 1d can also be obtained
with the connection energy Econ(b) requiring a minimal distance of 7mm. This
connection energy additionally has the potential of correcting initial mesh over-
laps: When starting the adaptation process with the mesh configuration shown
in Fig. 1b, the result shown in Fig. 1d is achieved as well.

Fig. 3 shows a medical example application. In a computed tomography (CT)
image of the spine, the third, fourth and fifth thoracic vertebrae are to be seg-
mented. As the synthetic example illustrated, the transition from cortical to
cancellous bone is comparable to the bone boundary, hence a separate adapta-
tion of each vertebra is likely to fail (Fig. 3c). In contrast, the connection energy
Econ(a) based on an affine transformation preserves the spatial relationship of
the vertebral meshes and hence results in a reasonable segmentation (Fig. 3e).
The connection energy Econ(a) requiring a minimal distance of 2mm furthermore
corrects for the slight initial mesh overlaps (Fig. 3b). It moves the meshes apart
during the adaptation process (Fig. 3f).

We validated our methods for three CT datasets of the 12 thoracic vertebrae
with a slice thickness between 2 and 3 mm containing no significant pathologies.

(a) (b) (c)

(d) (e) (f)

Fig. 2. CT image of the thorax and highlighted region containing the third, fourth
and fifth thoracic vertebrae (a), the initial mesh positioning (b) and the adaptation
results without connection energy (c) and with a connection energy based on affine
transformation (e) and requiring a minimal distance of 2mm (f), based on connecting
objects consisting of additional edges connecting two neighboring vertebral meshes (d)
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A global manual positioning including rotation and translation of a mean model
[8] was used for initialization of the segmentation routines. We compared the
segmentation results with manually adapted meshes used as ground truth. The
mean, maximum and standard deviation of the distance between the vertices of
the adapted meshes to the surface of the ground truth meshes show a decrease
of the segmentation error of about 10 % with the introduced methods (Tab. 1).

4 Discussion

As the examples in the previous section illustrate, the introduced connection
energies yield an acceptable segmentation of multiple objects close to each other
while an independent adaptation of the multiple meshes fails. The kind of con-
nection energy to be applied depends on the requirements of the underlying
application. A connection energy based on a rigid transformation keeps the spa-
tial relationship of the pre-positioned meshes and hence avoids mesh overlaps if
the mesh initialization is collision-free. A connection energy based on an affine
transformation is more flexible allowing for a sliding of adjacent mesh surfaces.
This property is important in anatomical regions where organ surfaces may slide
with respect to each other. The second variant of a connection energy requiring
a minimal distance between two meshes additionally can correct for initial mesh
overlaps. Hence a slightly incorrect pre-positioning can be revised during the
mesh adaptation process. This strategy absolves the user from a collision-free
pre-positioning of the meshes or avoids a computationally expensive collision
detection algorithm to be applied prior to mesh adaptation. However, further
improvements may be achieded by learning the minimal distance from an en-
semble of adapted models. Hence the connection energies bear the potential of
correctly segmenting multiple objects with little required user interaction.
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