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Abstract. A fundamental problem when building a statistical shape
model (SSM) is the correspondence problem. We present an approach for
unstructured point sets where one-to-one correspondences are replaced
by correspondence probabilities between shapes which are determined us-
ing the Expectation Maximization - Iterative Closest Points registration.
We propose a unified MAP framework to compute the model parameters
which leads to an optimal adaption of the model to the observations.
The optimization of the MAP explanation with respect to the obser-
vation and the generative model parameters leads to very efficient and
closed-form solutions for (almost) all parameters. Experimental results
on synthetic data and brain structures as well as a performance compar-
ison with a statistical shape model built on one-to-one correspondences
show the efficiency and advantages of this approach.

1 Introduction

In order to analyze shape variability it is necessary to determine correspondences
between the observations of the training set. Several techniques were developed
to automatically find exact correspondences [1], some in combination with the
search for the SSM [2, 3] or a shape analysis [4]. An interesting approach pro-
poses an entropy based criterion to find shape correspondences [5]. However,
these methods are not easily adaptable to point sets as exact correspondences
can only be determined between continuous surfaces, not between point cloud
representations of surfaces. The SoftAssign algorithm tries to solve this problem
with an initial probabilistic formulation [6]. In order to build a SSM for unstruc-
tured point sets, we advance the probabilistic concept of [7] using the EM-ICP
registration which proved to be robust, precise, and fast [8]. The approach solves
for the mean shape and the eigenmodes in a unique criterion without the need
of one-to-one correspondences as is usually required by the PCA. This article
focuses on the validation of the work presented in [9].
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2 Methods and Experiments

We first realize a MAP estimation of the model and observation parameters
which leads to a unique criterion. We then compute the SSM which best fits the
given data set by optimizing the global criterion iteratively with respect to all
model and observation parameters. A key part of our method is that we can find
a closed-form solution for nearly each of the parameters.

2.1 Statistical Shape Model Built on Correspondence Probabilities

In the process of computing the SSM, we distinguish strictly between model
parameters and observation parameters. The generative SSM is explicitly defined
by 4 model parameters: The mean shape M̄ ∈ R

3Nm parameterized byNm points
mj ∈ R

3, the eigenmodes vp consisting of Nm 3D vectors vpj , the associated
standard deviations λp which describe the impact of the eigenmodes, and the
number n of eigenmodes. Using the generative model Θ = {M̄, vp, λp, n} of
a given structure, the shape variations of that structure can be generated by
Mk = M̄ +

∑n
p=1 ωkpvp with ωkp ∈ R being the deformation coefficients. The

shape variations along the modes follow a Gaussian probability with variance λp

and Ωk = {ωkp, p = 0, ..., n− 1}.

p(Mk|Θ) = p(Ωk|Θ) =
n∏

p=1

p(ωkp|Θ) =
1

(2π)n/2
∏n

p=1 λp
exp

(
−

n∑

p=1

ω2
kp

2λ2
p

)
(1)

In order to account for the unknown position and orientation of the model in
space, we introduce the linear transformation Tk. A model point mj can then
be deformed and placed in space by the linear transformation Tk with Tk ?
mkj = Tk ? (m̄j +

∑
p ωkpvp). Finally, we model each observation point ski as a

Gaussian measurement of a (transformed) model point mj . As we do not know
the originating model point for each observation point ski, the probability of
a given ski is described by a Mixture of Gaussians and the probability for the
whole scene Sk becomes:

p(Sk|M,Tk) =

Nk∏

i=1

1

Nm

Nm∑

j=1

p(ski|mj , Tk) (2)

with p(ski|mj , Tk) = (2π)−3/2σ−1 exp(− 1
2σ2 (ski −Tk ?mj)

T .(ski −Tk ?mj)). We
summarize the observation parameters as Qk = {Ωk, Tk}.

2.2 Derivation of the Global Criterion Using a MAP Approach

When building the SSM, we useN observations Sk ∈ R
3Nk , and we are interested

in the parameters linked to the observations Q = {Qk} as well as the unknown
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model parametersΘ. In order to determine all parameters of interest, we optimize
a MAP on Q and Θ.

MAP = −
N∑

k=1

log(p(Qk, Θ|Sk)) = −
N∑

k=1

log

(
p(Sk|Qk, Θ)p(Qk|Θ)p(Θ)

p(Sk)

)
(3)

As p(Sk) does not depend on Θ and p(Θ) is assumed to be uniform, the global
criterion integrating our unified framework is the following:

C(Q,Θ) = −
N∑

k=1

(
log(p(Sk|Qk, Θ)) + log(p(Qk|Θ))

)
(4)

The first term describes the ML criterion (eq. (2)) whereas the second term is
the prior on the deformation coefficients ωkp as described in eq.(1). Dropping

the constants, our criterion simplifies to C(Q,Θ) ∼∑N
k=1 Ck(Qk, Θ) with

Ck(Qk, Θ)=

n∑

p=1

(
log(λp) +

ω2
kp

2λ2
p

)
−

Nk∑

i=1

log




Nm∑

j=1

exp

(
−‖ski − Tk ? mkj‖2

2σ2

)
(5)

This equation is the heart of the unified framework for the model computation
and its fitting to observations. By optimizing it alternately with respect to the
operands in {Q,Θ}, we are able to determine all parameters we are interested
in. In a first step, all observations are aligned with the initial mean shape by es-
timating the Tk using the EM-ICP. In order to robustify, we used a multi-scaling
scheme concerning the variance σ2, for details please refer to [9]. Starting from
the initial model parameters Θ, we then fit the model to each of the observations.
Next, we fix the observation parameters Qk and update the model parameters.
This is iterated until convergence.

2.3 Experiments

We present two experiments we ran in order to evaluate our approach. A typical
correspondence problem: One of our arguments against the concept of enforcing
homologies between points representing surfaces is the fact that certain shape
structures of one observation might not appear on all observations of the training
set. We constructed a synthetic data set containing 20 observations in order to
illustrate this problem, see figure 1 a). Half of the ellipsoids are equipped with
a bump, and the other half are not. A reliable SSM should be able to represent
both classes by including this distinction in its variability model. In order to
compare the results, we generated two SSMs, one by using our new method, the
other one by using the traditional ICP and PCA.

Our data set consists of N = 21 left segmented putamen observations (ap-
proximately 20mm × 20mm × 40mm) which are represented by min 994 and
max 1673 points (Fig. 1c)). In order to assess the quality of a SSM, we measure
two performance measures as proposed in [10]. A good generalization ability is
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Table 1. Performance Measures. Shape distances found in generalization experiments
(7 leave-one-out tests) and in specificity experiments (500 random shapes) with our
SSM approach and with an ICP+PCA approach using 18 eigenmodes

Generalization ability ICP+PCA model our SSM

average mean distance + standard deviation in mm 0.610 ± 0.089 0.447 ± 0.101
average max. distance + standard deviation in mm 4.388 ± 0.930 2.426 ± 0.712

Specificity ICP+PCA model our SSM

average mean distance + standard deviation in mm 0.515 ± 0.117 0.452 ± 0.020

important for recognition purposes as a SSM must be able to adopt the shape of
an unseen observation which comes from the same structure type. We test it in
a series of leave-one-out experiments. The SSM is first aligned with the unseen
observation, then the matching is optimized by finding the best deformation co-
efficients ω. Finally, the distance of the deformed SSM to the left-out observation
is measured. The specificity of a SSM must be high for shape prediction pur-
poses as the SSM should only adopt shapes similar to the ones in the underlying
training set. We generated random shapes x which are uniformly distributed
with σ being equal to the standard deviation of the SSM. Next, we computed
the distance of the random shapes to the closest observations in the training
data set. As we do not have surface representations, we chose a distance mea-
sure which computes the average minimum point distance between the deformed
model points and the observation points.

3 Results

For our SSM, the following parameters were chosen: σstart = 4mm, reduction
factor = 0.85, 10 iterations (EM-ICP) with 5 SSM iterations. For the ICP+PCA
SSM, we iterated the ICP 50 times. The results for the experiments concerning
the typical correspondence problem are shown in Figure 1 a),b). For both meth-

a)

b)

c)

d)

e)

1 2 1 2

ICP SSM

Fig. 1. SSM on synthetic data set: (a) Ellipsoid observation examples; (b) Results
SSM/ICP; (c) Results SSM/EM-ICP with final mean shape (middle), and the mean
shapes deformed with respect to the first eigenmode (M̄ − 3λ1v1 and M̄ + 3λ1v1);
(d) Putamen observation examples; (e) Exact correspondence versus correspondence
probabilities. Left: ICP, right: EM-ICP.
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ods, we chose the initial model from the ellipsoid class without bump. The first
row shows the mean shape and eigenmodes for the SSM built by the ICP+PCA
SSM whereas the second row shows those for our SSM.

The results of the testing series for the generalization ability and the speci-
ficity for both our SSM and the ICP+PCA SSM on putamen data are depicted
in table 1. We performed the leave-one out test for 7 different unknown obser-
vations. The specificity was computed for 500 random shapes. We computed the
average and maximal distances as well as the variances.

4 Discussion

We proposed a mathematically sound and unified framework for the computation
of model parameters and observation parameters and succeeded in determining
a closed form solution for optimizing the associated criterion alternately for all
parameters. Experiments showed that our algorithm works well and leads to
plausible results. It seems to be robust to different initial mean shape choices
and is stable even for small numbers of observations. We showed the efficiency of
our approach compared with a SSM built by the traditional ICP and PCA for a
typical correspondence problem on synthetic data: The SSM based on the EM-
ICP models the whole data set, it is able to represent the ellipsoids featuring
a bump and those without as that deformation information is included in its
variability model. On the other hand, the results show that the SSM based on
the ICP is not able to model the bump. This is due to the fact that the ICP
only takes into account the closest point when searching for correspondence,
thus, the point on top of the bump is not involved in the registration process.
The EM-ICP, however, evaluates the correspondence probability of all points,
therefore, also the point on top of the bump is matched. We illustrated these
two concepts in figure 1d). Furthermore, in the test series on putamen data,
our SSM achieved superior results in both performance measures. Especially the
values of the maximal distance illustrate the benefit of the new approach. From
a theoretical point of view, a very powerful feature of our method is that we are
optimizing a unique criterion. Thus, the convergence is ensured.
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