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Abstract
In this paper we explore the possibilities of refactoring code in Whitespace, a programming language which only recognises
whitespace characters as code, and tolerates textual comments that describe the program. The paper presents a list of possible
refactorings applicable to Whitespace, and describes a tool that automates some of these refactorings. The functionality of
the tool is demonstrated with concrete examples.

Refactoring is a important systematic process of improving code without creating new functionality, improving long-term
properties of the code such as readability, maintainability, changeability, testability, extendability and safety. We argue that,
despite the lack of real-life applications for Whitespace specifically, it is beneficial to apply refactoring methodology to it,
since lessons learnt from esoteric languages can be ported elsewhere — in this case, to assemblers and similarly restrictive
software languages.
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1. Motivation
There are many ways to classify software languages [1].
One of them is a spectrum from the most mainstream
and widespread languages, to most exotic and esoteric
ones. The mainstream side can be represented by the
TIOBE index [2], the current top ten being Python, C,
Java, C++, C#, Visual Basic, JavaScript, SQL, PHP and Go.
On the other side, esoteric languages, as the name sug-
gests, are designed for one specific purpose of local inter-
est: to have the smallest compiler, as it was the case with
brainf*ck [3], to use statements that are as far from all
other languages as possible, as it was with INTERCAL [4],
or to provide a feasibly tiny playground for implementing
legacy languages, as it happened with BabyCobol [5].
One of such languages is Whitespace [6], and it was
designed from a driving principle that whitespace — the
part of the source code which is traditionally ignored by
the compiler as insignificant — is precisely the only part
of the code which is significant, and the rest of the code
such as visible punctuation, letters and numbers, are in-
significant and skipped by the compiler. The language
was designed by Edwin Brady around 2003 [6], and has
enjoyed some attention in the meantime, leading to the
existence of many implementations and programs to try
software evolution techniques and tools on.

Refactoring [7, 8] can be used as a standalone tech-
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nique, often applied manually by developers (with au-
tomation support from the IDE) with the original intent
— to improve the design of existing code [9]. However,
it is also very useful as a part of composite techniques.
For instance, one can apply it as a program transforma-
tion on elements of a test suite, possibly augmenting it
with more test cases with known execution outcomes.
In the past, this is exactly what the second author has
tried to do [10] to augment the labour-intensive pro-
cess of testing the Raincode Assembler Compiler [11, 12]
with mutative fuzzing. The endeavour was ultimately
unsuccessful: fuzzing only worked on the level of macros
(where it did contribute somewhat, and found at least one
off-by-one bug in the compiler), but the original goal of
testing the instruction implementations failed. The main
reason was the difficulty to define any kind of refactoring
transformations that make sense: changing even one bit
of the test program had potentially numerous and hardly
predictable effects.

Several years later, we try a different approach: instead
of codeveloping all the elements of the fuzzing infras-
tructure, we focus only on refactorings; and instead of
facing a gigantic language requiring 1500+ pages of doc-
umentation just to cover the byte-level basics, we focus
on one tiny esoteric language with similar properties —
namely, difficulty of defining what constitutes a refactor-
ing within it. If by any chance our results will happen to
help some Whitespace developer to improve readability
of their code, that could only make the world a better
place to live in.
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2. Background
In the vast realm of software languages, where intrica-
cies of syntax and verbosity often shape the landscape,
an esoteric programming language stands out, challeng-
ing these conventions. Whitespace [6], a language
conceived by Edwin Brady around 2003, transcends the
norms and redefines the very essence of coding, high-
lighting the beauty that can be found in minimalism and
turning whitespace perception inside out.

At its core, Whitespace embodies a design that is de-
liberately unconventional. While mainstream program-
ming languages rely on an array of keywords, operators,
and identifiers [13], Whitespace takes a dramatically
different approach. Its code comprises just three fun-
damental characters: space (which we will denote as
\_), tabulation (\t) and newline (\n). In this minimal-
istic arrangement, Whitespace signifies the essence of
functionality through its whitespace, presenting a stark
departure from the verbose nature of traditional software
languages.

In essence, Whitespace stands as a testament to purity
in programming. In contrast to languages where code
is defined by intricate syntax, Whitespace’s elegance
lies in embracing emptiness. Its programs are essentially
assembler-level algorithms expressed as sequences of
whitespace characters, where patterns of spaces and tabs
elaborate computational operations. This purity extends
beyond aesthetics; it mirrors a programming philosophy
that peers into the essence of computation, devoid of
distractions. This brings Whitespace closer to IBM High
Level Assembler [11, 12], Intel IA32 Assembler [14], Pow-
erPC Assembler [15], ARM Assembler [16], Forth [17], to
some extent even to C [18] or at least its more restrictive
variants like SAC [19].

Central to Whitespace’s uniqueness is its distinctive
mode of operation. The language is built exclusively
around a stack-based approach — just like Forth [17] and
some of the most disciplined assemblers. Commands,
represented by sequences of whitespace characters, ma-
nipulate this stack, orchestrating computations that res-
onate with a certain enigmatic beauty. The interplay
between whitespace and functionality is an embodiment
of Whitespace’s duality, where the visually unassuming
code conceals complex calculations beneath its surface.

For programmers accustomed to conventional lan-
guages, engaging with Whitespace presents a unique
challenge. Crafting meaningful programs requires a fun-
damental shift in the programming mindset, relying on
whitespace characters to carry the program’s meaning
and on non-whitespace characters to provide comments.
The latter aspect brings it conceptually closer to literate
programming [20, 21].

In this paper, our focus lies on the potential for code
refactoring, exploring how this process can amplify the

elegance and functionality of this distinctive program-
ming paradigm. However, first we explain the basics of
the language itself, to make this story self-contained.

Whitespace supports the following instructions:

• \_\_ = push (a value on the stack)
• \_\n\_ = dup (duplicate the top of the stack)
• \_\t\_ = lift (copy the 𝑛𝑡ℎ item on the stack

onto the top of the stack)
• \_\n\t = swap (the top two values on the stack)
• \_\n\n = drop (the top of the stack)
• \_\t\n = dropN (slide𝑛 items off the stack, keep-

ing the top item)
• \t\_\_\_ = add (two top values on the stack)
• \t\_\_\t = sub (subtract the top value on the

stack from the one after it)
• \t\_\_\n = mul (multiply two top values on the

stack)
• \t\_\t\_ = div (integer division of two top val-

ues on the stack)
• \t\t\_ = store (in heap)
• \t\t\t = retrieve (from heap)
• \n\_\_ = label (define for later use)
• \n\_\n = jump (unconditionally)
• \n\_\t = call (to return later)
• \n\t\_ = jumpZ (conditionally, if zero is on the

top of the stack)
• \n\t\t = jumpNeg (conditionally, if the top of

the stack is negative)
• \n\t\n = return (get back from a call)
• \n\n\n = stop (the programme)
• \t\n\_\_ = writeC (output the character at the

top of the stack)
• \t\n\_\t = writeN (output the number at the

top of the stack)
• \t\n\t\_ = readC (read a character and place

it in the location given by the top of the stack)
• \t\n\t\t = readN (read a number and place it

in the location given by the top of the stack)

For this project, we wanted to rely on a tool which
parses Whitespace code and turns it into an interme-
diate representation, and after the refactorings turn the
newly refactored intermediate representation back into
Whitespace code. We have decided to use the Rust library
“whitespace-rs” [22]. This tool has all the features nec-
essary for testing, creating and transforming Whitespace
code. The library has created its own intermediate repre-
sentation, thus saving us the hassle of coming up with
such a representation. The library is able to run our
Whitespace programs, giving us the ability to test for
changes in behaviour.

To show what our Intermediate Representation (IR)
looks like, we first have to explain how Whitespace



Listing 1: "The IR of Whitespace"

Push {value: Integer},
PushBig {value: BigInteger},
Duplicate,
Copy {index: usize},
Swap,
Discard,
Slide {amount: usize},
Add,
Subtract,
Multiply,
Divide,
Modulo,
Set,
Get,
Label,
Call {index: usize},
Jump {index: usize},
JumpIfZero {index: usize},
JumpIfNegative {index: usize},
EndSubroutine,
EndProgram,
PrintChar,
PrintNum,
InputChar,
InputNum,

works. Whitespace has five different types of commands.
These types all have a different Instruction Modification
Parameter (IMP). The IMP is a unique sequence of whites-
pace characters that selects one of these instruction types.
After choosing an instruction type, you now enter the cor-
responding combination of whitespace characters to se-
lect the instruction you want. Some of these instructions
have parameters, which are a sequence of tabs and spaces,
terminated with a Line Feed character. All Whitespace
programs end with three line feed characters, indicat-
ing that there is no more code to parse. Combining all
these instructions gives us a total of 24 instructions in
the Whitespace language.

With this in mind, in Listing 1 you will see the IR
of the Whitespace library we have decided to use. All
the 24 commands have their own unique and human-
understandable name (in our explanation earlier we have
leaned towards decades-long terminology established by
Forth, but here we see some less context-aware choices
like using Discard instead of drop; its pretty-printed
version differs yet from this internal representation). Us-
ing this IR, we are able to create our refactorings in an
easier-to-understand language.

In Figure 1, on the left you will see a complete working
program in Whitespace, specifically, a “Hello, world!”
program. In the example, you see a combination of spaces
(the vertical stripes), tabulations (the horizontal stripes)

Figure 1: Hello, World in Whitespace and Whitespace IR

and newline characters at the end of each line. For most
people, it is not clear how this program should behave.
For example, some lines contain more than one instruc-
tion. That is why we would like to use the IR. In Figure 1,
on the right you can find the IR version of the same
Whitespace program. Here it becomes clear that ev-
ery letter first gets pushed onto the stack by their ASCII
code and then printed. When it finally finished print-
ing the last character, the program exits. Using the IR
to create Whitespace programs was convenient for us
since it sped up the time it took to create and analyse test
programs.

3. Possible Refactorings
Since the world has moved way past the list of refactor-
ings proposed by Opdyke [8] and Fowler et al [9] in the
1990s, we have mostly relied on developer-created grey
sources like Refactoring Guru [23]. We first looked at
what refactoring categories are possible. The following
categories are available:

• [CM] Composing Methods
• [MF] Moving Features between Objects
• [OD] Organising Data
• [SE] Simplifying Conditional Expressions
• [SM] Simplifying Method Calls
• [DG] Dealing with Generalisation



• [CS] Code Smells

We are ruling out everything that has to do with
object programming patterns since Whitespace is an
assembler-like language. Such languages generally miss
the object programming data structures needed to per-
form such refactorings. Thus [MF], [OD] and [DG]
are high-level refactorings which we will not translate
that well. Whitespace does have instructions which are
called labels. These labels are points in the code you
can jump to where a certain piece of code gets executed.
This functionality borrows some refactoring ideas from
the [SM] and [CM]. Whitespace also has instructions
for conditional jumps. This makes some of the ideas for
[SE] possible. Next to this, the list of code smells look
promising enough to deliver at least some refactorings
for us to perform, so we will be looking into [CS] as well.
We will thus be looking through the following categories:

• [CM] Composing Methods Labels
• [SE] Simplifying Conditional Expressions
• [SM] Simplifying Method Calls Label Jumps
• [CS] Code Smells

With these chosen categories, we have created a list
of refactorings which can be performed on Whitespace
code. The following list is the refactorings is our result
so far:

• [EM] Extract method
• [IM] Inline method
• [RM] Rename method
• [CC] Consolidate conditional expression
• [CD] Consolidate duplicate conditional frag-

ments
• [RD] Remove dead code
• [RC] Remove clone/duplicate methods

3.1. [EM] Extract method
The extract method refactoring is a refactoring where
a grouped sequence of instructions gets extracted into
its own method so that this new method describes with
its method name what the sequence of instructions is
supposed to do. This is useful when you have a large
method which does multiple sub-tasks to perform its
functionality. Making it clear what the function does in
these sub-steps is nice for the next reader of the code,
so the readers are able to easily deduce what your code
does.

3.2. [IM] Inline method
The inline method refactoring is the opposite of this. If
some functionality of a method is small, there is the pos-
sibility of performing that function on the spot. Refactor-
ing code with this method gets rid of code which clutters

the program without bringing new functionality. We see
that these first two methods of refactoring have opposite
ideas in mind, yet both methods are able to be utilized ex-
clusively from each other. For some methods, you might
have made use of too many methods. This makes it un-
clear how the method works. On the other hand, using
too few methods overwhelms the reader and makes the
reader get lost in certain details which are not important.
Because of this balance, it will be tricky to automate this
process. While it is possible to automate this based on
self-defined predicates, we will not be doing this in our
paper because this is beyond the scope of this research.

3.3. [RM] Rename method
The rename method refactoring is quite self-explanatory.
The purpose of this refactoring normally is to rename the
method in order to make it more clear what the method
does. In the case of Whitespace, this is impossible.
Labels do not have ordinary names. Instead, they are
made up of a combination of tabs and spaces. Because of
this, the naming of labels is purely there to keep unique-
ness. However, since the naming does not matter, we
instead rename the labels to keep them as small as possi-
ble. Not only will this increase the number of labels we
will have available to us, but it will also allow us to keep
the Whitespace code as small as possible.

See subsubsection 4.1.1 for implementation details of
this refactoring.

3.4. [CC] Consolidate conditional
expression

The consolidate conditional expression refactoring is a
refactoring method where one looks at all the different
branches and then checks what branches lead to the same
instructions. We then group these branches into a sin-
gular conditional statement that performs these actions.
Grouping these conditionals gives clarity to code, espe-
cially if you name this expression. While this can be
done in Whitespace using labels and performing the
conditional logic under one of these labels, we would like
to argue that this refactoring is still too subjective. We
cannot easily decide whether a conditional statement is
complex and needs changing. We have thus decided not
to implement this refactoring into the tool.

3.5. [CD] Consolidate duplicate
conditional fragments

The consolidate duplicate conditional fragments refactor-
ing checks whether all branches execute the same piece
of code and then extracts this piece out of the branches.
This refactoring makes clear what piece of code always
needs to be executed no matter what conditional branch



you might have taken. This clears up confusion about
what the if-statement tries to separate resulting in cleaner
code. We have chosen not to implement this method.

3.6. [RD] Remove dead code
To explain removing dead code, we will first explain what
dead code is. "Dead or inactive code is any code that has
no effect on the application’s behaviour" [24]. With this
definition, we see that we want to remove code that has
no effect on the application we are writing. While this
is trivial to do as a human, as a robot it is quite hard
to notice when code is unused. Because of this, we will
eliminate unused methods instead, to keep complications
lower.

See subsubsection 4.1.2 for implementation details of
this refactoring.

3.7. [RC] Remove clone/duplicate
methods

Last up, we will be removing duplicate methods. Du-
plicate methods are two methods which have the exact
same functionality. For Whitespace, this will mean to
us that there are two different labels which are followed
by the same code and are not (co)recursive. Our tool is
going to remove these methods since duplicate methods
only cause confusion and do not have any benefits to a
programmer.

See subsubsection 4.1.3 for implementation details of
this refactoring.

4. Evaluation

4.1. Implementation details
In our proof of concept [25], we have implemented sev-
eral refactorings, which we explain below in this section.

4.1.1. [RM] Rename method

Given the small size of the space of possible label names in
Whitespace, the obvious automated refactoring would
be one that minimises label names. Serendipitously, this
functionality was already included in whitespace-rs,
so we could simply rely on their implementation to
achieve our first working refactoring [22].

4.1.2. [RD] Remove dead code

For our dead code removal, we have created a plan to
detect unused methods and then remove these methods.
Our plan is as follows:

• Look at all our jump instructions and store to
what label they jump to.

• If there is a label which is not jumped towards,
we will eliminate this label with the code corre-
sponding with this label.

Using this approach we are easily able to detect if
methods are not called. There are some downsides to
this method which we will now point out. If there are
two methods which will reference each other that are
not called through the main method, they will both still
be seen as used code. This can be fixed by storing the
label in which the method is called, and seeing whether
this name space is reached via the main method. If it is,
then this piece of code is not dead, otherwise, you can
mark it as dead code.

That would not fix the second issue, however. If the
code mentions a jump to a certain label, but it would
never take this jump, then this called method would still
be seen as a used piece of code. However, This cannot
be true since this part of the code is never reached. One
would have to guarantee that this piece cannot be reached
using more complicated techniques.

Finally, we are just looking at dead methods and not
dead code in general. If code is specifically told to stop
the execution and there are calls to other methods after
stopping execution, these called methods should be seen
as dead. However, since we have not put in checks to
detect this behaviour, these methods are not removed.

A combination of [RD] with [RM] can be seen on Fig-
ure 2 (in pure Whitespace) or on Figure 3 (in Whitespace
IR).

4.1.3. [RC] Remove clone/duplicate methods

For removing duplicate methods, we have created a plan
to detect these instances. Our plan is as follows:

• Analyse the code of all the methods.
• Group methods that have duplicate code.
• Remove grouped methods until there is one left.
• Change all jumps from the removed labels to the

grouped method that is left.

With this, we have created a way to remove duplicate
code without changing behaviour. There is one issue
left with this implementation. If two instructions are
swapped which are interchangeable, this plan would not
be comprehensive to detect all method duplication. The
way to fix this interchangeable code problem is to find
all patterns where code can be interchanged without
changing behaviour and detect duplicate code using these
patterns.

A combination of [RC] with [RM] can be seen on Fig-
ure 4 (in pure Whitespace) or on Figure 5 (in Whitespace
IR).



Figure 2: Duplicate method removal: before and after

4.2. Testing
With all of the refactorings finished, we needed some test
programs to test whether the refactorings are applied
correctly and kept their behaviour. This turned out to
be a problem, since writing valid Whitespace code is
not human-friendly. However, we solved this problem by
writing in the format of the library their IR. The library
was then able to recognise this format and transform the
IR into a whitespace-encoded file, solving the issue of
writing Whitespace code.

4.2.1. Testing [RD]

In software languages that permit low-level branching
constructs, there are many ways to use a “method”, and

Figure 3: Duplicate method removal: before and after, in IR

thus dead code detection must run very advanced code
analysis algorithms and apply domain-specific heuristics.
For example, HLASM (IBM High Level ASseMbler) has
an EX(ECUTE) instruction which can modify the target
address of a branching instruction at runtime. COBOL
and BabyCobol [5] have a statement that can ALTER a
target of an existing GO TO statement at runtime. Older
versions of FORTRAN had computable GOTOs, as does
BabyCobol. Luckily, Whitespace is a bit more straight-
forward, and making a call graph of all Call and Jump
locations to all the Labels, is sufficient, if we take fall-
throughs into account.

4.2.2. Testing [RC]

Code clone management has been a topic of research for
many years [26]. Researchers and practitioners identify
many different clone types and clone detection method
families [27]. For this research, we opted for type-1 equiv-
alence (precise character-level equality) of labelled sec-
tions after all possible [RM] and [RD] refactorings have
been applied. Our tool marks clone pairs and in the sec-
ond pass removes one of them and replaces all calls to it
with the calls to the remaining one.

5. Advanced Refactorings
In this section, we consider other possible refactorings of
Whitespace code which were not directly followed from
the Refactoring book [9] and its derivatives, but conform
to the general expectations about code refactoring, which
improving design while preserving observable behaviour.



Figure 4: Unused method removal: before and after

5.1. Control Flow Optimisation
Control flow optimisation is not uncommon in compiler
construction since at least 1960s [28, 29]. It is an analy-
sis and transformation technique known for enhancing
program efficiency and readability, and especially per-
formance. In the context of Whitespace, control flow
optimisation takes on unique significance. This section
delves into the intricacies of control flow optimisation
within the confines of Whitespace, discussing its meth-
ods, implementation, rationale, and potential outcomes.

In Whitespace, control flow is inherently intertwined
with the stack-based execution model of the language.
Optimisation strategies focus on streamlining the se-
quence of commands that manipulate the stack, ulti-

Figure 5: Unused method removal: before and after, in IR

mately leading to more efficient execution. Several meth-
ods can be employed:

• Elimination of Redundant Operations: Iden-
tifying and removing unnecessary stack manip-
ulations, such as consecutive pushes and pops,
contributes to a leaner execution flow.

• Conditional Jump Simplification: Streamlin-
ing conditional jumps by minimizing the number
of jumps or strategically placing jumps to avoid
redundant checks.

• Loop Optimisation: Modifying loop structures
to minimise stack usage and control operations,
thus improving execution speed and resource con-
sumption.

Control flow optimisation in Whitespace necessitates
a meticulous analysis of the whitespace patterns corre-
sponding to commands. This analysis guides the iden-
tification of opportunities for optimisation. Techniques
borrowed from compiler optimisation, such as data flow
analysis and control dependence analysis, can be adapted
to the Whitespace context. These techniques enable the
identification of redundant or unnecessary commands,
leading to code simplification.

Implementation of optimised control flow involves
rewriting whitespace commands to eliminate redun-
dancy, reorganise control structures, and minimise stack
operations. Given the absence of dedicated optimisa-
tion tools for analysing Whitespace code, this process



is largely manual, demanding a profound understanding
of the language’s mechanics and the intricacies of the
specific program.

Control flow optimisation in Whitespace serves a
dual purpose: enhancing program efficiency and promot-
ing code clarity. A leaner, more streamlined execution
path reduces runtime overhead, translating to improved
performance for computationally intensive tasks. Fur-
thermore, optimised code is less prone to errors arising
from complex control structures, thus augmenting pro-
gram reliability.

The rationale behind control flow optimisation aligns
with the overarching goal of refining Whitespace’s
unique art form of code expression. While Whitespace
emphasises minimalism and obscurity, control flow op-
timisation seeks to harmonise this peculiarity with im-
proved functionality and efficiency. The optimisation pro-
cess bridges the gap between the language’s enigmatic
syntax and the pursuit of elegant, optimised solutions.

The outcomes of control flow optimisation manifest in
quantifiable performance gains, as optimised programs
execute more swiftly and consume fewer resources. Ad-
ditionally, the optimisation process unearths hidden pat-
terns within whitespace sequences, deepening the under-
standing of Whitespace’s computational nature.

Future directions in control flow optimisation for
Whitespace involve the development of automated tools
that aid programmers in identifying optimisation oppor-
tunities and implementing changes. These tools would
alleviate the manual effort currently required, broaden-
ing the applicability of control flow optimisation and
making it accessible to a wider audience.

Control flow optimisation within Whitespace stands
as a testament to the adaptability of optimisation princi-
ples across diverse programming paradigms. The meth-
ods employed, the implementation strategies pursued,
and the underlying rationale collectively contribute to the
enhancement of Whitespace’s unique code architecture,
underscoring the symbiotic relationship between mini-
malism and efficiency. As the realm of esoteric languages
continues to evolve, optimising control flow in Whites-
pace remains an active field of exploration, promising
further insights into the interplay of form and function
in code.

5.2. Code Partitioning for Parallelism
Within the realm of Whitespace, the exploration of par-
allelism introduces a novel perspective on optimizing
program execution. By partitioning Whitespace pro-
grams into segments that can execute in parallel, the
potential for leveraging modern multi-core systems for
improved performance becomes apparent. This section
delves into the theoretical underpinnings, practical con-
siderations, and potential outcomes of code partitioning

for parallelism within the Whitespace context.
The pursuit of parallelism in Whitespace stems from

its stack-based execution model, where operations are in-
herently ordered and dependent on the state of the stack.
However, careful analysis can reveal segments of code
that exhibit independence in terms of stack interactions.
These independent segments provide the foundation for
potential parallel execution, as they can be decoupled
without affecting the overall program logic.

The critical task in code partitioning for parallelism
involves identifying segments of Whitespace code that
can be executed in parallel without introducing data de-
pendencies. This necessitates an intricate understanding
of the program’s control flow, stack interactions, and the
interplay between Whitespace commands. Independent
segments may arise from distinct branches of conditional
logic, separate loops, or operations that manipulate en-
tirely separate data on the stack.

While the identification of independent segments is
foundational, the practical implementation of parallel ex-
ecution in Whitespace presents challenges. Traditional
parallel programming paradigms, such as those found
in languages like C or Python, are inapplicable due to
Whitespace’s unique stack-centric nature. Parallel exe-
cution introduces the potential for race conditions, where
multiple segments may access and manipulate the shared
stack simultaneously.

To circumvent race conditions and ensure consistent
execution, mechanisms for synchronisation and commu-
nication between parallel segments must be devised. This
requires the establishment of well-defined points for in-
teraction, such as specific stack configurations at which
parallel segments can synchronise and exchange data.
These synchronisation points mitigate conflicts arising
from concurrent stack manipulations.

Code partitioning for parallelism in Whitespace holds
the promise of enhanced performance on modern multi-
core systems. By concurrently executing independent
segments, the overall runtime can be significantly re-
duced. This holds particular relevance for computation-
ally intensive tasks, where the efficiency gains are most
pronounced.

For anyone willing, it is possible to develop specialised
tools or compilers tailored to this unique context, au-
tomating identification of independent segments, intro-
ducing synchronisation mechanisms, facilitating gener-
ation of parallel-execution Whitespace code. Just like
on other endeavours based on esoteric languages, the
exploration of theoretical frameworks for analysing the
parallelism potential within Whitespace programs could
yield insights into optimal partitioning strategies appli-
cable more generally.

Code partitioning for parallelism introduces a novel
dimension to the realm of Whitespace programming.
By identifying and leveraging independent segments of



code, the potential for harnessing modern multi-core sys-
tems to enhance program performance is illuminated. As
Whitespace continues to captivate programmers with
its minimalist elegance, the pursuit of parallelism within
its stack-centric realm opens doors to new vistas of opti-
misation and efficiency.

5.3. Whitespace Code and Quality Metrics
In the landscape of programming languages, the evalua-
tion of code quality is paramount to fostering maintain-
ability, reliability, and performance. Within the unique
context of Whitespace, the establishment of code met-
rics and quality metrics unveils a new dimension of as-
sessment. This section delves into the rationale behind
the application of metrics in the Whitespace paradigm,
the metrics themselves, their interpretation, and the im-
plications for code refinement.

The application of code metrics and quality metrics to
Whitespace serves a dual purpose: to quantify the inher-
ent complexities of code and to provide objective criteria
for evaluating its quality. As Whitespace’s minimal-
ist nature conceals intricate computational operations,
metrics offer a lens through which to comprehend the
program’s underlying intricacies. Additionally, metrics
serve as a means to guide code refinement, providing a
tangible framework for optimizing stack usage, execution
efficiency, and logical coherence.

In the context of Whitespace, the development of
metrics necessitates an alignment with its stack-centric
architecture. Some relevant metrics include:

1. Stack Depth: Quantifying the maximum and
average stack depth during program execution
provides insights into memory consumption and
potential bottlenecks.

2. Command Sequence Length: Measuring the
length of command sequences contributes to un-
derstanding the program’s complexity and poten-
tial for optimisation.

3. Instruction Density: Calculating the density
of instructions relative to whitespace characters
reveals the efficiency of command utilisation.

4. Branching Complexity: Assessing the branch-
ing complexity through metrics like conditional-
to-total command ratio sheds light on the pro-
gram’s logical structure.

5. Stack Operations: Quantifying the frequency
of stack manipulations, such as pushes and pops,
offers insights into computational steps and po-
tential redundancies.

Interpreting metrics within the Whitespace context
requires a nuanced understanding of the idiosyncrasies
of the language. Metrics do not merely serve as bench-
marks; they provide a framework for uncovering patterns,

correlations, and opportunities for optimisation. For in-
stance, high stack depth values may indicate memory
inefficiencies, whereas excessive branching complexity
might signal the need for code restructuring.

The insights garnered from metrics lay the foundation
for targeted code refinement in Whitespace. A high stack
depth, for instance, may inspire efforts to minimise stack
operations through algorithmic optimisations. Excessive
branching complexity could encourage the simplifica-
tion of control structures to enhance code readability
and maintainability. Metrics guide the balance between
the elegance of Whitespace’s minimalist syntax and the
pursuit of optimised, well-structured programs.

The integration of metrics into Whitespace program-
ming potentially leads to the development of tooling
that automates metric calculation and analysis. Such
tools could guide programmers towards code improve-
ments, recommend optimisations, and facilitate the eval-
uation of codebases. Challenges include adapting tra-
ditional metrics to Whitespace’s unique attributes and
defining thresholds that align with the language’s dis-
tinctive goals.

Metrics in the Whitespace landscape transcend con-
ventional notions of code evaluation. They illuminate
the intricate dance of whitespace commands, offering a
quantifiable means to understand, analyze, and enhance
program quality. As Whitespace continues to captivate
enthusiasts with its enigmatic charm, the application of
metrics underscores the symbiotic relationship between
quantitative analysis and qualitative code refinement.

6. Concluding Remarks
In this paper, based on recent graduation project [30], we
have described our approach to refactoring in Whites-
pace. The tool is also available for public use under GPL-
3 license [25]. To answer our main research question
about what refactorings would make sense in Whites-
pace, we first looked at different refactoring categories.
From there we identified seven refactorings that are pos-
sible on Whitespace code. To address the question of
implementability, we chose three refactorings and imple-
mented them into a tool. Our tool reads Whitespace code,
performs refactorings on this code using the generated IR,
and transforms the IR back into Whitespace code. This
shows that it is possible to create a tool which detects and
applies possible refactorings on Whitespace. This work
shows that even with minimal circumstances, it is always
possible to refactor code even in minimal assembler-like
languages. Furthermore, refactoring code is always use-
ful, be that code clarity or a minimal code footprint. We
conclude that refactoring Whitespace code is possible
and that refactoring Whitespace code improves the read-
ability and usability of such code.



The refactorings proposed in this paper, are a work in
progress. Further research and development are needed
to fully realise the envisioned functionality. Next to this,
more refactorings can be implemented, such as the dif-
ferent conditional refactorings mentioned in section 3.

Furthermore, while some testing has been performed,
there could be more tests added. Generating tests to show
results that accurately depict the tool is something worth
considering to be done. Finally, profiling the tool itself
could help identifying useful optimisations to improve its
usability, especially regarding possible future extensions
For anyone who would like to look at the tool or work
on it further, you can find the tool over at GitHub [25].
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