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Abstract. This paper presents an adaptive visualization for helping the
needle insertion task for RF liver ablation under CT-fluoroscopy (CT-
fluoro) guidance. It shows slices of the 3D CT-volume that are resulting
from the out-of-plane motion parameters along weighted isosurfaces in
the convergence basin of the employed cost function. The visualization
is coupled to the uncertainty in estimating the deformation of the liver
and brings much more information than a single registered slice. We
evaluated the proposed visualization with three experienced interven-
tional radiologists and they pointed out that such visualization revealing
the neighborhood with the belonging structures, like vessels and lesion
spread, will help the needle guidance.

1 Introduction

Radiofrequency Ablation (RFA) is an interventional procedure applied to pa-
tients with unresectable primary liver tumors and metastases. The needle is per-
cutaneously inserted into the lesion and can be performed eg. under CT-fluoro
guidance. We would like to help this procedure by displaying high resolution
contrasted data corresponding to the actual CT-fluoro slice in the intervention
room when further needle insertion becomes difficult. In such cases we would
like to enable an interface of triggering an automatic registration process and
presenting e.g. the target lesion, neighborhood, vessel structures in the interven-
tion room with the high quality of the contrasted pre-interventional CT-volume.
However the deformation due to the breathing, the non-contrasted low resolution
CT-fluoro makes it very hard to guarantee the validity of any deformable slice-
to-volume registration. Attempts for a non-rigid 2D/3D registration employing
the DEMONS algorithm [1] did not succeed even for very small deformations.
Rigid slice-to-volume registration for similar applications has been reported in
[2, 3]. In [4] a visualization of a subvolume is proposed based on piecewise regis-
tration. In contrast to that approach, this paper aims to first obtain a solution to
the global registration and then visualize a specific volume that encompasses its
neighborhood. In this neighborhood, out-of-plane motion parameters samples on
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the isosurfaces of the minimized cost function are found using a line search strat-
egy. The defined volume takes into account in which projection parameters the
registration is most sensitive, and is obtained from the definition of slices defined
by motion parameters on weighted isosurfaces. The visualization of a subvolume
in the pre-interventional volume brings much more intuitive information to the
interventional radiologist than one single slice. Therefore, the needle guidance
toward the lesion is improved. In addition, this could result in less radiation dose
for the patient and examiner.

2 Materials and Methods

Due to the noisy nature of the CT-fluoro slice, the needle presence and contrast
differences, we are using a robust similarity measure to outliers and adaptive to
discontinuities: the annealing M-estimator in conjunction with a GNC (gradu-
ated non-convexity) optimization [5] in order to compute the update parameters
for the incremental pose T(x) in the volume that is composed with the current

estimate T̂ such that a cost function is minimized. The cost function fγ(x) is
then defined as:

fγ(x) =

∑
Xi

(hγ(di)|di|)∑
Xi
hγ(di)

(1)

with hγ(di) = 1/(1 + d2
i /γ) and di = I∗(Xi) − I(T̂T(x)Xi). Here I∗(Xi) is the

intensity of the CT-fluoro slice at the pixel Xi and I(T̂T(x)Xi) is the intensity

in the CT-volume at the pixel Xi after being projected at the pose T̂T(x).
Since h is continuous it is stable to changes of the difference conditions and
hγ(di)/

∑
Xi
hγ(di) is acting as a weight for di penalizing outliers. The parameter

γ is set initially to a high value such that h is strictly convex and is lowered
according to a defined schedule.

For better spatial orientation, and to increase the confidence in the registra-
tion result, not only the minimizer of the registration function f is visualized as
a 2D view, but also other views “close” to the minimizer. The visualization of
the 3D volume gives the intuition of slowly exploring the volume in the neigh-
borhood (in real space) of the minimizer. For a given α ∈ R

+, an isosurface
of the cost function f defined in the equation (1) is a set C(α) ⊂ R

6 given by
C(α) = {x ∈ R

6 : fγ(x) = α}. Now, let x̃ ∈ R
6 be the estimated minimizer.

To find a certain number of parameters xi around the minimizer, we use a line
search in different directions for points on the isosurface C(fγ(x̃) + ε), where ε
defines the size of the neighborhood in parameter space. In section 3 we explain
how we choose the directions of the line search and the ε defining the size of the
neighborhood. Each of these points correspond to a certain pose and therefore
to a certain projection of the volume. We call these views cost-equivalent pro-
jections (CEPs). Once the minimizer of the function fγ(x) is identified and a
number of samples on a given isosurface are determined, it is possible to define a
trajectory interpolating these points. In order to visualize the volume smoothly,
we first need to find an optimal trajectory from the minimizer through all of
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the isosurface sample points xi. Ideally, this trajectory follows the shortest path
from the minimizer toward the isosurface, stays on the latter exactly, and aims
for the minimizer again. As the isosurface itself is not analytically known, we use
the sample points computed previously as waypoints, and rearrange them in a
way that we visit each point once while following a trajectory of minimal length.
We currently use the Euclidean norm as distance metric between parameters in
R

6. A smooth path is passing by the ordered points xi defined above. We in-
terpolate these points and the transformation matrices denote now the position
and orientation of the virtual camera.

3 Results

The registration is performed with a coarse-to-fine strategy, starting at 64 × 64
and increasing to 128 × 128 and 256 × 256. Each time the estimated values are
taken as initialization for the next resolution. The optimization procedure is
started from the pose obtained by the DICOM Image Position Patient since the

Fig. 1. First top row: the first image represents the CT-fluoro slice, the second one
represents the initial pose in the volume and the third one represents the estimated
minimum. Note that the lesion is not visible in the CT-fluoro slice. The forth image is
showing a 3D view of the generated CEP’s. The next rows are 2D views and represent
CEPs at motions from out-of-plane parameters: 6 result from the 3 out-of-plane pa-
rameters in positive and negative direction, and 12 result from the combination of each
of two parameters in positive and negative direction. The subvolume defined by the
CEP’s and the minimum slice is showed in a smooth animation. This example shows
the possible convergence problems: the kidney is present in the initial pose and also in
different CEP’s whereas the liver shape does not significantly change
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patient is not moved from the table. The following experiments were run on a
PC with 1.80GHz Intel Pentium processor and 1GB of memory. The average
time for the registration for the clinical images was 4s. The computation of
the set of solutions on the isosurface took in average 15s. A solution set of
18 sampling points on the isosurface is used resulting from search directions
obtained by combinations of out-of-plane parameters, i.e. translation along the
z axis, rotations about the x and y axis. Here, 6 CEPs result from the 3 out-
of-plane parameters in + and - direction, and 12 result from the combination of
each of two parameters in + and - direction.

3.1 Linking ε with the Volume

Based on results of the literature, e.g. [6], the deformation in the liver can reach
up to 20 mm from the predicted rigid position, while the average across tissue
yields about 6 mm. Therefore, we would like the CEPs to represent an average
movement between 6–7 mm. We start with an initial guess of ε = 0.25 and adapt
it until the average motion of all 3D points Xi considered in the volume between
the minimum view and the views at the CEPs will be in this interval.

3.2 Simulations Without Deformation

To test the registration algorithm, we created a set of Ground-Truth (GT) slices
simulating a CT-fluoro slice. We used from one patient a noisy reconstructed
volume where we extracted at different poses including rotations and translations
four slices. These slices were registered to the same pre-interventional volume but
reconstructed without noise. An average RMS between the starting positions
and the GT pose is about 35.75 mm for translation and 7.22◦ for rotation. The
results of the RMS calculations between registered noisy slices and the GT give
an average RMS for translation of 0.65 mm and for rotation 0.03◦.

3.3 Simulations Including Deformation

For deriving synthetic 2D slices that also include deformations, we are using two
CT-volumes of one patient, the pre- and the post-interventional datasets. The
pre-interventional CT-volume (the template volume) is elastically [7] registered
to the post-interventional CT-volume (the reference volume). Since after the
intervention, the patient is not any more able to achieve the full inspiration
breath-hold as before the intervention, the registration of the pre-interventional
toward the post-interventional scan is mimicking a possible expiration movement.
The displacement field for the achieved deformation will map the voxels of the
deformed volume into the pre-interventional scan. In this way by extracting
axial slices of this deformed volume, adding noise, each of these slices represent
hypothetical CT-fluoro slices. We are using six axial slices extracted every 1cm.
Visual inspection on 3D views show that the deformation of the liver voxels is
included by the estimated CEPs.
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3.4 Experiments with real CT-fluoro slices

Six routinely acquired datasets (Siemens Somatom Sensation 16) are used to-
gether with 3 CT-fluoro slices, which results in 18 examples. Figure 1 shows one
example of the 2D views and a 3D view of all 18 estimated CEPs.

3.5 Evaluation of Adaptive Visualization

Evaluation of the CEP visualization versus the visualization of a single slice
has been performed by three experienced interventional radiologists. In that
setup we used though the results of the M-estimator, but the principles are
the same. Two of the radiologists considered in all 18 times (100%) the CEP
visualization more valuable than one slice. One of them voted 11 times (61%)
for the CEP visualization. A single slice in the CT-volume will confirm or not the
right position, but it misses further guidance and neighborhood assessment. On
the other hand, this visualization ties up to the familiar view in the radiology.

4 Conclusion

We proposed an adaptive visualization that includes views of the CT-volume
determined along flat directions of the out-of-plane motion parameters next to
the minimizer where the optimization encounters uncertainty. The views are
generated at poses that represent an average movement reported in the literature.
In this way the deformation caused by the breathing should be included into the
volume defined by the views. The result of the registration and the adaptive
visualization were assessed by three experienced interventional radiologists on
real CT-fluoro data. The evaluation outcome supports that such visualization in
the intervention room enables the examiner to better orientate during the needle
insertion.
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