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Abstract  
Ill-structured problem-solving requires novices to be scaffolded to ap-ply various cognitive 
and metacognitive skills. The cognitive skills are under-standing the problem, formulating it 
into subproblems, generating alternative de-signs, and selecting the optimal solution. 
Metacognitive skills are the ability to monitor, evaluate and improve upon their performance. 
We have developed an online teaching-learning environment named Fathom to teach ill-
structured problem-solving skills in the context of solving software design problems in the data 
structures course. A total of 100 undergraduate CS students were trained using Fathom and 
results showed significant learning gains from pre-test to post-test. Posttest scores were not 
enough to analyze how learners at various levels (low, medium, and high) interact with the 
learning environment. This paper discusses our approach to building student models of the low, 
medium, and high performers using hidden Markov model methodology based on the log data 
generated in Fathom. These models will be used to predict their performance on new data 
which will help to intervene during their interactions with the learning environment. 
 
Keywords  1 
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1. Introduction 

 Ill-structured problems are complex because they have vaguely defined or unclear goals and 
unstated constraints; they possess multiple solutions and involve multiple criteria for evaluating 
solutions [14]. Software design is a complex and ill-structured activity in which a software designer 
must deal with issues such as understanding the unknown problem domain, eliciting requirements from 
multiple stakeholders' viewpoints, identifying alternative solutions, and making decisions based on 
selection criteria [1].  

Novices find design daunting and face some difficulties like – the inability to structure a problem, 
fixation while creating a solution, and evaluation of the solution. The teaching-learning efforts in 
software engineering and software design need also to be directed toward students being able to perform 
ill-structured tasks such as structuring open problems, creating integrated solutions, and evaluating 
them. Research [1,16,17] shows that experts are able to deal with these issues by implicitly applying 
cognitive skills such as drawing diagrams to simulate scenarios that aid in eliciting require and 
constraints which may not be directly stated initially. However, novice tends to jump to a single solution 
without understanding the problem which affects the quality of the software. Hence, in addition to 
content knowledge, students need to be explicitly trained to effectively use these practices while solving 
software design problems. 

We have designed and developed a technology-enhanced learning environment named Fathom, for 
the teaching-learning of ill-structured problem-solving skills in the context of solving software design 
problems in the data structures course. In Fathom, the learners are scaffolded towards applying the skills 
through structured guidance in the context of solving a software design problem. The targeted software 
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design skills were: the ability to visualize the problem space before formulating sub-problems and the 
ability to generate alternative design options before selecting one solution based on evaluation criteria. 
The learning activities are designed with both cognitive and meta-cognitive scaffolds to aid learners in 
not just solving the problem but to monitor and improve upon their skills. The cognitive scaffolds 
include: prompts, hints, case-study, study material, drawing tools to aid visualization, workspace to 
record learners’ responses, and metacognitive scaffolds include: system-evaluated feedback. The learn-
ers’ actions during interaction with the Fathom were logged in the form of the triplet: <learner_id, 
timestamp, clicked_button >. 

We conducted research studies with undergraduate engineering students (N=100) to evaluate the 
effectiveness of Fathom in learning these skills. The methodology used is a pretest-intervention-posttest 
research design. The results showed significant gains from the pretest to posttest in quality of problem 
formulation, and solution quality. However, the scores were not helping in providing insights into the 
interaction behavior of the high, medium, and low-performing students. To investigate the relationship 
be-tween learning performance and the use of strategies by low, medium, and high per-formers, it 
became important to examine how these activities came together as larger behavior patterns and 
strategies. Research shows that the hidden Markov models (HMMs) are the most appropriate, as they 
allow to identify some of the students’ general behavior patterns from sequences of their interactions 
with the system [2]. The aim of this paper is to discuss the process of building a student model for high, 
medium, and low-performing groups of learners using HMM, analyze their interaction behavior, and 
use these models to predict the performance of the learner. 

The structure of the paper is as follows: in section 2, the learning environment Fathom and the study 
conducted are discussed, followed by related work in learner modeling is discussed in section 3, and in 
section 4 the methodology used to build HMM model is discussed in detail with its analysis and 
conclusion. 

2. Fathom Description 

A Technology Enhanced Learning Environment named Fathom for teaching-learning of ill-
structured problem solving [8], was designed and developed based on the principles of effective 
cognitive and metacognitive support for novice learners [3,4,5,6,7]. The cognitive and metacognitive 
support provided in Fathom is discussed in detail in this section. 

2.1. Cognitive and metacognitive scaffolds in Fathom 

Cognitive support in Fathom was provided in the form of structured guidance to-ward solving the 
software design problem which is ill-structured in nature. The learning activities were designed for each 
step of problem-solving to direct learners’ thinking toward applying the targeted skills as shown in Fig 
1. The learning activities designed in Fathom are:  

 
1. Understand the problem- In this activity learners were prompted to explore the prob-lem by 
identifying entities and users in the system. The learners were prompted to draw the model of the 
system to aid in visualizing the system from the perspective of various entities and the user’s point 
of view.  
2. Formulate problem- In this activity, the learners were prompted to write the sub-goals: the data 
to be stored and operations to be performed by the software to achieve the stated goal.  
3. Generate solutions- This activity is designed to expand solution space by generating alternative 
solutions. The learners were prompted to draw cognitive maps to list alternative design options for 
each sub-problem.  
4. Evaluate solutions- This activity prompted the evaluation of alternative solutions based on the 
identified selection criteria and constraints. This activity is designed to select the appropriate 
solution using a decision matrix. The decision matrix was used to allow learners to evaluate 
alternative solutions against the constraints and rank the solutions. Finally, justify their selected 
solution. 
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Each learning activity was scaffolded with question prompts, solved examples, demo videos, 
learning resources, and cognitive tools (drawing cognitive maps, pro-cons table, decision matrix, etc.).  

Metacognitive scaffolds in Fathom were provided to allow learners to engage in assessing and 
improving on the skills performed. Post-activity, the learning environment was designed to assess the 
performance of the learner and provide corrective or positive feedback. The aim of the feedback was to 
ensure that the learners reflect on their skills, identify gaps and improve on their skills.  

 

 
Figure 1. Overall Design Features of Fathom 

2.2. Study and Results 

The field study was done with 100 undergraduate computer engineering students to evaluate the 
effectiveness of Fathom in learning ill-structured problem-solving skills. The research methodology 
used was a pretest-intervention-postest design.  

The procedure of the study is as follows:  

2.2.1. Pre-test  

First, all the participants were given a pre-test in which a shop-inventory problem was solved using 
a worksheet- “Design software system for a supermarket to keep track of items whose quantity is below 
the threshold at the end of the day.”  

The participants took 30 minutes to solve the problem, and after completing the work-sheets were 
collected from them.  

2.2.2. Intervention 

Immediately after the pre-test, the students interacted with the Fathom in which they solved a 
software design problem for library management. The participants interacted with Fathom for almost 2 
hours.  

2.2.3. Post-test 

After the intervention, during the post-test, the participants were given a worksheet to solve a new 
problem- “Design software for a bank to allow customers to do online banking (check balance, 
withdraw money, and check balance)”. The participants were told to apply the software design skills 
learned during the intervention. The participants took almost 30 minutes to solve the post-test problem.  

The student responses generated during the pre-test, intervention, and post-test were evaluated to 
assess the quality of the problem formulation and solution design. The scores showed a significant gain 



51 
 

from the pre-test to post-test in the quality of problem formulation (p=0.02, effect size= 0.75) and 
solution quality (p=0.00, effect size= 1.15). This shows that the pedagogical features of Fathom were 
effective in learning problem-solving skills.  

However, the scores were not of much help in providing insights into how students interacted with 
different features in the environment and their effect on learning problem-solving skills. This paper 
focuses on log data analysis to model learners’ behavior and analyze how high, medium, and low scorers 
interact with the learning environment and prediction of the performance based on their interaction 
behaviors. 

3. Related Work in Learner Modeling 

A Hidden Markov Model (HMM) is a finite state machine that has some fixed number of states. It 
provides a probabilistic framework for modeling a time series of multivariate observations. For a given 
observation sequence O, i.e., O1 , O2 , O3 ,………OT, the hidden Markov model (λ) is characterized 
using three parameters: λ= {A, B, n), where A is {aij} transition matrix, where aij represents the 
transition probability from state i to state j, B = {bj(Ot)} observation emission matrix, where bj(Ot) 
represents the probability of observing Ot at state j, π = {πi} the prior probability, where πi represent 
the probability of being in state i at the beginning of the experiment, i.e., at time t = 1  

HMM is used as a classifier or predictor in various applications like for speech signal recognition 
[12, 15], DNA sequence analysis [9], handwritten characters recognition [12], natural language 
domains, etc. Another area of application is in educational data mining to build student behavior models 
in various interactive learning environments and to predict student learning behaviors. For instance, 
hidden Markov models (HMM) were used to model school students’ behavior based on the trace data 
generated from Betty’s brain system which used the pedagogy of learning by teaching [2]. In a later 
study, Jeong et al. (2010) applied the same HMM approach to study the learning behavior of adult 
professionals in an asynchronous online learning environment. In particular, their exploratory study 
was aimed at identifying the main phases of the student’s learning process in the examined course and 
investigating the differences between high and low-performing students in terms of their transitions 
through the identified phases of the course.  

We propose to use HMM similar to the work proposed by Jeong (2008) to investigate how 
engineering students interact with learning environments designed for complex problem solving and 
analyze student behaviors to get insights on how the learning environment facilitates the learning of 
complex problem solving among high, medium and low performers. 

4. Methodology for Obtaining Behavior Model 

Our approach involves four steps that appear in most data mining applications [2]: (i) log data 
collection that records student interactions with the system; (ii) data cleaning by parsing the generated 
log files and splicing the information into desired activity sequence data that will form the input to the 
HMM generating algorithm; (iii) construct the HMM models; and (iv) interpret generated models as 
student learning behaviors and compare models across low, medium and high performers, (v) predict 
student behaviors and evaluate the model. We describe each of these steps in greater detail below. 

4.1. Log data collection and processing 

The log data was collected from Fathom in the form of triplet <learner_id, timestamp 
clicked_button>. The sample log data collected is as shown in Fig. 2. 
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Figure 2. Raw log data collected in Fathom 

 
The log data in its raw form is very difficult to comprehend and needs to be processed before we 

can perform any operations on it. The log files consist of all the activities carried out by the students in 
the form of button clicks, edits made in the drawing tools and the text fields, access to hints, and 
examples, etc. 

The other dataset we worked on was the score sheet of post-test to identify low, medium, and high 
scorers. The students scoring low (score<2) in quality of problem formulation and solution were 
categorized as low scorers, students scoring medium (score=2) were categorized as medium scorers, 
and others were categorized as high scorers. Out of 100 students, 16 students did not complete the 
posttest, hence we considered only 84 students, out of which 20 students were categorized as low 
scorers, 36 as medium scorers, and 28 as high scorers. The log sequences were then assigned to each 
student and three separate input dataset was created as input for the hidden Markov model.  

4.2. Parsing the Log Files  

In this study, we derive learners’ behavior patterns by analyzing the sequence of their interactions 
with the system. The system had four major steps: understand_problem, formulate_solution, 
generate_solutions and evaluate_solution. In each activity, learners’ were prompted to provide 
responses and save them. During the activity, access to additional resources was provided in the system 
in the form of solved examples, notes, and hints. Post-activity, the system evaluated the responses and 
gave positive or corrective feedback to the learner. After, reading the feedback, learners were allowed 
to evaluate and modify their responses.  

To simplify the interpretation task we mapped learners’ actions in each activity into one aggregate 
activity. For example, all the edits made in the understand_problem activity, like drawing the diagrams 
and saving in the first attempt as UP, accessing re-sources as RA, and then redoing after saving the 
responses as REDO, etc. All student activities were expressed as the six activities summarized in Table 
1. 

 
Table 1 
Student activities and related actions 

Activity  Student actions  
UP  Saving the diagram drawn in the Understand_Problem activity in the first 

attempt.  
FG  Saving the responses in the Formulate_Problem activity in the first 

attempt.  
GS  Saving the solutions generated in the Generate_Solutions activity in the 

first at-tempt.  
EV  Saving the evaluation of solutions against criteria and constraints using the 

decision matrix in the Evaluate_Problem activity in the first attempt.  
RA  Accessing resources in the form of hints, examples, notes, etc  

REDO  Modifying the responses after the first attempt  
 
For example, all occurrences where the sequence follows “solving a problem state and saving to 

check feedback and then redoing the same activity” are replaced by the REDO state (representative of 
redoing the task). For example, the sequence: “UP”, “Save”, “UP”, “Save”, is replaced by “UP”, 
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“REDO”. All occurrences where the sequence follows solving a problem state and then checking the 
resources for hints, notes, examples, etc., are replaced by the RA state. Examples of the resultant 
sequences of two students are shown in Fig. 3. 
 
 

“115A1086”: ["UP", "FG", "UP", "FG", "UP", "FG", "FG", "GS", "REDO", "EV", "GS", "FG", "RA", "GS", 
"REDO", "EV", "REDO", "EV", "UP", "FG", "GS"],  

"115A1090": ["UP", "FG", "GS", "EV", "RA", "UP", "RA", "FG", "REDO", "RA", "UP", "RA", "FG", 
"REDO", "RA", "GS", "RA", "REDO", ”EV”, "RA", "EV", "REDO", "RA", "GS", "REDO", "EV", "REDO", 
"RA", "GS", "RA", "GS", "REDO", "REDO", "FG", "EV", "GS", "REDO", "EV", "GS", "RADO", "EV", "GS", 
"REDO"] 
Figure 3. Parsed data for two students 

4.3. Training and testing the HMMs  

The first step in interpreting this behavior data was to build hidden Markov models from the 
sequence of observable events. A hidden Markov model is characterized by three sets of parameters: 
initial probability vector π, state transition probability matrix, A, and output probability matrix, B [15]. 
In order to train the HMM, we divided the dataset into two sets, one training set and one test (recall) set 
in the ratio of 80:20.  

The difficult part of the modeling process is to determine the optimal set of parameters and the size 
of the model (number of states) that maximizes the likelihood of the input sequences. Jeong (2010) 
compared two common iterative convergence optimization schemes, the Baum-Welch and the 
segmental K-Means algorithms to achieve the optimal model parameters, which include (π, A, B) and 
the number of states in the model. The results showed that the optimal number of states is six using 
both Baum-Welch and the segmental K-Means algorithms, which we have followed in our model-ing. 
We used the Viterbi algorithm for sequential decoding and calculating transition probabilities between 
states.  

The parsed activity sequences of three groups-low, medium, and high performers were used to derive 
three sets of hidden Markov models as shown in Fig. 4, Fig 5, and Fig. 6 respectively. 

 
Figure 4. HMM model of low performers 
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Figure 5. HMM model of medium performers 

 

 
Figure 6. HMM model of high performers 

 
Each model is made up of a set of states, the activity patterns (the output probability) associated with 

each state, and the transition probabilities between states. The transition probability associated with a 
link between two states indicates the likelihood of the student transitioning from the current state to the 
indicated state. For example, the HMM model states student in the high-performer group (Fig. 6) in 
state UP would demonstrate a 30% likelihood of transitioning to state FG, and 25% likelihood of 
transitioning to state RA. Likelihoods less than 5% were not represented in the figure, ex-plaining why 
these numbers do not sum to 100%. HMMs are so named because their states are hidden. That is, they 
are not directly observed in the input sequences, but provide an aggregated description of the student’s 
interactions with the system. Sequences of states may be interpreted as the student’s learning behavior 
patterns. We investigate further by testing these models for the prediction of low, medium, and high 
performers against the test data.  

For each sequence O in test data, the probability is calculated using each model, for example, 
P(O|low), P(O|medium), and P(O|high). The sequence is classified into high, medium or low based on 
the one with the high probability. A multi-class confusion matrix was calculated to measure the 
performance of our prediction model as shown in the figure. Each entry in a confusion matrix denotes 
the number of predictions made by the model where it classified the classes correctly or incorrectly. 
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Figure 7. Confusion matrix for our model 

 
The F1 score in our overall model is 0.44 and low, medium, and high scores are 0.33, 0.46, and 0.46 

respectively.  

5. Analysis of HMM Patterns  

The analysis of transition shows certain patterns in both low, medium, and high per-formers. The 
likelihood percentage of high scorers transitioning to REDO state in each activity is more compared to 
low and medium scorers. For instance, the high scorers’ transitions from UP to REDO state with 35% 
likelihood compared to 19 % and 16% in medium and low scorers respectively. This shows that high 
scorers were more responsive to the feedback given by the system and went back to the same activity 
to improve their responses.  

The likelihood percentage of low and medium scorers transitioning to RA (resource access) state is 
higher than high scorers. For example, the likelihood percentage of the low and medium scorers 
transitioning from UP to RA state is 34% and 37% respectively compared to 25% in high scorers. The 
low and medium scorers were accessing re-sources like hints, videos, and learning material more often 
which indicates that they had difficulty comprehending the activity. The difference between low and 
medium scorers is that low scorers’ transition probability reduced towards the last phase, while medium 
scorers showed consistency in doing tasks till the end.  

Our next level of analysis consisted of examining the interactions among the meta-cognitive states 
and their transitions in our models. These interactions inform us about students’ typical learning 
behavior patterns among high, medium, and low performers. We find that the students in the low and 
medium-scorer groups tend to stay mainly in the cognitive task of doing activities in UP, FG, GS, CR, 
and EV states, while the high and medium-scorer students tend to transition to the higher-level states 
such as REDO state. High scorers tend to transition between doing and redoing the task, and occasion-
ally referring to the help provided by the system, exhibiting metacognitive behavior. While low and 
medium scorers tend to be in a cognitive state of doing the activity and are less likely to monitor and 
reflect on their skills. The resource usage rate is high and REDO is low in low scorers which indicates 
that low scorers have difficulty in doing or comprehending the activities compared to high scorers. The 
model evaluated against test data had an accuracy and F1 score of 0.44. The prediction may be improved 
by providing more observations in training the model. 

Overall analysis shows that high and medium scorers show more metacognitive behaviors, while 
low and medium scorers exhibited more help-seeking behaviors. How-ever, medium scorers showed 
consistency in interactions till the end, and low scorers’ interactions were reduced towards the last step. 
This analysis is useful to enhance the learning experience in the learning environment Fathom, and 
predict student behaviors based on their interaction patterns in the learning environment, and provide 
timely help to low performers. 
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6. Conclusion 

In this paper, we discussed the process of creating student models representing learning patterns of 
high, medium, and low performers in learning ill-structured problem-solving skills in the technology-
enhanced learning environment, named Fathom. The model was built using the hidden Markov model 
(HMM) using the log data generated in Fathom. The analysis shows that high scorers exhibit 
metacognitive behaviors in terms of the ability to do the activity, monitor, and reflect on their skills. 
While, low and medium scorers tend to rely more on the resources given in the system and exhibit more 
help-seeking behavior, which implies that they have difficulty comprehending and doing the activity. 
While low scorers are not retaining the doing of tasks till the end while medium scorers were consistent 
in completing the tasks till the end. The model accuracy may be improved in the future by training the 
model with more observations. 
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