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Abstract. Magnet Resonance Angiography (MRA) can be used to reg-
ister MR images of other types (e.g. functional MRI) acquired in the same
imaging session as the angiogram since blood vessels are spatially closely
confined features. This is only possible if MRA delivers reliable, repro-
ducible images and does not show major random distortions. Therefore,
we examine the reliability of MRA over subsequent scanning sessions
using an appropriate distance measure on geometric vasculature models
obtained from MR angiograms. Additionally we examine the variance
between different specimens in order to value the possibility of inter-
specimen registration.

1 Introduction

Several applications of MR small animal brain image analysis like the generation
of generic functional atlases or the combination of functional data from different
modalities [1] rely on the comparison and combination of numerous images of
the same or distinct specimens. In this context cerebral vascular MR angiograms
play an important role as blood vessels can be used as excellent landmarks for
image registration. On the one hand from this application arises the need for
reliable, spatially correct angiograms, on the other hand MR images are known
to be prone to local distortions. When it comes to the comparison of images
from different specimens, additional variability is expected due to the natural
variance between each individual’s anatomic characteristic.

In order to inspect the spatial reliability of MR angiograms for different MR
sequences as well as the cerebral vascular variability between different animals,
we use a distance measure that is defined on a geometric model representation
of vasculatures.

2 Materials and Methods

All MR angiograms are converted into geometrical representations of the vascular
system using an automatic reconstruction algorithm [2]. In these models vessels
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are represented as chains of connected frustums. The distance measure we use
to evaluate the similarity of two distinct vascular models mainly calculates the
mean distance between nearest frustum center line segments.

If A, B are two vascular models, then for each frustum a of A the distance
dfr(a) is defined as the smallest centerline-to-centerline distance dcen(a, b) be-
tween any point of the center line segment of a and any point of any center line
segment in B, i.e.

dfr(a) = min
b∈B

dcen(a, b) (1)

The distance dmod(A,B) between both models is then calculated as the mean of
the distances of all segments of A to B:

dmod(A,B) = 〈dfr(a)〉a∈A (2)

This measure is not commutative, i.e. usually dmod(A,B) 6= dmod(B,A), but in
practice only slight differences should occur.

The calculation of dcen(a, b) needs only basic mathematics and a couple of
case differentiations. The center line segments ca and cb of a and b can be ex-
pressed using line equations with restricted independent variables ta and tb:

ca = {sa + tama|0 ≤ ta ≤ 1,ma = ea − sa} (3)

cb = {sb + tbmb|0 ≤ tb ≤ 1,mb = eb − sb} (4)

where sa, sb are the segment starting points and ea, eb are the segment ending
points. There are five distance calculation cases that have to be distinguished, 2
for parallel segments and 3 for non-parallel segments (Fig. 2).

If the segments are parallel, we build two perpendiculars from sb and eb onto
ca. This results in two base points ps and pe which can also be expressed by
specific values for ta. As the line through sb and ps is orthogonal to mb, following
equation holds:

0 = (ps − sb) ·mb (5)

Fig. 1. All segment-to-segment distance calculation cases. Thick solid lines are cen-
ter line segments, thin solid lines the smallest distance vectors: Segemnts are parallel
overlapping (a); parallel non-overlapping (b), non-parallel overlapping (c), non-parallel
non-overlapping with smallest distance between endpoint and line segment (d) and
with smallest distance between endpoints (e)
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ps is on the line defined in (3), so

0 = (sa + ta,psma − sb) ·mb ⇐⇒ ta,ps =
(sb − sa) ·mb

ma ·mb
(6)

ta,pe is calculated analogically. If ta,pe, ta,ps < 0, segment b is completely left of
segment a, if ta,pe, ta,ps > 1, segment b is completely right of segment a. In both
cases the smallest distance dcen(a, b) between both segments is found between a
pair of their end points (Fig. 2b), i.e.

dcen(a, b) = min{‖sb − sa‖, ‖sb − ea‖, ‖eb − sa‖, ‖eb − ea‖} (7)

In all other cases, there are actually overlapping parts of ca and cb, and dcen(a, b)
can be calculated as the distance between sb and ps (Fig. 2a):

dcen(a, b) = ‖sa + ta,psma − sb‖ (8)

3 Results

If the segments are not parallel, first a normalized vector orthogonal to both
lines is constructed as

n =
ma × mb

‖ma × mb‖
(9)

n is directed along the shortest perpendicular between both lines, the line-to-line
distance d̃ as well as the base point parameters ta,p and tb,p are calculated by
solving the linear equation

sa + ta,pma + d̃n = sb + tb,pmb (10)

If 0 ≤ ta,p, tb,p ≤ 1, both base points are actually located on the line segments
and the distance is

dcen(a, b) = |d̃| (11)

Fig. 2. Shifted segment end points lead to an overestimation when using point-to-
point distance (a), whereas the distance is measured correctly using segment-to-segment
distance (b). Different point density also leads to distance overestimation with point-
to-point distance (c), segment-to-segment distance leads to correct results (d)
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If one of the t-values is outside the range [0..1], the shortest distance could be
found along a perpendicular from one of the four segment end points onto the
corresponding counter-line (Fig. 2d). The t-values for the four perpendiculars
are calculated

ta,sb =
(sb − sa) ·ma

‖ma‖2
, ta,eb =

(eb − sa) ·ma

‖ma‖2

tb,sa =
(sa − sb) ·mb

‖mb‖2
, tb,ea =

(ea − sb) ·mb

‖mb‖2

(12)

For every t-value in the range [0..1] the corresponding distance can be calculated

d̃a,sb = ‖sa + ta,sbma − sb‖, d̃a,eb = ‖sa + ta,ebma − eb‖
d̃b,sa = ‖sb + tb,samb − sa‖, d̃b,ea = ‖sb + tb,eamb − ea‖

(13)

If none of the t-values is in the valid range, the case shown in fig. 2e applies and
the distance is again determined by the smallest distance between an endpoint
pair and calculated as in (7). Vessels present in model A but not in model B
lead to an overestimation of the mean distance, as their nearest counterpart in
B belongs to a different, distant part of the vasculature. Therefore, distances are
pruned above an adjustable threshold.

Although more complex and time consuming to calculate, this measure has
two major advantages over one that is based on the calculation of minimal dis-
tances between centerline segment end points only (Fig. 2):

– It is independent of the end point densities in both models, they may differ
considerably.

– Calculation based on end points is prone to bias with specific shifts, which
cannot occur using line-to-line distances.

However, the effects are not as drastic as the theoretical reasoning for using
the new distance measure induces since the high number of points in our models
smoothes the expected strong discontinuities (Fig. 3).
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Fig. 3. Measured distance of a vascular system model with 1466 points shifted against
a copy of it along one spatial axis. Left: The measure as described in this paper reveals
a linear correlation between shift and distance. Right: A simple measure solely based
on point-to-point distances results a comparably distorted correlation between shift
and measured distance
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Table 1. Mean distance and variance in µm between vascular system reconstructions
from the same rat but different days (FU1-FU4) and different rats (H156-H341)

FU1 FU2 FU3 FU4 H156 H209 H316 H341

FU1 10.12 ± 0.18 11.46 ± 0.19 10.41 ± 0.14 27.55 ± 0.28 27.73 ± 0.29 28.74 ± 0.32 27.42 ± 0.24

FU2 7.49 ± 0.10 9.04 ± 0.09 8.24 ± 0.07 25.90 ± 0.27 27.17 ± 0.26 26.02 ± 0.26 26.67 ± 0.22

FU3 8.51 ± 0.10 10.65 ± 0.15 9.67 ± 0.14 28.06 ± 0.28 27.85 ± 0.28 25.79 ± 0.29 26.99 ± 0.24

FU4 10.19 ± 0.14 10.87 ± 0.17 9.91 ± 0.16 27.62 ± 0.30 27.82 ± 0.27 26.36 ± 0.28 28.10 ± 0.24

H156 28.62 ± 0.31 28.93 ± 0.35 30.36 ± 0.32 28.13 ± 0.30 28.90 ± 0.30 29.90 ± 0.35 28.21 ± 0.26

H209 26.30 ± 0.28 26.93 ± 0.27 28.07 ± 0.30 27.04 ± 0.27 26.32 ± 0.26 26.53 ± 0.27 25.72 ± 0.24

H316 28.93 ± 0.35 29.58 ± 0.33 29.28 ± 0.36 27.98 ± 0.32 29.47 ± 0.32 28.42 ± 0.31 27.47 ± 0.26

H341 28.17 ± 0.25 28.69 ± 0.24 29.09 ± 0.28 28.90 ± 0.25 28.22 ± 0.24 28.08 ± 0.29 27.10 ± 0.28

The inspection of 3D TOF scans of the same specimens on subsequent days
reveals variances which reside in the range of the scan resolution, no significant
distortions are found. 3D TOF scans of distinct specimens reveal considerably
higher distances, so it is easy to discriminate using the distance value whether
two scans of the same or of different animals are compared (table 1). In general
the variance between different animals is smaller for the central brain areas.
Although PCA and especially 2D TOF image a different subset of the whole
vasculature, common parts are still well aligned.

4 Discussion

Our present results indicate that local MR distortions are of no concern for the
vasculature-based registration of MR images. The registration of images from
different scan sessions of the same specimen in order to compensate deviating
head positions should be possible with high precision in the range of the res-
olution while the alignment transform for an angiogram obtained in the same
session can be used to align functional images.

As the variance of the cerebral vasculature between different animals seems
to be acceptable small, it could be possible to generate a digital atlas that en-
codes mean position and variance of at least the major brain blood vessels, thus
subsequently allowing automatic vessel labeling.

The combination of MR angiograms with optical imaging is subject of our
current experiments. Assuming OI to deliver as stable imaging as MRA, it should
be possible to use 2D projections of vascular models to register MR images with
optical images.
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