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Abstract. In this paper we address the parallel beam 2D computer
tomography reconstruction. The proposed method belongs to the field
of analytic reconstruction methods and is compared to several methods
known in the field, among other the two-step Hilbert-transform method.
In contrast to the latter, the derivative data is multiplied with an ori-
entation vector and the Hilbert transform is replaced with the Riesz
transform. Experimental results show that the new method is superior
to established ones concerning aliasing, noise, and DC errors.

1 Introduction

Given a number of line projections of an object, we want to reconstruct its den-
sity. This type of problem typically occurs in context of parallel beam computer
tomography (CT) reconstruction. For this paper, we consider a simplified 2D
setting neglecting a number of physical phenomena (Fig. 1a). The measuring
unit consists of a source emitting parallel rays and a detector measuring the
intensity of each incoming ray for each position s. The object between source
and detector attenuates the rays depending on its density. The problem to solve
for CT reconstruction is to compute the 2D density distribution of the object
from the set of its line projections at different rotation angles 6.

The object is located at the origin of the 2D coordinate system (x,y)”. The
coordinate system of the measuring unit (s,#)7 and is rotated by # around the

Fig.1. (a) 2D geometry for the projections. Note that the s-axis was moved to the
detector in order to visualize that s is at the same time the position on the detector.
(b) Phantom used for experiments. (c) Edge map of phantom in (b)
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Fig. 2. Different options for analytic linear reconstruction. (a) ramp-filtered back-
projection. (b) two-step reconstruction using the Hilbert transform [2]. (c¢) post-filtered
back-projection [3]. (d) three-step Hilbert method [4]. Proposed method
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origin. The Radon transform [1] is obtained by integrating the object density
f(z,y) along t: pg(s) = [ f(z,y)dt = [ f(scosO—tsinb, ssin b+t cosb) dt.

Various analytlc methods for reconstructlon have been suggested in the lit-
erature. We have summarized the relevant methods in Fig. 2. Starting point
for all considered approaches is the projection slice theorem [5] resulting in

= [7 J5 Po(m) exp(i2wm(cos 0z+sin 0y))|m| df dm, where Py(m) is the
1D Fourler transform?! of py(s). For what follows, we define the back-projection
operator as B{gg} = foﬂ go(cos fz+sin y) df, where gy is a family of 1D functions
parametrized by 6.

For the ramp-filtered back-projection, py is filtered with the 1D ramp fil-
ter, corresponding to |m|, and then back-projected, cf. Fig. 2 (a). Denoting
the ramp-filtered projection as pj, we obtain f(x,y) = B{pj}. For the post-
filtered back-projection, the back-projected image is filtered with the 2D ramp
filter vu? + v?2, the Calderon-Zygmund operator [3], cf. Fig. 2 (¢): f(z,y) =
U_ 75 Vu? + vZexp(i2m(uz + vy)) dudo} x B{py}.

For the two-step reconstruction using the Hilbert transform, which goes
back to the original work of Radon [1], the term |m/| is split into two factors
|m| = (im)(—isign(m)), where the first factor corresponds to the derivative in
the spatial domain (up to a factor 27) and the second factor is the Hilbert
transform. The latter is computed after the back-projection [2], cf. Fig. 2 (b):
f(z,y) = 2nH{B{p,}}, where H is the Hilbert transform operator acting in
an arbitrary direction? and p, denotes the derivative of the projection. For
the three-step Hilbert method, the projection data is multiplied with the ori-
entation vector before back-projection and the Hilbert transform is computed
on the divergence of back-projected vector field [4], cf. Fig. 2 (d): f(z,y) =
21H,, {(V; B{(cos0,sin0)Tpy})}, where (-; ) denotes the scalar product and
V = (9, 0,)7 is the gradient operator.

1 1D Fourier kernel: exp(—i2mms); 2D Fourier kernel: exp(—i27 (uz + vy))
2 For the sake of simplicity we apply the vertical transform in what follows.
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2 Materials and Methods

For the novel reconstruction method, we split the Calderon-Zygmund operator
into two parts:
. ~(u,v)T .
u? +v2 = zu,vT;—z(% = (i(u,v)T; RT (u,v 1
v (0" =122 = G R ) ()
where the left factor corresponds to the 2D gradient (up to a factor of 2m)
and the right factor corresponds to the Riesz transform, a rotation-invariant
generalization of the Hilbert transform [6]. The method of rotation [6] results
in a relation between the 1D Hilbert transform and the 2D Riesz transform [7],
which can be applied in this case for expressing the 2D gradient in the projection
domain as (cos6,sin0)Tpj(s), leading to the final reconstruction formula

f(a,y) = 2R {B{(cos 0,50 )T py}} (2)

where R is the Riesz transform operator. The latter is defined by /—A = (V|R),
where A = (V|V) = 0,0, + 0,0, is the Laplace operator. The Riesz operator
in the reconstruction (2) should be interpreted as a scalar product, i.e., the
respectively first and second component of R is applied to the first and second
component of the integral.

For periodic boundary conditions, R corresponds to the frequency response
R(u,v). For Neumann boundary conditions, the solution has been given in [8].
For the here considered problem, the ideal setting would be to restrict the com-
putation to a circular domain, but practical considerations require a rectangular
domain. The reasons are twofold: a) images are typically rectangular shaped and
b) the rectangular domain solution can be computed by FFT algorithms.

Hence, we require the reconstruction to be zero outside a rectangular domain,
i.e., the reconstruction has compact support. Consequently, all projections have
a finite support and so do the derivatives. Applying the back projection to the
projection derivatives, however, results in a 2D function with infinite support.
This can easily be verified by either considering the projection geometry or the
non-locality of the Riesz kernel. If we back-project onto a finite image, we cut of
the tails of the filtered gradient image. Hence, our task is to compute the finite
Riesz transform of an infinite gradient signal which is truncated, knowing that
the result is zero outside the considered domain.

Assume that b(z,y) = B{(cos,sinf)Tp,} is the back-projected oriented
derivative on the domain (x,y) € (0; Zmax) X (0; Ymax ). Define the modified signal
b (x,y) on the domain (z,y) € (—Tmax; Tmax) X (—Ymax; Ymax) DY

_ (sien(y) 0
N (I N 3)
i.e., the components of b are mirrored at the coordinate axes, with anti-symmetry
with respect to the y- and z-axis, respectively. As a result, the signal tails which
should exist in the back-projected image b compensate each other and a good
approximation of the Riesz transform with finite data becomes possible.
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The Riesz transform of the signal b(x,y) under the side condition of zero
continuation outside of (0; Zmax) X (0; Ymax) is computed using the DFT and the
frequency response of the Riesz transform:

(w07 hprg 1

\/ﬁ‘ {bm}) (4)

The new method described in the previous paragraphs has slightly higher
computational complexity than ramp-filtered back-projection, post-filtered back-
projection, and the two-step Hilbert method. Similar to the three-step Hilbert
method, two images need to be back-projected and back-projection is the com-
putationally most demanding step in all cases. The higher complexity can be
justified by three significant advantages, some of which are shared with some of
the methods from the literature, but not with a single one:

R{b} = iDFT(—i

— Aliasing. The two-step Hilbert method and the Riesz-method use DC-free
projection data, which suppresses DC aliasing altogether without any par-
ticular efforts for the design of the interpolation filter.

— SNR. The Riesz-method shows (together with the three-step Hilbert method)
significant lower noise levels since both methods reconstruct orientation de-
pendent and noise is typically unoriented.

— DC estimation. In contrast to the two Hilbert-methods, the Riesz-method
only needs to be complemented by a single DC estimate, whereas the Hilbert-
methods need an additional DC estimate for each column of the recon-
structed image.

The experiment that we use to verify these properties is based on noisy
projections from the phantom in Fig. 1 (b). For verifying the alias components
visually, we apply a Prewitt edge detector to the resulting images. The SNR is
measured along the dashed lines in Fig. 1 (¢). The DC estimation problematic
is verified by visually inspecting reconstructed images without edge detection.

3 Results

The reconstruction results can be found in Fig. 3.

4 Discussion

Comparing the results in Fig. 3 with respect to aliasing, SNR, and DC estimation,
we draw the following conclusions:

— Aliasing. As claimed before, the methods which are back-projecting a deriva-
tive do not show the aliasing artefacts that are visible in the other methods,
cf. (b) and (d) vs. (a) and (c).

— SNR. The noise level in the methods without orientation vector is more than
10% higher than for the other methods, cf. (a) and (d) vs. (b) and (c).
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Fig. 3. Reconstructed densities. Note that the intensity range in (e) is amplified com-
pared to (f) in order to show the presence of the weaker structures

(a) ramp-filtered (b) Riesz (c) three-step Hilbert

(d) two-step Hilbert  (e) Riesz (intensity) (f) three-step Hilbert
(intensity)

— DC estimation. The DC estimation for the Hilbert-based methods is fairly
tricky without prior knowledge about the object, cf. (f) vs. (e).

Summarising the experimental results, we conclude that the Riesz method com-
bines all positive properties of the compared methods in a single method.
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