
Code Comprehension in a Multi-Paradigm Environment:
Background and Experimental Setup
Daniël Floor1,2, Rinse van Hees2 and Vadim Zaytsev1,3

1Computer Science, University of Twente, Enschede, The Netherlands
2Info Support, Veenendaal, The Netherlands
3Formal Methods & Tools, University of Twente, Enschede, The Netherlands

Abstract
Code comprehension, a fundamental asset in software development and its maintenance, is influenced by the programming
paradigms employed. Comprehending code takes up a major part of the maintenance process. This study forms a basis in
discovering the relation between code comprehension and multi-paradigm usage. The different paradigms covered here are
Object-oriented programming and functional programming. To measure the possible impact an experimental setup is designed
that will help capturing quantitative and qualitative data. The decision of using interviews as study experiment allows for
the capturing of the qualitative data necessary for an in-depth exploration of comprehension strategies and participants’
cognitive reasoning. The interviews will use Kotlin code snippets, this choice harmonises with participants’ familiarity with
Java, which serves as a foundation, and the design of interview questions, which prioritise the comprehension of code and the
unravelling of its underlying purpose. This paper provides the background and experimental setup that allows to investigate
the relationship between code comprehension and multi-paradigm usage.

Keywords
code comprehension, multi-paradigm languages, code smells

1. Introduction
Each software problem has its own needs and require-
ments. These needs can be satisfied by one of many pro-
gramming paradigms, which in turn can be realised by
one of many programming languages. With the increas-
ing need for more complex systems, the demands can be
satisfied by the use of multiple programming paradigms,
allowing for a fitting solution to the problem. A program-
ming paradigm can be viewed as a set of concepts [1].
These paradigms in its turn can then once again be imple-
mented by multiple programming languages. Languages
that implement multiple paradigms, these languages are
also called multi-paradigm languages. For the usage of
multi-paradigm programming, there is a distinction be-
tween two types of usages.

1. Parallel usage: This entails the usage of multiple
paradigms in one program, where there is a clear
separation between the usage of the paradigms.

2. Mixed usage: This entails multi-paradigm code
blocks where the different paradigms are mixed.
A piece of code thus contains code written in
multiple paradigms.

SATToSE’23: Post-proceedings of the 15th Seminar on Advanced Tech-
niques and Tools for Software Evolution, June 2023, Fisciano, Italy
$ dan.floor@gmail.com (D. Floor);
Rinse.vanHees@InfoSupport.com (R. v. Hees);
vadim@grammarware.net (V. Zaytsev)
� https://grammarware.net/ (V. Zaytsev)
� 0000-0001-7764-4224 (V. Zaytsev)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

For parallel multi-paradigm usage, the program’s respon-
sibilities are clearly separated. It is still possible to eval-
uate the single paradigm code blocks separately. With
mixed programming usage there no longer is a clear sepa-
ration, possibly making the process of understanding the
code harder and more time-consuming. One prominent
multi-paradigm combination is object-oriented program-
ming and functional programming. Previous research on
this multi-paradigm combination has focused on fault-
proneness and defining new code metrics for mixed usage
of programming paradigms [2, 3, 4]. The code compre-
hension side of multi-paradigms is yet to be researched
in depth. Code comprehension focuses on the process of
understanding the behaviour of the code.
Code comprehension is an important part of ensuring
code quality and maintainability. Code comprehension is
a process of understanding the behaviour and functional-
ity of the source code. Poor code comprehension can lead
to a maintainer not being able to work efficiently as a re-
sult of poor code quality. To establish code quality there is
a standard that explains how code quality is measured [5].
One of the key aspects of this standard is maintainability.
While the standard does not directly mention code com-
prehension, code comprehension still has a big impact
on maintainability. Without understanding the code, a
codebase becomes more difficult to maintain properly.

We will give a first insight on the impact of multi-
paradigm usage on code comprehension. The focus will
lie on object-oriented programming languages that have
incorporated functional programming concepts and con-
structs. In a multi-paradigm perspective, there are two

mailto:dan.floor@gmail.com
mailto:Rinse.vanHees@InfoSupport.com
mailto:vadim@grammarware.net
https://grammarware.net/
https://orcid.org/0000-0001-7764-4224
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

different kinds of paradigms, the first paradigm is chosen
for the problem most frequently targeted by the language.
Whereas, the second paradigm is chosen to support ab-
straction and modularity which fills the gaps the first
paradigm leaves open [1]. The modularity of a language
has been described as key to successful programming [6].
With the high usage and similarities of C# and Java, it
is interesting to examine the code comprehension of the
mixed multi-paradigm usage of these languages. To gain
a broader picture and more diverse results, Scala and
Kotlin are two other languages that will be examined.
Before meaningful conclusions can be drawn on code
comprehension, mixed multi-paradigm constructs must
be defined. After these constructs are defined, an empiri-
cal study will be performed to examine the connection
between code comprehension and mixed multi-paradigm
usage. In cases of similarities of poor code comprehen-
sion, a set of new code smells will be defined. Code smells
stem from the 1990s and became popular after a publica-
tion by Beck and Fowler in 1999 [7]. A recent study from
2018 has defined and listed a set of previously and newly
defined code smells [8]. These smells do still not include
code smells that cover multi-paradigm code.

To provide structure to the research, the following
research questions have been established.

RQ1: Which multi-paradigm constructs
can be identified when combining
object-oriented programming and
functional programming?
This document covers the different concepts and con-
structs that identify functional programming and object-
oriented programming. These constructs already have
plenty of metrics and ways to measure their complexity
and thus their impact on maintainability. Four multi-
paradigm languages have been selected for our analysis:
C#, Java, Scala, and Kotlin. In previous research [9], it
has already been concluded what support for functional
programming constructs these languages have. We want
to discover the impact of mixing multi-paradigm code
on the code comprehension of practitioners. To achieve
this, we must define which multi-paradigm constructs
can be identified when OOP and FP code are combined.
With the outcome of this question, we can compare the
constructs with the other languages and look for similar-
ities but also differences in functionality. These answers
will help us construct the answers for the next research
question.

RQ2: How can we study the code
comprehension of functional
programming usage in multi-paradigm
languages?
In section 3 we will elaborate on the importance of soft-
ware quality and the impact of code comprehension on
software quality. Yet we have not covered how we could
set up a study that will accurately measure the impact
of code comprehension on software quality. To answer
this question we will go over other code comprehension
studies, from the ICPC, and identify how they designed
their studies. These papers go through multiple selection
phases and end up with the relevant code comprehension
studies. When having studied all relevant code compre-
hension studies we can assess what the best structure
will be to study code comprehension of functional pro-
gramming usage in multi-paradigm languages.

RQ3: Are there similarities in code
comprehension of multi-paradigm
languages?
With the answers to previous research questions, we can
define and build a study that makes it possible to analyse
this. The study will use practitioners from the field in
any of the four analysed languages, as well as students
that are familiar with any of those languages. With the
results gained from the study, we can analyse code com-
prehension. In areas where code comprehension scores
poorly, we will look at similar constructs that cause this
issue. Additionally, we will also look at possible positive
impacts of constructs on code comprehension, if there
are any.

RQ4: How can we define code smells that
reflect the code comprehension of these
languages?
Lastly, we want to turn the analysis of the previous re-
search question into something more conspicuous. We
want to achieve this by defining code smells that are in-
troduced in a multi-paradigm environment. We do this
by going over other sources that defined code smells and
understand what makes a code smell a code smell. With
the knowledge gained from this and the analysis of the
study we performed, we will be able to define code smells,
in case they are present.

Figure 1: Languages, paradigms & concepts [1]

2. Background

2.1. Programming paradigms
Programming paradigms, e.g. object-oriented program-
ming, can be viewed as a categorisation and grouping
of a set of concepts that guide the development of soft-
ware. Each paradigm is associated with a distinct set of
principles and techniques that can be realised through a
programming language. Such a language can in its turn
realise more than one paradigm. This creates a hierarchy
with endless possibilities. Van Roy’s visualisation [1],
seen in Figure 1, highlights the wide range of combina-
tions that are possible.

Despite the distinct set of concepts of a paradigm, there
are often common grounds between paradigms. A tax-
onomy, a way to classify the different paradigms, can be
constructed of the programming paradigms that display
the relations between the paradigms [1]. This taxonomy
can be seen in Figure 2.

A programming language is not restricted to realising
only one paradigm and can realise two or even more.
These kinds of languages are called multi-paradigm
languages, think of most object-oriented programming
languages that support functional programming con-
structs(Java, C#, Python). As demand for increasingly
complex systems grows, the need for multi-paradigm pro-
gramming languages has become more prevalent. These
languages enable developers to select the best paradigm
for a given task, resulting in greater flexibility and ex-
pressiveness in code.

Within the taxonomy of Figure 2 two primary cate-

gories of paradigms can be distinguished: declarative
programming and imperative programming. While these
are not the only paradigms, most other paradigms are
based on either one of the two paradigms. Understanding
the strengths and weaknesses of each paradigm, and how
they can be combined, can lead to the development of
powerful languages with a multitude of possibilities [1].
To understand why the combination of two paradigms,
object-oriented programming, and functional program-
ming, creates a powerful combination. The next sections
will delve more into understanding the differences be-
tween imperative programming and declarative program-
ming. For the languages the different kinds of constructs
are not yet discussed, this will happen in subsection 2.3.

2.1.1. Imperative programming

Imperative programming is a programming paradigm
that focuses on statements that modify the state of a pro-
gram. Programs in this paradigm are constructed using
a sequence of statements executed in a specific order,
with each statement altering the state of the program.
These alterations can either change a variable or affect
the program’s environment. Two well-known imperative
programming paradigms are procedural programming
and object-oriented programming.

Imperative programming has been widely used in the
development of systems that require precise control of
program flow and state. However, this paradigm can of-
ten result in code that is difficult to read and maintain,
especially as programs grow larger and more complex.
Despite its limitations, imperative programming remains

nondeterminism?
Observable

More declarative Less declarative

Yes No

Named stateUnnamed state (seq. or conc.)

functional
programming

programming
Imperative

Lazy
declarative
concurrent

programming

programming
dataflow

Concurrent
constraint

programming

constraint
programming

Constraint (logic)
programming

Relational & logic
programming

Deterministic
logic programming

synchron.
+ by−need + thread

+ single assign.

Haskell

Lazy
functional

programming
dataflow

programming

Declarative
concurrent

programming

ADT
functional

programming

ADT
imperative

programming

Imperative
search

programming

Event−loop
programming

Multi−agent
programming

Message−passing
concurrent

programming

Dataflow and

Oz, Alice, Curry Oz, Alice, Curry

CLU, OCaml, Oz

E in one vat

Continuation
programming

Logic and

constraints message passing Message passing Shared state

+ nondeterministic

(channel)

Oz, Alice, Curry, Excel,

AKL, FGHC, FCP

+ synch. on partial termination

Strong synchronous
programming

Functional reactive
programming (FRP)

Weak synchronous
programming

Nondet. state

Erlang, AKL

choice

dataflow
programming

Concurrent logic
programming

Nondeterministic
Functional

Lazy functional

programming
object−oriented

+ closure
+ cell (state)

Imperative

+ unification

object−oriented
programming

Conc. imperative

Scheme, ML, Scala

Oz, Alice, Scala
Smalltalk, Java,

E, Oz, Alice,
CSP, Occam,

publish/subscribe,
tuple space (Linda)

Functional

Functional
programming

First−order
functional

programming

+ procedure

Data structures only

Turing equivalent

record

Descriptive
declarative

programming

XML,
S−expression

+ logical time instants

CLP, Gecode
Pipes, MapReduce

FrTime, SL

Esterel, Lustre, Signal

LIFE, AKL

v2.01 © 2023 by Peter Van Roy

Oz, Alice, AKL

+ port

Multi−agent
dataflow

programming

+ local cell

Active object
programming

Object−capability
programming

Java, OCaml

+ closure

embeddings

+ solver

+ thread
+ single assignment

+ thread

+ thread

+ log

+ cell
(state)

Functional

SQL embeddings

Prolog, SQL

+ search
Haskell, ML, E

(unforgeable constant)

+ cell

Pascal, C

SNOBOL, Icon, Prolog

+ search

(channel)
+ port

Scheme, ML

(equality)
+ name

+ by−need synchronization

+ by−need
synchronization

+ thread

+ continuation

Lazy concurrent

Shared−state
concurrent

programming

Software
transactional

memory (STM)

object−oriented
programming

Stateful

Figure 2: Programming paradigms taxonomy [1]

an important programming paradigm due to its wide us-
age in real-world systems. Understanding the principles
and techniques of this paradigm can provide developers
with valuable insights into designing and implementing
effective software.

Procedural programming is one example of an imper-
ative programming paradigm, where programs are con-
structed using procedures or subroutines that perform a
specific task. The procedure is executed in a step-by-step
manner, with each statement modifying the state of the
program until the desired output is achieved.

Another well-known imperative programming
paradigm is object-oriented programming (OOP), which
emphasises the creation of objects that encapsulate
data and behaviour. Objects interact with each other by
sending messages and invoking methods, which modify
the state of the objects.

2.1.2. Procedural programming

Procedural programming is a programming paradigm
that revolves around the concept of procedures, which
are also known as subroutines or functions. Procedure
are small sections of a program that performs a specific
task. Procedural programming supports features that
alter the control flow such as if-statements and loops
(for and while). Any kind of procedure may be called by
another procedure at any time, giving it a wide variety
of possible applications.

One of the first languages to adopt the procedural pro-
gramming paradigm was ALGOL, which introduced the
concept of block structure and the use of subroutines
to make programs modular. The C programming lan-
guage, developed in the 1970s, also popularised the use
of procedural programming and is widely regarded as
one of the most influential programming languages of
all time [10]. In the figure procedural programming is
not necessarily listed, but instead, it falls under just the
imperative programming block.

2.1.3. Object oriented programming

Object-oriented programming is a paradigm in software
development that revolves around the concept of objects,
which are instances of classes. The term was first intro-
duced by Kay in 1967 as “only messaging, local retention
and protection and hiding of state-process, and extreme
late-binding of all things” [11]. Later and somewhat more
formally, OOP was described as “a method of implemen-
tation in which programs are organised as cooperative
collections of objects, each of which represents an in-
stance of some class, and whose classes are all members
of a hierarchy of classes united via inheritance relation-
ships” [12].

It is evident that the view on OOP has shifted through
time, but objects will be the centre of the paradigm. OOP
facilitates the use of abstraction, which involves defining
the essential characteristics of an object while hiding
unnecessary implementation details. Additionally, OOP
makes heavy use of designing maintainable code using
loose coupling and having high modularity. In Figure 2
we can see that OOP is on the right side of the spectrum,
meaning that no paradigm expresses the state of the
program more than OOP, this is combined with named
states and closures.

2.1.4. Declarative programming

Where imperative programming focuses on state changes,
declarative programming focuses on specifying the prob-
lem that has to be solved. This can either be expressed as
a set of logical or mathematical rules that describe what
the desired outcome is. The result of this is an implemen-
tation that has a higher level of abstraction. The benefit
of this is that code is much more readable and easier to
understand. This improves the time one needs to write
a program. The drawback of this is that declarative pro-
gramming usually is not properly optimised requiring
lots of resources.

2.1.5. Functional programming

Functional programming (FP) is a paradigm that uses
functions to make computations. This approach for
programming is based on lambda calculus, which is a
mathematical theory about functions developed in the
1930s [13]. A program is defined as a function call, where
each function in its turn also calls other functions. One
of the most significant characteristics of functional pro-
gramming is that the functions avoid altering the state
of the program and do not contain side effects. This can
also be categorised as functional purity. A function is
only pure if it does not alter the state of a program.

One of the strengths of FP is the high modularity
of the programs [6]. Due to the high modularity, it is
easy to define new components (functions in this case),

without changing the functionality. This high modu-
larity is possible with the introduction of higher-order
functions and lazy evaluation, but more on this in sub-
section 2.3. The completely different approach of func-
tional programming complements object-oriented pro-
gramming enabling different approaches and implemen-
tations. More on these differences in subsection 2.3.

2.2. Multi-paradigm languages
With the various wildly different programming
paradigms explained, we can also support more than one
paradigm in one language, and these languages are called
multi-paradigm languages. Within a multi-paradigm
language, the first paradigm is considered to be the
paradigm that is most frequently targeted by the
language to solve a problem. The second paradigm is
chosen to support abstraction and add modularity to the
language [1]. The combination of paradigms that we will
cover and focus on in our research will be object-oriented
programming with functional programming. The adap-
tation of using functional programming constructs in
object-oriented programming continues to grow and
more and more languages start supporting the usage of
these constructs, think of languages as but limited to are:
Python, Java, C#, Kotlin, and Scala. We chose to research
the languages Java, C#, Kotlin, and Scala. This is due
to the fact that Java and C# are rather similar in OOP
style and Java, Scala, and Kotlin are JVM languages. It is
good to note that Java and C# have a similar approach
to the functional programming constructs, where they
are additions to the already existing object-oriented
language features. Scala and Kotlin are slightly different,
these languages were designed as a hybrid language in
such a way functional programming and object-oriented
programming are possible. They do not only support
functional programming constructs but it is also able to
write code that is completely functional. This contrast
would be interesting to see whether the impact on code
comprehension differs for Scala + Kotlin and Java + C#.

2.3. Programming constructs
Within the different kinds of programming paradigms,
there exist different kinds of programming constructs.
Both object-oriented programming and functional pro-
gramming are based on a set of concepts. We will list the
different concepts for both object-oriented programming
and functional programming.

2.3.1. Object-oriented programming

In object-oriented programming, there are a few core
concepts that are inherently OOP. These core concepts
of object-oriented programming are as follows [12]:

• Encapsulation: In OOP classes are used to en-
capsulate data and methods that function on this
data. This is then used to protect private infor-
mation and only expose the things that should be
available publicly.

• Inheritance: Classes can inherit, partially, the
functionality of other classes. The depth of in-
heritance is limitless. Inheritance enables code
reuse, as the subclass can reuse the code of the
superclass, and also provides a way to extend
and modify existing classes without having to
rewrite them from scratch. With this, a hierarchy
of classes can be established where subclasses
can extend the functionality of a superclass. This
makes code more modular and better maintain-
able. A simple example of inheritance can be
explained as follows. The class Dog extends the
class Animal. The class Animal has a method
eat() which the class Dog inherits and can also
call this function. The function for Dog has the
same behavior as with an object of class Animal.
Additionally, Dog contains a method that Animal
does not have namely bark().

• Polymorphism: This describes the concept that
allows objects of a different type to be treated as
if they are the same. Think of a class Dog and
a class Cat that extend a class Animal. Animal
contains a method getName() with a standard
implementation. Both Dog and Cat class over-
rides the implementation of Animal.

2.3.2. Functional programming

The origin of functional programming lies in lambda cal-
culus [13]. In this paradigm, programs are constructed by
the application and composition of functions. All func-
tional programming examples are written in Haskell to
display what pure functional programming looks like.
The main concepts of functional programming are de-
fined as follows[6]:

• First class & Higher-order functions:
Within functional programming functions serve
as a first-class citizen, meaning that they can
serve as a variable, be passed on as arguments
to other functions, or be the return value of a
function. These functions that take functions
as arguments are called higher-order functions.
An example of a higher-order function is the
function map. map takes a function and applies
this function to each element in a list. An
example usage of a higher order function can be
seen in Listing 1.

Listing 1: Map example in Haskell

addOne : : (Num a) => [a] −>
[a]

addOne xs = map (+ 1) xs
addOne [2 , 3 , 4 , 5] ==

[3 , 4 , 5 , 6]

The function addOne takes as argument a list
and results in a list where each item of the list
has been incremented by one. The second line
of the Listing shows what the result will be. By
using higher-order functions, code becomes more
compact and its generality increases the possible
functional applications of the program.

• Referential transparency: Referential
transparency is the property that allows the re-
placement of an expression with the computed
value of the expression, or the other way around,
and not altering the outcome of the program.

• Recursion: Recursion is a programming tech-
nique in which a function keeps calling itself.
When a function calls itself, a new instance of
the function is created and the process continues
until a certain condition is met, the base case. In
Listing 2 a small Haskell program has been given
that calculates the sum of all elements in the list.

Listing 2: Recursion example in Haskell

mySum : : (Num a) => [a] −> a
mySum [] = 0
mySum (x : xs) = x + mySum xs

• Lazy evaluation: With lazy evaluation, ex-
pressions are not evaluated until their results are
required. Instead of evaluating/calculating the
entire expression a program only evaluates the
necessary expressions. This makes it possible to
construct infinite data structures. Listing 3 shows
the power of lazy evaluation, it creates an infinite
list that contains only ones. With the power of
lazy evaluation, it is possible to keep generating
a list containing only ones and it will never end.
It is important to mention that not all functional
programming languages have lazy evaluation, an
example of this is Isabelle1. Isabelle is a generic
proof assistant that proves termination rules.

Listing 3: Lazy evaluation example in Haskell

ones : : [Int]
ones = 1 : ones

While these are the core concepts for functional pro-
gramming, there are still other concepts that are used in
functional programming.
1https://isabelle.in.tum.de/

• Anonymous functions: an anonymous func-
tion is a function that does not carry a name. Such
functions can not be referenced by other parts of
the code. The functions serve as a way to write
compact code that is only required for parts of
the code.

• Currying: Currying is a technique in functional
programming that allows the transformation of
a function that takes multiple arguments into
a sequence of functions that each take a sin-
gle argument. Currying is named after mathe-
matician Haskell Curry, who used the concept
extensively in the 20th century. With the in-
troduction of currying, another functional pro-
gramming concept becomes available namely
Partial application.

• Partial application: Partial application
refers to fixing a number of arguments of a func-
tion resulting in another function that takes fewer
arguments. This becomes possible when com-
bining both currying and higher-order functions,
where functions can also serve as variables. In
the Listing 4 function add takes two arguments,
namely the two numbers that need to be added.
The function addOne on the other hand returns a
function that only takes 1 argument. The function
returns the function add where its first argument
is already fixed to one.

Listing 4: Lazy evaluation example in Haskell

ones : : (Num a) => a −> a −>
a

add x y = x + y

addOne => (Num a) => (a −>
a)

addOne = add 1

• Pattern matching: With pattern matching, it
is possible to distinguish the behaviour of a func-
tion based on which patterns the input matches.
This allows comparing values against certain pat-
terns which then influence the outcome of the
function call. Listing 2 shows an example of
pattern matching. It distinguishes two patterns,
namely the empty list or a list with at least one el-
ement. Using this structure it is possible to clearly
distinguish cases and allow for readable recursive
code to be developed.

2.3.3. Multi-paradigm constructs

All of the previously described concepts and constructs
are clear with singular usage, but the expected behaviour

becomes more blurry once combining multiple con-
structs. This is something that will be researched in the
final project. Still, it is important to know which concepts
are supported by the three languages that we will use for
our research: C#, Java, and Scala. The current support of
functional programming concepts is listed in Table 1.

Language support
Java Scala C# Kotlin

Recursion 1 2 1.0 1.0
Referential transparency 1 2 1.0 1.0
Higher-order functions 8 2 1.0 1.0
First-class functions 8 2 1.0 1.0
Anonymous functions 8 2 3.0 1.0
Currying 8 2 3.0 1.0
Lazy evaluation 8 2 3.0 1.0
Pattern matching 7 2 7.0 1.0
Partial application 8 2 7.0 1.0

Table 1
Functional programming support OOP languages

While all of the languages do support referential trans-
parency this is heavily dependent on the methods/func-
tions. As we defined it before for something to be refer-
entially transparent, you should be able to interchange
a method for the value it returns without altering the
outcome of the program. This is still possible in all three
of the languages but is only partially supported since
none of the languages is pure. So they do support it, but
only in a limited fashion. Therefore, a maintainer must
be very careful when writing/altering code and check
for purity and immutability. All the other constructs are
supported, where things such as currying for C# and Java
need to be very explicit while Scala is much closer to lan-
guages like Haskell, where it is the standard. But this is
because Scala differs from C# and Java in how functions
are used. In both Java and C# they have to be explicitly
encapsulated by a Function construct, while in Scala they
are completely regarded as just a variable, without need-
ing such a construct. The following Listings display the
difference in how functions work for the languages and
how currying looks.

Listing 5: Functions in Scala

val sum : (I n t , I n t) => I n t = (x ,
y) => x + y

val curr iedSum : I n t => I n t =>
I n t = x => y => x + y

val curr iedSum2 : I n t => I n t =>
I n t = sum . c u r r i e d

val addOne : I n t => x => x + 1

Listing 6: Functions in Java

Funct ion < I n t e g e r , I n t e g e r > Add =
(u , v) −> u + v ;

Func t ion < I n t e g e r , Func t ion <
I n t e g e r , I n t e g e r >>

curryAdd = u
−> v −> u +

v ;
Func t ion < I n t e g e r , I n t e g e r > >

curryAddOne = curryAdd . app ly
(1) ;

Listing 7: Functions in C#

Func < int , int , int > add = (a , b)
=> a + b ;

Func < int , int , Func < int , int >
addCurr = a => b => a + b ;

Func < int , int > addCurrOne =
addCurr (1) ;

Lastly, pattern matching for all four of the languages
is possible, but not in the way pure functional program-
ming languages use it. In all three instances, it can be
achieved through a switch or case statement that de-
scribes the different kinds of patterns possible. Now
combining these functional programming constructs into
an object-oriented environment increases the versatility
of solutions. While on the surface this does look like
a good addition, it is important to ask the question of
whether the code remains maintainable. Combing mul-
tiple paradigms into one piece of code could reduce the
ability to understand the code. Less understandable code
leads to higher maintenance costs since it takes up more
time.

As mentioned in the introduction we distinguish two
different cases of multi-paradigm usages namely: parallel
usage and mixed usage. The aim of our research is to
focus on the mixed usage of multi-paradigm code since
we expect the highest change in code comprehension
here. Code that separates the usage of OOP and FP is
able to be analysed using single paradigm metrics [14,
15]. This gives a better understanding of the quality
of the code. When mixing the two paradigms in the
code there no longer is a clear separation of paradigms
and we expect that it requires additional reasoning of
the maintainer to try to comprehend the code, and is
therefore something to research.

3. Software quality assurance
We have now discussed the different kinds of paradigms
and the constructs that they use. While the chosen lan-
guage influences the effectiveness of a solution other

factors determine whether the produced software is of a
good quality. Assessing the quality of software is there-
fore an important part of a development cycle. To assess
the quality of software there is the process of Software
Quality Assurance (SQA) that ensures that software prod-
ucts meet the specified quality standards and require-
ments. SQA stems from early ideas in the ’50s and has
since undergone subsequent extensive exploration and
research [16]. During this time it became more apparent
that there was a need for quality assurance. In the years
thereafter more research on quality assurance was per-
formed. Some areas that were explored were software in-
spections [17, 18], software testing [19], and many other
factors that are more aimed at software processes than
just the code itself. Later on, a handbook describing all
aspects of SQA came out with extensive descriptions [20].
While many aspects are covered, we are interested in soft-
ware quality. The ideology regarding software quality
is described in a standard [5]. It describes eight charac-
teristics that influence the quality of a software product:
functional suitability, performance efficiency, compati-
bility, usability, reliability, security, maintainability, and
portability. When looking specifically at the influence of
quality on maintenance tasks, compatibility, maintain-
ability, and portability remain. We will take a closer look
into maintainability and what it is influenced by.

3.1. Maintainability
Maintainability is defined as the "degree of effectiveness
and efficiency with which a product or system can be
modified by the intended maintainer"[5]. So the focus
heavily lies on the degree a maintainer is affected by
the quality of code. The standard describes five sub-
characteristics that fall under maintainability.

• Modularity: Modularity is the degree to which
distinct components impact other components.
Higher modularity means that components are
less dependent on the functionality of other com-
ponents. Higher modularity makes it easier to
maintain and replace single components and
makes it easier to oversee the project.

• Reusability: Reusability is the degree to which
can be used in more than one system. By making
code as general as possible it becomes possible to
reuse code in other systems or other parts of the
code. By doing so similar functionality is all in
one place making it easier to maintain.

• Analysability: Analysability is the degree of ef-
fectiveness and efficiency in the assessment of
the impact of a system of intended changes, or
diagnose deficiencies in a system. This is a very
important part for maintainers, when unable to
analyse code it becomes impossible to identify

errors in the code or even reason about its be-
haviour.

• Modifiability: Modifiability is the degree to which
a product can be changed without introducing
defects or decreasing the quality of the existing
product. In order to modify a program a main-
tainer must be able to reason about the code and
understand its behavior.

• auto: Testability is the degree to which test crite-
ria can be established for a system and tests can
establish whether the criteria are met. Without
testing, it is harder to assess the correctness of a
program. Therefore, is an important aspect that
influences the ability of a maintainer to perform
its tasks.

While each characteristic focuses on different aspects
and impacts on the maintainer there is a common ground
for most of them. We identify an underlying and recur-
ring pattern that is required for a maintainer. A main-
tainer needs to be able to reason about the code and
understand its behaviour. This is especially prominent in
the Modularity, Analysability, and Modifiability. Without
an understanding of a program, a maintainer is unable
to perform its tasks and is therefore an important and
noteworthy aspect of quality assurance.

3.2. Code Comprehension
• top-down strategy
• bottom-up item strategy
• knowledge-based strategy
• Systematic/As-Needed Strategy
• Latent Semantic Analysis Strategy

In the previous section, the significance of compre-
hending code was highlighted as an essential aspect of
a maintainer’s responsibilities. This comprehension, re-
ferred to as program comprehension, entails the process
through which software engineers gain an understanding
of a software system’s behaviour by primarily referenc-
ing the source code [21]. While program comprehen-
sion encompasses a broader scope, code comprehension
specifically concentrates on comprehending smaller com-
ponents of the software system rather than the system
as a whole. Code comprehension can therefore be seen
as a part of the entire program comprehension process.

Furthermore, program comprehension has been recog-
nised as a substantial component of maintenance costs,
accounting for a considerable portion ranging from 50%
to 90% of these expenses [22] For this reason, it is clear
that code comprehension plays a central role in maintain-
ing code and thus code quality. While there is a dedicated
conference regarding program comprehension, there is
still little research focusing on the program comprehen-
sion side of multi-paradigm languages. Part of this is due

to little research aimed at understanding the impacts of
combining multiple paradigms.

3.3. Comprehension Strategies
Comprehending code has one goal and that is to under-
stand the purpose of the code. Although it may appear ob-
vious and straightforward, the process of comprehending
code varies among individuals, as each person employs
their own unique comprehension strategy. Multiple com-
prehension strategies exist, each approaching the task of
comprehension in distinct ways.

3.3.1. Bottom-up

The bottom-up comprehension strategy, initially pro-
posed by Mayer et al [23], encourages a step-by-step ap-
proach to comprehension. This strategy involves reading
the source code and mentally grouping the low-level soft-
ware components into higher-level abstractions. These
abstractions serve as "chunks" to construct a compre-
hensive understanding of the program. The primary
objective of this strategy is for programmers to develop
an internal representation of the program, focusing on
grasping its underlying concepts rather than memorising
the syntax of the code. As additional layers of comprehen-
sion are added, this internal representation is expanded
and refined.

3.3.2. Top-down

The top-down strategy as the name suggests is the com-
plement of the bottom-up strategy. The top-down strat-
egy starts with gaining a high-level understanding of the
program [24]. Brooks describes the top-down strategy as
a hypothesis-driven strategy. General hypotheses keep
being refined as more information is extracted from the
source code and its documentation. Once the high-level
understanding is established, maintainers narrow their
attention to specific sections of the code that are relevant
to their comprehension goals. They proceed by delving
into lower-level details, such as individual functions or
code blocks, to understand the implementation specifics
and how they contribute to the overall behavior.

3.3.3. Knowledge-based

A bottom-up strategy and a top-down strategy are not
mutually exclusive and are generally used both while
comprehending programs [25]. Letovsky describes a
mental model that contains the programmer’s knowl-
edge base which represents the current understanding
of the code, this model is then actually built using an
assimilation process. This process shows how the evo-
lution of the mental model uses both bottom-up and
top-down comprehension strategies. The bottom-up and

top-down strategies for program comprehension are not
mutually exclusive and are commonly employed together.
According to Letovsky, a knowledge-based comprehen-
sion strategy involves the creation of a mental model that
represents the programmer’s current understanding of
the code. This mental model is constructed through an
assimilation process that incorporates elements of both
bottom-up and top-down comprehension strategies. As
the mental model evolves, both strategies contribute to
its development, allowing for a comprehensive under-
standing of the code.

3.3.4. Systematic

The systematic comprehension strategy is a methodi-
cal approach to program comprehension described by
Littman et al [26], where maintainers follow a predefined
and structured process to understand the software sys-
tem. By tracing the flow of data through the program,
maintainers gain insights into the sequence of steps the
program takes and how these steps are interconnected.
This systematic tracing allows maintainers to map the
behaviour of the entire program. This is therefore, a
more useful strategy for larger projects and much less
for projects with a smaller codebase.

3.3.5. As-needed

The as-needed comprehension strategy, described by
Littman et al [26], presents a dynamic approach to pro-
gram comprehension, where maintainers purposely con-
centrate on particular code segments and details while
performing maintenance tasks. This strategy is guided
by the direct need to understand specific aspects of the
code, prioritising relevance and significance. Rather than
adhering to a predetermined top-down or bottom-up se-
quence, maintainers adjust their comprehension efforts
according to the code’s context and complexity, address-
ing specific requirements as they are encountered.

3.4. Code smells and anti-patterns
All projects strive to deliver high-quality software. This
high quality is achieved through set design patterns that
help structure the code. While the goal is to always
write high-quality software, in practice this is not feasible.
Bad code gets injected decreasing its quality and the
ability for a maintainer to understand it. The decrease
originates from bad designs and patterns. These poorly
designed patterns are also called anti-patterns and Brown
defined 40 different of these anti-patterns [27]. For each
of the anti-patterns, its consequences and the solution
to resolve the patterns are proposed. Two well-known
anti-patterns are:

• God Object: A large class or module that contains
too much functionality becomes very complex.
These classes are much harder to maintain due to
their high complexity and size.

• Spaghetti code: This is the type of code that has its
functionality and behaviour tangled into multiple
classes without keeping any structure. This is the
type of code that is difficult to understand as it is
not always clear what its actual functionality is.

Besides the structured anti-patterns, there are a more
minor group of indicators of poor code quality. This
smaller group is called code smells and was first intro-
duced by Beck & Fowler [7]. They describe these poor
code constructs as pieces of code that start to smell due
to a higher likeliness of containing faults. Code smells
describe certain characteristics and smaller patterns in
code that could lead to bugs. A few examples of code
smells as defined by Beck & Fowler are:

• Duplicate code: Identical code or almost identi-
cal code snippets that appear in multiple places.
These pieces could be extracted to a single method
to centralise their functionality.

• Long method: These are methods that are large
in size. The large size is usually an indication
that it carries a lot of functionality and inherently
becomes more complex and harder to maintain.
It is suggested to refrain from having methods
that contain more than one purpose and separate
functionality amongst the methods.

• Large parameter list: A method containing a lot
of parameters becomes difficult to use and might
become inconsistent. Using fewer parameters
makes a method more readable and easier to un-
derstand.

Where anti-patterns are known bad practices with clear
indications on how to solve them, code smells are more
subjective and indicators of potential problems. Within
just a single paradigm, a large amount of both anti-
patterns and code smells are defined and recognised.
This is not necessarily the case for the combination of
multiple paradigms. There is some research focusing
on multi-language anti-patterns and code smells, but as
it highlights this is more focused on bad practices con-
centrated on the communication between two language
components of a system [28]. For a multi-paradigm en-
vironment within one language, there is still a lot to
explore. Therefore, this research aims to identify code
smells based on program comprehension. Poor program
comprehension can be the cause of the presence of one
or more code smells/anti-patterns [29].

4. Experimental Setup
The primary objective of our project is to provide valu-
able insights into the influence of multi-paradigm usage
on code comprehension by performing a user study. This
chapter covers the process of designing the human study.
We begin by discussing the established requirements and
essential components necessary for the study. Addition-
ally, we explore existing research on the design and cus-
tomisation of human studies for code comprehension
through a thorough literature review, which serves as
the foundation for informed decision-making throughout
the study design process. Following the literature review,
we present the design of the human study, articulating
the chosen methodology and the rationale behind these
design decisions.

4.1. Study requirements
The design of the study needs to meet specific conditions
to ensure the results hold meaningful insights. This is es-
sential because we want the outcomes of the study to shed
light on how using multi-paradigms might affect a pro-
grammer’s code comprehension. Achieving this involves
gathering data that lets us compare the experiences of
different participants, and that’s where quantitative data
comes into play. However, merely comparing numbers
doesn’t provide enough to make meaningful conclusions.
The heart of the matter lies in grasping the cognitive
processes of participants. While we’re not just concerned
about where participants initially focus their attention,
we’re more intrigued by how they reason and progress
in their thinking. This aligns well with the diverse com-
prehension techniques discussed in subsection 3.3. But,
it’s crucial to note that these cognitive dimensions, while
intriguing, rely on quantitative data to give weight to our
findings from observations that are made. That’s why
it’s crucial for the study, in whatever form it takes, to
allow for both quantitative and qualitative analyses. This
double approach doesn’t only enhance the credibility of
our findings but also helps us dig deeper into our un-
derstanding. In the upcoming sections, we’ll delve into
the areas that warrant measurement within the study.
This covers both the quantitative and qualitative data
elements.

4.1.1. Quantitative analysis

Quantitative data is a type of information that can be ex-
pressed in numerical terms and is something that can be
measured may it be on a scale or not. Quantitative data
relates to quantities, amounts, and objective measure-
ments, making it ideal for mathematical and statistical
analyses. In research and analysis, it is essential to pro-
vide empirical evidence, allowing researchers to draw

objective conclusions based on measurable facts. This
data is often acquired through means such as surveys, ex-
periments, observations, and measurements. Examples of
quantitative data include age, height, weight, test scores,
sales figures, and occurrence counts. Relating quantita-
tive data to research on code comprehension there are
some measurements that should be taken into account.
When comparing different things and their effect on com-
prehension, standard things to measure are, correctness
and time to complete.

Correctness refers to the correctness of an answer
given by a participant, may it be an open answer or
a closed one. Correctness is measured using the two
options correct or incorrect, in analyses this is usually
described with a 0 for an incorrect answer and a 1 for a
correct answer.

Time to complete refers to the time a participant re-
quires to answer a question. This gives an insight into
what possible factors are that could influence, positively
or negatively, the time to comprehend relevant code
pieces in order to answer a question.

Besides these two measurements, relevant demo-
graphic information of participants will be captured. This
information can, later on, be used to distinguish different
groups and make more specific conclusions.

4.1.2. Qualitative analysis

Unlike quantitative data, which is expressed in numbers,
qualitative data is descriptive in nature. It deals with
qualities, characteristics, attributes, and subjective obser-
vations. This type of data is usually captured in textual or
narrative form, which allows researchers to better under-
stand the complexities of human experiences, behaviours,
and perceptions.

Qualitative data is particularly useful for exploring nu-
ances, contexts, and underlying motivations that quan-
titative data may not fully capture. It helps researchers
gain a deeper understanding of human behaviour, atti-
tudes, and cultural contexts. When contextualising this
within the scope of our research objectives, investigating
behavioural patterns concerning comprehension emerges
as a compelling area of exploration. Measurements de-
scribed in the previous section can give an insight into
whether certain hypotheses are correct.

Concentrating on the subjective observations gathered
during the conducted study facilitates the analysis of
participants’ cognitive thinking. Therefore, the design of
the study should allow for the gathering of qualitative
data that entails the cognitive thinking process endured
by the participant. It would be interesting to see whether
these observations can be linked to previously identified
potential comprehension techniques.

4.2. Literature research
To conduct a proper and representative study on the
effects of multi-paradigm programming on code com-
prehension, it’s important to understand how previous
human studies(studies involving human participants) on
program comprehension have been carried out. By exam-
ining how other studies approached comprehension, we
can make informed decisions when designing our own
study. It’s also of the essence to consider the goals and
scope of those past studies in our analysis.

4.2.1. Selection procedure

We collected relevant papers on this topic to review hu-
man studies on program comprehension. We focused
on papers presented at the International Conference on
Program Comprehension, from its 2nd to 30th editions.
Going through this substantial literature required a struc-
tured approach to ensure we didn’t miss any relevant pa-
pers. Our selection procedure consisted of three phases:

1. Initial Selection: We first considered all papers
based on their titles to identify potentially rel-
evant ones. If the abstract’s initial sentences
weren’t clear, we read further to decide.

2. Abstract Analysis: In this phase, we carefully read
the abstracts to check if the papers indeed in-
volved human studies. If there was uncertainty,
we looked for any mention of human studies in
the papers themselves.

3. Inclusion Criteria Refinement: The remaining pa-
pers were examined more closely to ensure they
met our specific inclusion criteria for human stud-
ies.

Each phase had its own set of inclusion and exclusion
criteria. In the initial phase, we focused on inclusive fac-
tors derived from the papers’ titles, without any specific
exclusion criteria. The inclusion criteria consisted of the
following points:

• title contains words: empirical/case/explorato-
ry/human/quantitative/qualitative study

• title indicates an impact on comprehension or
understanding

• indicating a difference between two or more per-
spectives

After the first selection phase, we had a remainder of
166 papers. As mentioned before, the inclusion criteria
for the second phase is the inclusion of a human study.
Additionally, there was one exclusion criterion namely: it
should not be a paper regarding a tool. Papers regarding
their build tool are not regarded to be the relevant types
of papers we are looking for, so these types of papers
were excluded after this. This left us with 53 papers. In

the last phase, there were only exclusion criteria that
were there to ensure the papers were within the scope.

• papers that involved human studies spanning an
extended observation period

• papers that relied on eye tracking for comprehen-
sion analysis

• papers whose human studies served purposes
other than measuring comprehension

In total, 14 papers were filtered out during this phase:
3 due to prolonged observation periods, 3 due to eye
tracking involvement, 5 due to relevance issues, and 5
that initially seemed to contain a human study but did
not meet our criteria. Consequently, we were left with 38
relevant papers that conducted a human study, forming
the basis of our analysis.

4.2.2. Paper Categorisation

In order to gain useful information from the relevant 38
selected papers, it is important to establish factors we
can use in order to analyse usefulness per study type. We
have established a few aspects that are written down and
summarised per paper. The information that we have
extracted from the papers contains the following:

• The kind of human study that was performed.
• Whether the study was performed online or in a

physical session.
• The number of human participants and whether

they were professionals or students (or both)
• Amount of different participant groups.
• The essence and conclusion of the paper.

With just this information there is nothing to compare
the papers with each other from. From the extracted
information, we deduced four different categories that
help put the performed human studies into perspective.
Additionally, it has been decided not to put the purpose
of the papers into a category as this required too much
of a subjective analysis, but the goal of the papers is not
completely disregarded in the process of identifying the
most suitable study form to study the impact on code
comprehension in a multi-paradigm environment. Each
category is briefly explained including our view on the
importance of the category.

Study size The first characteristic to be considered in
designing a meaningful human study for code compre-
hension is the size of the participant pool. This gives
an indication of what acceptable sizes are for program
comprehension studies. The sizes of participant pools
ranged from, only a couple of participants that were
closely monitored by the researchers to wide-scale sur-
veys that amassed more than 250 respondents(are 2 refer-
ences necessary?). In order to distribute the papers into

different categories, we established three size categories:
small studies (1–20), medium studies(21–50), and large
studies(50+). The distribution of this can be found in
Table 2.

amount
Small 7

Medium 13
Large 18

Table 2
Distribution study sizes

Participant demography Another interesting charac-
teristic to consider is the background of the participants.
The main distinction most researchers make is between
industry professionals and students. While some studies
are focused on students, may it be due to availability or
interest there are multiple studies that try to combine the
backgrounds. By considering both it creates a heteroge-
neous pool of participants. The distribution of this can
be found in Table 3.

amount
Students 18
Industry 10
Hybrid 10

Table 3
Distribution participant demography

Study type While the overarching goal of various stud-
ies centres around examining different aspects of pro-
gram comprehension, there exists a diversity of require-
ments that drive distinct execution methodologies. These
variances in necessities give rise to various modes of
study execution. Classifying the different forms of hu-
man studies is, therefore, an additional dimension to be
considered. As we delve into the relevant papers, it be-
comes evident that the spectrum of human studies can
be boiled down to three primary categories.

The initial category is the survey/questionnaire study,
which, as the name implies, gathers data through surveys
or questionnaires. This kind of study doesn’t require
direct interaction between researchers and participants.

The second category is the experiment study. This type
of study requires some degree of interaction between
participants and researchers, ranging from interviews
involving in-depth queries to real-time tasks adminis-
tered in the participant’s presence. Studies categorised as
experiments can incorporate surveys, but the presence
of human interaction classifies them as an experiment.

Lastly, the observation study concentrates on observ-
ing participants as they undertake a predetermined set

of tasks. These observations are typically coupled with a
"thinking-aloud" approach to document sessions. While
human interaction exists, the emphasis is not on active
engagement but rather on passive observation of partici-
pants’ behaviours.

The categorization of the papers can be found in Table
4

amount
Survey 10

Experiment 16
Observation 12

Table 4
Distribution study types

Execution style The last category that is being con-
sidered is the way the study is performed. This entails
whether it was performed in an online environment or
in a physical setting. It is relevant to see what kinds of
studies are able to be performed online and which should
be performed in a physical setting. Beforehand it should
be noted, that some papers have been published during
corona, during these times it is expected that studies pre-
fer an online approach. The division can be found in
Table 5

amount
Online 11
Physical 26
Hybrid 1

Table 5
Distribution execution style

4.3. Findings
In investigating the impact of multi-paradigm usage on
code comprehension, various study methods come into
play, namely surveys, and experiments. Surveys can
be conducted online, while other methods are typically
carried out in a physical setting whereas an online ap-
plication is rare. Surveys offer the advantage of gath-
ering both quantitative and qualitative data, although
sometimes yield results that may not align with initial
expectations. Interviews, as an alternative to surveys,
share similar objectives but allow for more guided and
insightful responses.

Survey-based studies tend to lean towards emphasising
quantitative data collection, mainly due to the inherent
nature of surveys allowing relatively unguided data gath-
ering. This focus on quantitative aspects is partly a result
of the survey’s structure, which can lead to results that
are more easily quantifiable.

For methodological feasibility and simplicity, it’s rec-
ommended not to introduce unnecessary complexities,
such as involving multiple programming languages or
numerous variables. Instead, a practical approach in-
volves carefully selecting a limited number of variables
or factors. This focused strategy aims to minimise out-
side influences, preventing potential confusion caused by
unrelated factors and ensuring the clarity of the study’s
outcomes.

4.4. Study design
Several parts complete the design of the human study.
Each of these is described in the subsequent sections.
All factors and possibilities are laid out and explained
in depth. The different factors and characteristics of the
study setup are the type of study, the participants, and
the study language.

As outlined earlier, two distinct study types align par-
ticularly well with the requisites of our study: interviews
and surveys. Each of these methods carries its own set
of advantages and limitations, some of which have been
previously highlighted and are reiterated here for com-
prehensive coverage.

4.4.1. Interviews

Interviews offer a robust means of guiding conversa-
tions and creating opportunities for seeking clarifications
where necessary. This inherent flexibility aligns adeptly
with our objective of capturing qualitative data of a de-
sired standard. Interviews allow participants to elaborate
more extensively on specific findings, a dimension that
might be constrained within the boundaries of a survey,
which typically demands brevity.

Nonetheless, these advantages of the interview
methodology are not without trade-offs. The require-
ment for individualised interview sessions, as opposed
to group formats, renders this approach time-intensive.
A statistically significant study, necessitating more than
a mere handful of interviewees, demands a substantial
investment of time in conducting, transcribing, and sub-
sequently analysing each interview. Furthermore, the
gathered interview data requires careful processing, in
adherence to GDPR regulations.

4.4.2. Survey

Contrarily, surveys chart an entirely distinct trajectory.
Emphasising the number of participants over in-depth
engagement, surveys aim to glean insights from a broad
spectrum of respondents while minimising their time
commitment. This approach yields many results under-
scored by versatility. Although surveys excel in collecting
quantitative data, they possess the capacity to capture

qualitative insights through succinct questions. Nonethe-
less, soliciting qualitative data within a survey is less
straightforward than collecting quantitative information.
The degree of participant guidance is constrained, even
when questions are deliberately framed to encourage
qualitative responses. The resultant behaviours might
not conform to expectations, contributing to the unpre-
dictability of outcomes.

Survey implementation demands a reasonable time in-
vestment, primarily in the survey design and validation.
Once this foundational step is accomplished, the only
thing that remains is finding participants and motivating
them to partake in the study. It’s essential to underscore
the care required in survey setup, encompassing a thor-
ough examination of questions and choices, weighing
their respective advantages and disadvantages. Once fi-
nalised, it no longer is feasible to alter the survey as this
renders previous results useless, hence the careful and
thorough approach in the survey design.

4.5. Language
Besides the study type, the selection of the program-
ming language significantly influences the study’s tra-
jectory. The language choice is a multifaceted decision
containing two primary considerations: the number of
programming languages under consideration and the
specific language(s) to be employed.

As previously indicated, the introduction of multiple
programming languages introduces an increase in con-
founding factors. These variables demand careful man-
agement to preclude the potential invalidation of results.
Simultaneously, embracing multiple languages affords
the potential for enriched analyses. However, for the
sake of maintaining study feasibility, the pursuit of using
multiple languages, as elaborated in the Findings section,
will not be pursued further.

Equally vital is the selection of the programming lan-
guage, besides the employed study type. Considerations
extend to factors such as the level of expertise required
for effective engagement with the chosen language. The
languages considered are Java, Scala, C#, and Kotlin. No-
tably, Scala and Kotlin emerge as languages expressly
designed with multi-paradigms in mind, accommodat-
ing both programming paradigms of functional program-
ming and object-oriented programming. Conversely,
Java and C# encompass functional programming con-
structs, albeit being specially used for augmenting object-
oriented code, particularly pronounced in Java.

Scala, while historically significant, has witnessed a
decline in its utilisation [10]. This could potentially be
attributed to its steep learning curve. It is pertinent to
underscore that within the organisational framework of
Info Support, the research’s host institution, and the Uni-
versity of Twente, Scala’s popularity remains minimal.

Java and C#, on the other hand, are in development
practices within Info Support, presenting a substantial
participant pool. Moreover, Java holds prominence as the
educational programming language at the University of
Twente, rendering it an avenue for student recruitment.

Finally, the inclusion of Kotlin deserves discussion.
Despite its limited usage at the University of Twente
and Info Support, its alignment with Java’s syntax and
concepts renders it accessible. This facilitates the compre-
hension of Kotlin by those acquainted with Java. Kotlin
may serve as an exploratory tool for measuring partic-
ipants’ cognitive processes in a semi-unfamiliar envi-
ronment. Such exploration enables the observation of
participants’ reasoning and thought processes in an en-
vironment that remains unprejudiced by established pro-
gramming norms. This dimension is particularly relevant
for assessing the intersection of functional and object-
oriented programming concepts without the possible bias
introduced by active development in a specific program-
ming style.

4.6. Decision
In light of a thorough evaluation of the advantages and
drawbacks associated with both interview and survey
methodologies, coupled with the requisites of the study,
the chosen study type is interviews. Despite the time-
intensive nature of interviews, we believe they present
the optimal avenue for capturing relevant insights into
code comprehension within this context. Gathering qual-
itative data relevant to the tracing of comprehension
strategies and the cognitive reasoning processes of par-
ticipants. Although surveys might potentially fulfil this
requirement, they carry substantial risks of yielding un-
satisfactory or insufficient responses, hindering mean-
ingful analyses.

Given the pivotal significance attributed to capturing
participants’ cognitive behaviour and considering it a
foundational aspect of the research, interviews emerge
as the more fitting choice. This alignment aligns with
the study’s objectives and interests.

It’s noteworthy that participants may still be requested
to complete a brief survey prior to their interview, facili-
tating the capture of relevant demographic information.

Turning to the characteristic of the language within the
study, Scala, owing to its limited practical usage, emerges
as less feasible for participant recruitment. The decision,
therefore, hinges on the selection between Java, C#, and
Kotlin. Rather than opting for the language most exten-
sively employed by participants in their active develop-
ment, the decision favours Kotlin. The language’s close
alignment with Java, while preserving a distinct identity,
renders it an ideal candidate for this study. This choice
enables the genuine capture of participants’ cognitive
processes in code comprehension, as reliance on preva-

lent programming practices becomes unavailable. While
familiarity with Kotlin is expected among participants,
proficiency in writing active code in it is not manda-
tory. A basic understanding of Java serves as a sufficient
foundation, with the provision for a brief introduction to
Kotlin’s syntax and features, if necessary.

Crucially, the interview questions are formulated in
such a way they can be answered without requiring code
alteration. This allows for an equal task for each partic-
ipant and excludes individual coding capabilities. The
primary focus of these questions is rooted in compre-
hending code and unearthing its underlying purpose.

Regarding participant demographics, a balance of stu-
dents and professional developers is chosen. This mix
not only ensures diversity but also affords a compre-
hensive exploration of code comprehension in a multi-
paradigm landscape. It also offers the opportunity to
examine whether programming experience carries rele-
vance as a contributing factor. Although participants will
predominantly be drawn from Info Support and the Uni-
versity of Twente due to their availability, recruitment is
not restricted to these entities.

5. Related Work
Landkroon researched the fault prediction of the multi-
paradigm language Scala, it was specifically focused
lied on the combination of functional programming and
object-oriented programming [2]. He combined the OOP
metric suite proposed by Chidamber et al. [14] and the FP
metric suite for Haskell [15]. He used three popular Scala
projects to check whether code quality metrics could
predict whether faults labelled in the issue tracker could
predict bugs. In his research, he developed a new vali-
dation method that extends the validation method from
Briand et al. [30]. He showed that his new validation
method could outperform Briand’s method, especially in
projects with a longer life cycle.

Zuilhof adopted the validation method proposed by
Landkroon [4]. He developed a metric suite for the lan-
guage C# that is tailored for functional programming-
inspired constructs. This suite was then used to in-
vestigate the effectiveness of using the suite to predict
error-proneness. The results showed an improvement
in projects with active usage of FP-inspired constructs
against the baseline model. Konings had a similar ap-
proach as Zuilhof but adapted the metric suite to fit the
language Scala [3]. These candidate metrics did not show
any significant improvement to the baseline model. Addi-
tionally, Konings used the programming paradigm score
as a single metric to predict fault-proneness, this did not
perform well. It was noted that mixed multi-paradigm
code had a significantly higher percentage of faults than
non-mixed code.

Jacobs defined a purity metric to predict fault-
proneness [31]. It was concluded that the purity met-
ric performed slightly better than functional and object-
oriented metric suites. Additionally, the purity metric
would perform at its best when applying it to methods
and training each specific model for each function type.

Arend saw the shortcomings and that previous re-
search kept doing the same, but slightly different [9].
Therefore, he designed a language-agnostic code quality
assurance framework (LAMP) for multi-paradigm lan-
guages. The goal of this framework is to create one frame-
work on which all metrics can be run. To achieve this,
transformations from the source language to the LAMP
framework need to happen. Arend has already defined
transformation from Java to the framework.

Pankratius et al. performed an empirical study [32] on
the impact of functional programming combined with
imperative programming on the process of parallel pro-
gramming. While the imperative code in Java was easier
to understand a combination of functional programming
and imperative programming in Scala proved to perform
the best.

Abbes et al. studied the impact of two well-known anti-
patterns and their impact on code comprehension [29].
In their findings, they concluded that the presence of
one anti-pattern doesn’t impact code comprehension
that much, but the presence of multiple anti-patterns de-
creased code comprehension a lot. These findings will be
useful to keep in mind when defining our empirical study.
Another study by Khomh et al. found that classes con-
taining code smells are more likely to be fault-prone [33].

Abidi et al. detected that there is a lack of research
regarding multi-language systems. They defined 12 code
smells for these multi-language systems [28]. These
multi-language systems do differ from multi-paradigm
languages. The smells reported mostly focus on the in-
teraction between the two(or more) languages of the
system. Whereas our aim goes more towards bad prac-
tices within one language using multiple paradigms to
define their system. In an additional study, the impact of
such multi-language design smells has been studied [34].
Their findings were that multi-language design smells
have negative impacts on software quality.

6. Conclusion
In the dynamic landscape of programming languages,
which has seen the continual evolution of both languages
themselves and the complexity of problems they address,
a notable shift has occurred. Programming languages
now incorporate constructs from multiple paradigms,
particularly those of object-oriented and functional pro-
gramming. This blending of paradigms has introduced
a challenge to what was once a clear understanding of

these individual constructs. As we strive to comprehend
code, a pivotal task in its maintenance, the significance
of investigating the potential impact of multi-paradigm
usage on code comprehension becomes evident.

To evaluate this influence, a thoughtfully formulated
human study assumes a prominent position. Our re-
search journey led us to the formulation of a study frame-
work that encompasses both quantitative and qualitative
data acquisition. The implementation of interviews, fa-
cilitated by a set of thoughtfully crafted questions, was
concluded to be the optimal approach to capture the cog-
nitive processes at play. In these interviews, participants
are neither tasked with coding exercises nor program-
ming challenges. Instead, they are assigned with the
task of comprehending code snippets written in Kotlin, a
language that participants need not be extensively expe-
rienced in, rather, a familiarity with navigating a semi-
unfamiliar linguistic landscape suffices.

The structure of this study forms a foundational base
for delving into how multi-paradigm programming might
influence code comprehension. By combining quantita-
tive and qualitative data, we open up a window into the
complex web of cognitive behaviours entangled with the
understanding of multi-paradigm code. The implications
drawn from incorporating these insights together hold
immense significance. They not only refine our grasp
of comprehending multi-paradigm code but also set the
course for future work. This study acts as a guiding torch,
showing the way for more investigations into untangling
the complexities of multi-paradigm code. In doing so,
it adds to our understanding of programming and the
ever-changing world of software development.

References
[1] P. Van Roy, et al., Programming paradigms for

dummies: What every programmer should know,
New computational paradigms for computer music
104 (2009) 616–621.

[2] E. Landkroon, Code quality evaluation for the multi-
paradigm programming language scala, Master’s
thesis, Universiteit van Amsterdam, 2017.

[3] Sven Konings, Source code metrics for combined
functional and Object-Oriented Programming in
Scala, Master’s thesis, University of Twente, 2020.
URL: http://essay.utwente.nl/85223/.

[4] B. Zuilhof, R. van Hees, C. Grelck, Code quality met-
rics for the functional side of the object-oriented
language c#, in: A. Etien (Ed.), Post-proceedings
of the Seminar Series on Advanced Techniques &
Tools for Software Evolution (SATTOSE 2019), vol-
ume 2510 of CEUR Workshop Proceedings, CEUR-
WS.org, 2019, pp. 99–108. URL: https://ceur-ws.org/
Vol-2510/sattose2019_paper_12.pdf.

http://essay.utwente.nl/85223/
https://ceur-ws.org/Vol-2510/sattose2019_paper_12.pdf
https://ceur-ws.org/Vol-2510/sattose2019_paper_12.pdf

[5] ISO/IEC 25010, ISO/IEC 25010:2011, Systems and
software engineering — Systems and software Qual-
ity Requirements and Evaluation (SQuaRE) — Sys-
tem and software quality models, Technical Report,
ISO, 2011.

[6] J. Hughes, Why functional programming matters,
The computer journal 32 (1989) 98–107.

[7] K. Beck, M. Fowler, Bad smells in code, Refactoring:
Improving the design of existing code 1 (1999) 75–
88.

[8] T. Sharma, D. Spinellis, A survey on software smells,
Journal of Systems and Software 138 (2018) 158–
173.

[9] M. van der Arend, The LAMP Framework — A
Language-Agnostic Code Quality Assurance Frame-
work for Multi-Paradigm Languages, Master’s the-
sis, Universiteit Twente, Enschede, The Nether-
lands, 2023. URL: http://purl.utwente.nl/essays/
94619.

[10] Pypl, Pypl, https://pypl.github.io/PYPL.html, 2022.
[11] B. Stefan L. Ram, Dr.alan kay on the meaning of

"object-oriented programming", 2003. URL: https://
www.purl.org/stefan_ram/pub/doc_kay_oop_en.

[12] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J.
Young, J. Connallen, K. A. Houston, Object-oriented
analysis and design with applications, ACM SIG-
SOFT software engineering notes 33 (2008) 29–29.

[13] A. Church, A Set of Postulates for the Foundation
of Logic, Annals of Mathematics 33 (1932) 346–366.
doi:10.2307/1968337.

[14] S. Chidamber, C. Kemerer, A metrics suite for object
oriented design, IEEE Transactions on Software
Engineering 20 (1994) 476–493. doi:10.1109/32.
295895.

[15] C. Ryder, Software metrics: measuring haskell.,
Trends in Functional Programming (2005) 31–46.

[16] F. J. Buckley, R. Poston, Software quality assurance,
IEEE Transactions on Software Engineering SE-10
(1984) 36–41. doi:10.1109/TSE.1984.5010196.

[17] T. Gilb, D. Graham, Software inspections, Addison-
Wesley Reading, Masachusetts, 1993.

[18] M. E. Fagan, Advances in software inspections, in:
Pioneers and Their Contributions to Software En-
gineering: sd&m Conference on Software Pioneers,
Bonn, June 28/29, 2001, Original Historic Contribu-
tions, Springer, 2001, pp. 335–360.

[19] C. Kaner, J. Falk, H. Q. Nguyen, Testing computer
software, John Wiley & Sons, 1999.

[20] G. G. Schulmeyer, Handbook of software quality
assurance, Artech House, Inc., 2007.

[21] K. H. Bennett, V. T. Rajlich, N. Wilde, Software
evolution and the staged model of the software
lifecycle, in: Advances in Computers, volume 56,
Elsevier, 2002, pp. 1–54.

[22] D. J. Robson, K. H. Bennett, B. J. Cornelius,

M. Munro, Approaches to program comprehen-
sion, Journal of Systems and Software 14 (1991)
79–84.

[23] B. Shneiderman, R. Mayer, Syntactic/semantic in-
teractions in programmer behavior: A model and
experimental results, International Journal of Com-
puter & Information Sciences 8 (1979) 219–238.

[24] R. Brooks, Towards a theory of the compre-
hension of computer programs, International
Journal of Man-Machine Studies 18 (1983)
543–554. doi:https://doi.org/10.1016/
S0020-7373(83)80031-5.

[25] S. Letovsky, Cognitive processes in pro-
gram comprehension, Journal of Sys-
tems and Software 7 (1987) 325–339. URL:
https://www.sciencedirect.com/science/article/pii/
016412128790032X. doi:https://doi.org/10.
1016/0164-1212(87)90032-X.

[26] D. C. Littman, J. Pinto, S. Letovsky, E. Soloway, Men-
tal models and software maintenance, Journal of
Systems and Software 7 (1987) 341–355.

[27] W. H. Brown, R. C. Malveau, H. W. S. McCormick,
T. J. Mowbray, AntiPatterns: refactoring software,
architectures, and projects in crisis, John Wiley &
Sons, Inc., 1998.

[28] M. Abidi, M. Grichi, F. Khomh, Y.-G. Guéhéneuc,
Code smells for multi-language systems, in: Pro-
ceedings of the 24th European Conference on Pat-
tern Languages of Programs, EuroPLop ’19, As-
sociation for Computing Machinery, New York,
NY, USA, 2019, pp. 1–13. URL: https://doi.org/
10.1145/3361149.3361161. doi:10.1145/3361149.
3361161.

[29] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, G. Antoniol,
An empirical study of the impact of two antipat-
terns, blob and spaghetti code, on program com-
prehension, in: 2011 15th European Conference on
Software Maintenance and Reengineering, 2011, pp.
181–190. doi:10.1109/CSMR.2011.24.

[30] L. Briand, W. Melo, J. Wust, Assessing the applicabil-
ity of fault-proneness models across object-oriented
software projects, IEEE Transactions on Software
Engineering 28 (2002) 706–720. doi:10.1109/TSE.
2002.1019484.

[31] B. Jacobs, C. L. M. Kop, Functional pu-
rity as a code quality metric in multi-
paradigm languages, Master’s thesis, Rad-
boud University Nijmegen, 2022. URL:
https://research.infosupport.com/wp-content/
uploads/Master_thesis_bjorn_jacobs_1.6.1.pdf.

[32] V. Pankratius, F. Schmidt, G. Garretón, Combining
functional and imperative programming for multi-
core software: An empirical study evaluating Scala
and Java, in: 2012 34th International Conference
on Software Engineering (ICSE), 2012, pp. 123–133.

http://purl.utwente.nl/essays/94619
http://purl.utwente.nl/essays/94619
https://pypl.github.io/PYPL.html
https://www.purl.org/stefan_ram/pub/doc_kay_oop_en
https://www.purl.org/stefan_ram/pub/doc_kay_oop_en
http://dx.doi.org/10.2307/1968337
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/TSE.1984.5010196
http://dx.doi.org/https://doi.org/10.1016/S0020-7373(83)80031-5
http://dx.doi.org/https://doi.org/10.1016/S0020-7373(83)80031-5
https://www.sciencedirect.com/science/article/pii/016412128790032X
https://www.sciencedirect.com/science/article/pii/016412128790032X
http://dx.doi.org/https://doi.org/10.1016/0164-1212(87)90032-X
http://dx.doi.org/https://doi.org/10.1016/0164-1212(87)90032-X
https://doi.org/10.1145/3361149.3361161
https://doi.org/10.1145/3361149.3361161
http://dx.doi.org/10.1145/3361149.3361161
http://dx.doi.org/10.1145/3361149.3361161
http://dx.doi.org/10.1109/CSMR.2011.24
http://dx.doi.org/10.1109/TSE.2002.1019484
http://dx.doi.org/10.1109/TSE.2002.1019484
https://research.infosupport.com/wp-content/uploads/Master_thesis_bjorn_jacobs_1.6.1.pdf
https://research.infosupport.com/wp-content/uploads/Master_thesis_bjorn_jacobs_1.6.1.pdf

doi:10.1109/ICSE.2012.6227200, iSSN: 1558-
1225.

[33] F. Khomh, M. Di Penta, Y.-G. Gueheneuc, An ex-
ploratory study of the impact of code smells on
software change-proneness, in: 2009 16th Work-
ing Conference on Reverse Engineering, 2009, pp.
75–84. doi:10.1109/WCRE.2009.28.

[34] M. Abidi, M. Openja, F. Khomh, Multi-language
design smells: A backstage perspective, in: Proceed-
ings of the 17th International Conference on Min-
ing Software Repositories, MSR ’20, Association for
Computing Machinery, New York, NY, USA, 2020,
p. 615–618. URL: https://doi.org/10.1145/3379597.
3387508. doi:10.1145/3379597.3387508.

http://dx.doi.org/10.1109/ICSE.2012.6227200
http://dx.doi.org/10.1109/WCRE.2009.28
https://doi.org/10.1145/3379597.3387508
https://doi.org/10.1145/3379597.3387508
http://dx.doi.org/10.1145/3379597.3387508

	1 Introduction
	2 Background
	2.1 Programming paradigms
	2.1.1 Imperative programming
	2.1.2 Procedural programming
	2.1.3 Object oriented programming
	2.1.4 Declarative programming
	2.1.5 Functional programming

	2.2 Multi-paradigm languages
	2.3 Programming constructs
	2.3.1 Object-oriented programming
	2.3.2 Functional programming
	2.3.3 Multi-paradigm constructs

	3 Software quality assurance
	3.1 Maintainability
	3.2 Code Comprehension
	3.3 Comprehension Strategies
	3.3.1 Bottom-up
	3.3.2 Top-down
	3.3.3 Knowledge-based
	3.3.4 Systematic
	3.3.5 As-needed

	3.4 Code smells and anti-patterns

	4 Experimental Setup
	4.1 Study requirements
	4.1.1 Quantitative analysis
	4.1.2 Qualitative analysis

	4.2 Literature research
	4.2.1 Selection procedure
	4.2.2 Paper Categorisation

	4.3 Findings
	4.4 Study design
	4.4.1 Interviews
	4.4.2 Survey

	4.5 Language
	4.6 Decision

	5 Related Work
	6 Conclusion

