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Abstract. Focal cortical dysplasia (FCD) is a frequent cause of medi-
cally refractory partial epilepsy. The visual identification of FCD lesions
on magnetic resonance images (MRI) is a challenging task in standard
radiological analysis. Quantitative image analysis which tries to assist in
the diagnosis of FCD lesions is an active field of research. In this work we
investigate the potential of different texture features, in order to explore
to what extent they are suitable for detecting lesional tissue. As a result
we can show first promising results based on segmentation and texture
classification.

1 Introduction

Focal cortical dysplasia (FCD) [1], a disorganisation of cortical development, is
an important cause of medically intractable partial epilepsy. In medically re-
sistant epilepsy patients, only surgical removal of the dysplastic lesions leads to
significant reduction or cessation of seizures. High-resolution magnetic resonance
imaging (MRI) has improved detection of FCD in the past years and has allowed
more patients to undergo resective surgery. However, visual analysis and iden-
tification of FCD is a challenging task and strongly depends on the experience
and expertise of the observer.

In a large number of cases, FCD lesions can not clearly be distinguished from
healthy cortex and often remain unrecognised in standard radiological analysis
[2]. Even for experienced radiologists it is difficult to descry the subtle charac-
teristics with which FCD lesions are displayed in MR images. This motivates
the question whether a computerized quantitative analysis will be capable to
reliably detect these lesions.

In a few previously published approaches it was shown that an observer
independent, quantitative analysis of MRI data has potential to assist in the
diagnostics of FCD [3, 4]. Even though the proposed methods increase the sen-
sitivity for FCD, the results are often associated with an increased number of
false positive (FP) results [5]. This is due to the fact that the proposed methods
are based on visual MRI characteristics [6] which can not clearly be linked to
FCD lesions.

In this work, we investigate the potential of machine learning based classi-
fication of texture features for the purpose of detecting local structures in MR
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Table 1. Features considered in this study can be separated into three groups

Statistical Grey level co-occurrence Grey level run-length

xS
1 = mean xCO

1 = contrast xRL
1 = short run emphasis

xS
2 = median xCO

2 = homogeneity xRL
2 = long run emphasis

xS
3 = variance xCO

3 = inverse difference xRL
3 = grey level distribution

xS
4 = skewness xCO

4 = energy xRL
4 = run-length distribution

xS
5 = kurtosis xCO

5 = entropy xRL
5 = run percentage

xS
6 = energy

xS
7 = entropy

images. We demonstrate that our features are able to recover lesional tissue
within single cases with a low number of false positives, even for cases which are
not easy to identify for the expert eye.

2 Materials and Methods

MRI scanning was performed on a 1.5 Tesla scanner (Siemens Magnetom Sym-
phony, Erlangen, Germany) equipped with a standard head coil. The analysis
comprises T1-weighted 3D-sequences (MPRAGE, TR = 11.1 msec, TE = 4.3
msec, slice thickness 1.5 mm, FOV 201 mm × 230 mm, matrix 256 × 256, voxel
size 0.9mm×1.5mm×0.9mm) which were provided by the Bethel Epilepsy Cen-
ter in Bielefeld, NRW. All images include a histologically confirmed FCD lesion.
Each lesion was manually labeled by an experienced neuroradiologist.

2.1 Features

One possibility to describe texture is to calculate statistical moments based on
the grey level histogram of a region or a window. In literature, statistical features
are often called first-order texture features. Seven statistical measures have been
extracted according to [7] (table 1, first column).

To account for second order texture properties we additionally apply one
of the most well-known methods of texture analysis: grey-level co-occurrence
matrices (COM) proposed by Haralick et al. [8]. A COM counts the relative
occurrences of voxel pairs in an image window that have certain intensity values
and that are seperated by a voxel distance dCOM in a relative direction αCOM.
Based on the cost statistics different features can be computed as described in [8].
Five of the most common COM features are selected (table 1, second column).

We further extend the set of features by using a run-length-based technique
as proposed by Galloway [9]. It calculates characteristic textural measures from
grey-level run lengths in different image directions αRLM. The third column in
table 1 shows the five scalar features derived from the grey-level run length
matrices (RLM).
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2.2 Experimental Setup

For each analysed image an inner-case-classification-setup is performed. Inner-
case classification aims to determine to what extend the applied texture features
are suitable to detect FCD lesions within a single image. The setup has three
steps:

– Image Preprocessing: In order to exclusively consider voxels of the cortex, the
images are previously segmented into grey matter (cortex), white matter and
cerebrospinal fluid using a standard algorithm described in [10] implemented
in the statistical parametric mapping software (SPM2). For the calculation
of the co-occurrence and the run-length features, the number of image grey
values were reduced to 32 values.

– Feature Extraction: Each cortex voxel v ∈ Ω with position (l,m, n) is associ-
ated with a feature vector xlmn which combines all scalar texture measures
above-mentioned and can be formulated as

xlmn = (xS
1 , ..., x

S
7 , x̄

CO
1 , ..., x̄CO

5 , x̄RL
1 , ..., x̄RL

5 )T (1)

All values of xlmn are calculated within a 7×5×7-window with v(l,m, n) as
the center voxel. In the case of the COM, we selected the distance dCOM = 1
and directions αCOM = 0◦, 45◦, 90◦, 135◦ within coronal slices. This results
in four COMs, each representing one special direction. Thus, for each COM
a set of five derived features is obtained (table 1, second column). In order to
make the features invariant to the angle α, each feature value xCO

1 , ..., xCO
5

of the four COMs is averaged and finally described by x̄CO
1 , ..., x̄CO

5 . The
values x̄RL

1 , ..., x̄RL
5 of xlmn are obtained in the same way using αRLM =

0◦, 45◦, 90◦, 135◦ for the run-length directions.
– Training & Classification: Voxels have to be classified depending on whether

they represent the class of normal cortex (label y = −1) or the class of
lesional cortex (label y = 1). For this purpose, we randomly extracted a
training dataset Γ = ΓN ∪ΓL = {xi, yi)} , i = 1, ..., k with ΓL being a subset
of lesional tissue signals and ΓN being a subset of normal tissue signals. A
support vector machine (SVM) with a gaussian kernel was trained using Γ .
Finally, all cortex voxels v ∈ Ω \ Γ are classified based on the trained SVM.

3 Results

Our method is applied to five different cases, i.e. subjects. In each case the FCD
lesion was marked by an expert (author F.G.W.). The accuracy is assessed by
computing sensitivity (SE) and specificity (SP) as shown in table 2. Results for
one particular case are illustrated in figure 1. Figure 1(a) shows a coronal slice
of an original T1-weighted image including the expert label. Our method gener-
ates three-dimensional classification maps which visualise the class of the voxels
assigned by the SVM (figure 1(b)), white regions indicate lesional characteristics
whereas grey voxels represent tissue classified as normal. Figure 1(c) shows an
overlay of the original image and regions classified as lesional tissue.
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Table 2. The sensitivity (SE) and specificity (SP) values of the classification of five
different cases

subject 1 subject 2 subject 3 subject 4 subject 5

SE 0,946 0,904 0,846 0,960 0,982
SP 0,865 0,892 0,734 0,880 0,922

4 Discussion

We propose a quantitative approach using local texture features for the inner-
case detection of focal cortical dysplasia lesions in MRI. The used features are
powerful enough to allow automatic discrimination of normal cortex and lesional
cortex tissue. In this work the proposed classification setup is only applied on
an inner-case study to verify whether the features are suitable to find a lesion,
however within the same image.

Using texture features we successfully detect lesional tissue in each of the
applied cases which is confirmed by the increased SE values. Figure 1(b) and
1(c) exemplarily point out that the main part of the lesion is correctly classified.
Furthermore, figure 1(b) demonstrates that only a small fraction of voxels is
classified as false positives (see table 2 for sensitivity and specificity values for
the remaining cases).

(b) (c)

(d) (e)

(a)

Fig. 1. Images describing results of subject 2. (a) Slice of the original T1-weighted MRI
including a marking hand-labeled by an expert. (b) Classification map. (c) Overlay of
the original image and the regions classified as lesional tissue. (d) and (e) show a
magnification of the lesion
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The classification setup is applied on previously segmented cortex tissue
which is of particular importance for the classification accuracy. In the beginning
of the study, the whole image was used for training the SVM, but this led to
significantly inferior classification results. A major fraction of image information
which was learned by the SVM is not important for this classification problem.

Different neighborhood sizes for the feature extraction are tested. A window
size of 7 × 5 × 7 leads to the best results. In order to overcome the problem of
voxel anisotropy, only five slices in y-direction are considered.

The quantisation of the images in order to compute the COM and RLM fea-
tures leads to a major performance increasement than using the original number
of grey values. The conclusion that follows is that two much details, i.e. number
of grey values, suppress the general differences between the types of tissue.

We perform the classification based on single feature approaches, i.e. statis-
tical features, COM features and RLM features (see columns in table 1). The
results point out that using single feature methods leads to an inferior classi-
fication accuracy than merging the feature sets. As a conclusion, FCD lesions
contain both first- and second-order properties which enable their discrimina-
tion from normal cortex tissue. The results of this work can be considered as a
necessary basic condition for realising a real CAD (computer aided diagnosis)
setup which has to be analysed regarding generalisation in future studies.
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