
Interval pattern structures for interpreting K-nearest
neighbor approach in lazy classification
Position Paper

Alan Tomat1

1Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region 141700, Russia

Abstract
This paper proposes IPS-KNN, an interpretable variant of the distance-weighted K-nearest neighbors
(KNN) algorithm based on interval pattern structures, to address the limitation of KNN’s lack of inter-
pretability. The proposed algorithm provides a reason for the classification in the form of a pattern of the
interval pattern structure describing the dataset. The intervals in the reason for classification provide
insights into which features are important for the classification task and what values these features
should have to produce a specific classification result. The IPS-KNN algorithm was evaluated on the red
wine quality dataset, where it performed similarly to the distance-weighted KNN algorithm in terms of
classification performance. The proposed algorithm can be used in applications where interpretability is
important, such as in medical diagnosis or credit risk assessment.

Keywords
lazy classification, pattern structures, interval pattern structures, interpretable K-nearest neighbors

1. Introduction

Lazy learning, also known as instance-based learning, is a type of machine learning algorithms
that does not explicitly train the model. Instead, it stores all the training data and uses a
similarity measure between the training data and the new data to make predictions [1]. The
term "Lazy learning" was first introduced in 1991 in [2]. It was defined as a type of machine
learning algorithms that postpones the training process to the testing phase. That is until a
new instance is provided for classification. The majority of lazy classification algorithms are
K-Nearest Neighbors (KNN) algorithms [3]. The results of KNN algorithms are not inherently
interpretable. When both K and the number of features in the dataset are small, visualizing the
K-nearest neighbors can provide some sense of interpretability, but not a formal one.

The interpretability of machine learning models lacks a precise mathematical definition.
However, there are several non-mathematical definitions that have been proposed. One such
definition, stated by Miller in [4], is that interpretability refers to "the degree to which a human
can understand the cause of a decision". The researchers in [5] defined interpretable models as

Published in Sergei O. Kuznetsov, Amedeo Napoli, Sebastian Rudolph (Eds.): The 11th International Workshop "What
can FCA do for Artificial Intelligence?", FCA4AI 2023, co-located with IJCAI 2023, August 20 2023, Macao, S.A.R. China,
Proceedings, pp. 17–24.
$ alantomat1998@gmail.com (A. Tomat)
� 0009-0005-6641-2870 (A. Tomat)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:alantomat1998@gmail.com
https://orcid.org/0009-0005-6641-2870
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

those for which humans can understand the causes of the model’s predictions.
While interpretability may not be crucial in low-risk applications such as recommendation

systems, it is of utmost importance in high-risk applications such as credit risk assessment and
medical diagnosis. In such cases, it is essential to pair each prediction with the reason that led
the model to make that prediction in order to avoid any possible errors. Despite the absence of
a standardized metric for evaluating interpretability, models can be compared based on how
easily humans can comprehend the reasons behind their decisions [6].

Pattern structures, an extension of Formal Concept Analysis (FCA) introduced by Kuznetsov
and Ganter [7], expands on FCA by enabling the analysis of complex descriptors. Pattern
structures, among other generalizations of FCA, have been widely adopted in diverse applications
such as information retrieval, web and ontology engineering, biclustering and recommendation,
databases and functional dependencies, and software engineering [8].

Interval pattern structures, proposed in [9], are a special case of pattern structures in which
the descriptors are numeric intervals. They enable the use of FCA-based knowledge discovery
tools on numeric datasets [10]. To classify new instances, pattern structures can be used to
extract hypotheses from a set of training instances [11]. The original hypotheses-based lazy
classification algorithm on pattern structures was proposed in [12]. This algorithm finds the
similarity between a query instance and each instance in the training set, and considers a
similarity to be a hypothesis only if it describes instances from a single class. The extracted
hypotheses describe the characteristics that the new instance shares with a subset of instances
from the training set, providing interpretability into the model’s predictions.

Although the original algorithm was proven effective on pattern structures with graph de-
scriptors [11], it suffered from too specific hypotheses in the case of numeric features, especially
when the number of features increased [13]. Too specific hypotheses describe only few instances
and do not convey much useful information for the classification process. To address this issue,
[13] proposed randomly sampling batches of instances from each class in the training set and
finding the similarity between the query instance and the entire batch.

Instead of attempting to solve the issues with the original hypotheses-based algorithm, this
paper argues that augmenting the distance-weighted KNN with interval pattern structures can
provide interpretability. As the nearest instances to the query instance carry the most useful
information for classification, this approach focuses on leveraging this information, rather than
relying on random batches from the train set.

2. Formal Definitions of Pattern Structures and Interval Pattern
Structures

2.1. Pattern Structures

Pattern structures are a generalization of Formal Concept Analysis (FCA). In FCA, a context
is defined as a set of instances with binary features, where a binary relation specifies which
features are possessed by each instance [14]. Pattern structures remove the binary features
condition and allow the use of any type of features as long as they form a lower semi-lattice. We
follow [7] to provide a formal definition: Let 𝐺 be a set of instances, (𝐷,⊓) a lower semi-lattice

of all possible instance descriptors, and 𝛿 : 𝐺 → 𝐷 a mapping that corresponds each instance
𝑔 ∈ 𝐺 with its descriptor 𝑑 ∈ 𝐷.

Then (𝐺,𝐷, 𝛿) is called a pattern structure, where 𝐷 = (𝐷,⊓), with the condition that the
set 𝛿(𝐺) := {𝛿(𝑔)|𝑔 ∈ 𝐺} generates a complete sub-semi-lattice (𝐷𝛿,⊓) from (𝐷,⊓), i.e. each
subset 𝐸 of 𝛿(𝐺) has a meet ⊓𝐸 in (𝐷,⊓).

The elements of 𝐷 are called patterns and are naturally ordered by the absorption relation ⊑:
for 𝑐, 𝑑 ∈ 𝐷, 𝑐 ⊑ 𝑑 ⇐⇒ 𝑐 ⊓ 𝑑 = 𝑐. The operation ⊓ is also called the similarity operation.

The pattern structure (𝐺,𝐷, 𝛿) follows FCA and defines two derivative operators (.)◇ given
in equations 1 and 2. The first of which is applied to a set of instances and returns the largest
common pattern describing these instances, while the second is applied to a pattern and returns
a set of instances that possess this pattern.

𝐴◇ = ⊓𝑔∈𝐴𝛿(𝑔) for 𝐴 ⊆ 𝐺 (1)

𝑑◇ = {𝑔 ∈ 𝐺|𝑑 ⊑ 𝛿(𝑔)} for 𝑑 ∈ (𝐷,⊓) (2)

2.2. Interval Pattern Structures

Interval pattern structures [9, 10] are a type of pattern structures in which the descriptors of the
set 𝐷 are represented as 𝑝-dimensional vectors of intervals, with each interval corresponding
to the value of one feature. Here, 𝑝 is the number of features being analyzed. Interval pattern
structures can be used to represent numeric features, by considering each numeric value 𝑥 as a
zero-length interval [𝑥, 𝑥].

Thus, the patterns of the set 𝐷 are 𝑝−dimensional vectors of intervals, where 𝑝 is the number
of features. For the patterns 𝑒 = ⟨[𝑎𝑖, 𝑏𝑖]⟩𝑖=1,2,..,𝑝 and 𝑓 = ⟨[𝑐𝑖, 𝑑𝑖]⟩𝑖=1,2,..,𝑝 in 𝐷, the similarity
of 𝑒 and 𝑓 is given by:

𝑒 ⊓ 𝑓 = ⟨[𝑎𝑖, 𝑏𝑖]⟩𝑖=1,2,..,𝑝 ⊓ ⟨[𝑐𝑖, 𝑑𝑖]⟩𝑖=1,2,..,𝑝 = ⟨[𝑚𝑖𝑛(𝑎𝑖, 𝑐𝑖),𝑚𝑎𝑥(𝑏𝑖, 𝑑𝑖)]⟩𝑖=1,2,..,𝑝 (3)

The absorption relation ⊑ is given by:

𝑒 ⊑ 𝑓 ⇐⇒ ⟨[𝑎𝑖, 𝑏𝑖]⟩𝑖=1,2,..,𝑝 ⊑ ⟨[𝑐𝑖, 𝑑𝑖]⟩𝑖=1,2,..,𝑝

⇐⇒ [𝑎𝑖, 𝑏𝑖] ⊓ [𝑐𝑖, 𝑑𝑖] = [𝑎𝑖, 𝑏𝑖] ∀𝑖 ∈ {1, 2, .., 𝑝}
(4)

Consequently, larger intervals are absorbed by the smaller intervals they contain. At first
glance, this may seem counter-intuitive, but by definition, the similarity of a set of instances
should be absorbed by the pattern of each instance in this set.

3. KNN-based Interval Pattern Structure Lazy Classifier

The original distance-weighted K-nearest neighbors (KNN) algorithm [1] classifies a query
instance by finding its K-nearest neighbors and then computing a score for each class based on
the inverse of the distance between the query instance and the instances from the K-nearest
neighbors that belong to that class. However, the results of KNN algorithms are not inherently

interpretable. To address this limitation, we propose IPS-KNN (Interval Pattern Structure K-
Nearest Neighbor): an interpretable variant of the distance-weighted KNN algorithm that is
based on interval pattern structures.

3.1. IPS-KNN Lazy Classifier

To classify a new instance 𝑔𝜏 , the set 𝐺𝑘𝑛𝑛 ⊆ 𝐺 consisting of the 𝑘-nearest neighbors of 𝑔𝜏
in the training set 𝐺 is identified. The similarity of all instances in 𝐺𝑘𝑛𝑛 is then calculated by
applying the similarity operator ⊓. All instances in the training set that are described by this
similarity are included in a voting process. The class of 𝑔𝜏 is then determined by the function:

𝑦(𝑔𝜏) = sgn(𝑠+ − 𝑠−) (5)

where the positive and negative scores, 𝑠+ and 𝑠− respectively, are calculated as:

𝑠+ =
∑︁

𝑔+∈𝐺◇◇
𝑘𝑛𝑛∩𝐺+

1

𝑑(𝑔+, 𝑔𝜏)
(6)

𝑠− =
∑︁

𝑔−∈𝐺◇◇
𝑘𝑛𝑛∩𝐺−

1

𝑑(𝑔−, 𝑔𝜏)
(7)

Here, 𝑑(𝑎, 𝑏) is the Euclidean distance between instances 𝑎 and 𝑏 in the feature space. The
set 𝐺◇◇

𝑘𝑛𝑛 is the subset of 𝐺 that contains all instances described by the similarity 𝐺◇
𝑘𝑛𝑛.

The proposed IPS-KNN algorithm differs from the original distance-weighted 𝑘-Nearest
Neighbors in that, in IPS-KNN, the similarity of the 𝑘-Nearest Neighbors defines which instances
will vote, while in KNN, only the 𝑘-nearest neighbors vote. The set of voters in IPS-KNN contains
all the 𝑘-nearest neighbors because they are all described by their similarity, but it may include
additional instances as well.

The difference in the set of voters between IPS-KNN and KNN is due to the geometric shape
that encloses the neighbors in the feature space. In KNN, the distance between the query
instance and the farthest instance of the 𝑘-Nearest Neighbors defines a hyper-sphere in the
feature space, and all the instances located on its surface or inside it vote. On the other hand,
the similarity of the 𝑘-Nearest Neighbors of the query instance defines a hyper-rectangle in the
feature space in IPS-KNN. This hyper-rectangle is larger than the hyper-sphere of KNN and
contains it entirely within its boundaries. Therefore, the set of voters in IPS-KNN may include
more instances than just the 𝑘-Nearest Neighbors.

3.2. IPS-KNN Interpretability

The similarity operation ⊓ can reveal why a query instance was classified in a certain class, as
it captures the similarity of descriptions. Suppose that a query instance 𝑔𝜏 was classified as
positive by IPS-KNN. In this case, 𝐺𝑘𝑛𝑛(𝑔𝜏) is the set of k-nearest instances to 𝑔𝜏 in the training
set, and their common similarity determines the set of voters 𝑉 (𝑔𝜏) = 𝐺◇◇

𝑘𝑛𝑛(𝑔𝜏), which can
be split into positive voters 𝑉+ and negative voters 𝑉−. The negative score is then given by
𝑠− =

∑︀
𝑔−∈𝑉−

1
𝑑(𝑔−,𝑔𝜏)

. Since 𝑔𝜏 was classified as positive, the positive score 𝑠+ is greater

than 𝑠−. It is possible that only a subset of 𝑉+ needs to vote to classify 𝑔𝜏 as positive; any
subset of 𝑉+ that produces a positive score greater than the negative score will lead to the same
classification result.

Formally, let 𝐹 = {𝐸 | 𝐸 ⊆ 𝑉+,
∑︀

𝑔+∈𝑉+

1
𝑑(𝑔+,𝑔𝜏)

> 𝑠−} be the set of all subsets of
𝑉+(𝑔𝜏) that give a positive score greater than 𝑠−. The subset with the minimum number of
instances includes the instances of 𝑉+ closest to the query instance 𝑔𝜏 . However, this subset is
not necessarily unique, since multiple instances might have the same distance from the query
instance. Let 𝐸 be the subset that correspond to the hyper-rectangle with minimum volume.
The similarity of the elements of 𝐸 together with the description of the query instance is the
reason for classifying 𝑔𝜏 as positive. This is given by 𝑅 = 𝐸◇ ⊓ 𝛿(𝑔𝜏) : 𝐸 ∈ 𝐹 and |𝐸| =
min |𝐵| : 𝐵 ∈ 𝐹 and Π𝑝

𝑖=1|𝑏𝑖 − 𝑎𝑖|𝑖 is minimum, where 𝑎𝑖 and 𝑏𝑖 are the limits of the 𝑖𝑡ℎ
interval of 𝐸◇ ⊓ 𝛿(𝑔𝜏) and 𝑝 is the number of features. The reason for classification 𝑅 is itself a
pattern in the interval pattern structure (𝐺,𝐷, 𝛿), consisting of a vector of intervals with one
interval for each feature. The values of these intervals, relative to the original range of values of
the features, provide interpretability. 𝑅 can also be considered a classifier that correctly classifies
all instances of 𝐸 and the new instance 𝑔𝜏 . It should be noted that substituting the subset 𝐸
with any other element in 𝐹 would provide another correct interpretable classifier. However,
using 𝐸 corresponds to enclosing the classified instances in the most specific hyper-rectangle.
On the other hand, using 𝑉+ instead of 𝐸 will result in the most general hyper-rectangle.

The interpretability provided by IPS-KNN is somewhat analogous to that provided by decision
trees for continuous features. In IPS-KNN, the reason for classification is represented by a
hyper-rectangle in the feature space, with one interval for each feature. Similarly, in decision
trees, decisions are based on comparisons of feature values using greater than and less than
conditions [15], which can also be represented as hyper-rectangles, with two exceptions. Firstly,
decision trees may not use all features in the classification process, resulting in intervals of
the form (−∞,+∞). Secondly, decision trees may bound the values of some features from
one side only, leading to intervals of the form (−∞, 𝑥) and (𝑥,+∞), where 𝑥 is a real value.
Section 4 further explains how these intervals are used for interpretability.

4. Experiments

The proposed algorithm IPS-KNN was evaluated against the baseline classification algorithms
on the red wine quality dataset 1, which contains 11 numeric features and its output feature
was binarized for this purpose. In its original form, the quality of each wine is assessed by a
score between 1 and 10, where a higher score indicates better quality. To binarize the output
feature, wines with a quality score in the range [1, 5] were considered ’bad’, while those in
the range [6, 10] were considered ’good’. To assess the performance of the models, 20% of the
instances in the dataset were randomly selected as a holdout test set, and the remaining 80%
were used as the training set. In addition, 5-fold stratified cross-validation was used to evaluate
the models and to tune their hyperparameters using a grid search approach. F1 score was used
as the evaluation metric to take class imbalance into account. The accuracy and F1 scores on
the held-out test set for the proposed algorithm, distance-weighted KNN, and other baseline

1https://archive.ics.uci.edu/ml/datasets/wine+quality

https://archive.ics.uci.edu/ml/datasets/wine+quality

Table 1
Accuracy and F1 for IPS-KNN and the baseline classification algorithms on the binarized red wine
quality dataset.

Classifier Accuracy F1

KNN 82.81% 83.97%
IPS-KNN 81.56% 82.8%

Naive Bayes (GaussianNB) 75% 76.05%
Logistic Regression 77.5% 78.44%
SVM 78.75% 80.68%
Decision Tree 77.5% 78.95%
Random Forest 84.06% 84.59%
XGBoost 84.69% 86.04%

classification algorithms are presented in Table 1. The evaluation results indicate that the
IPS-KNN algorithm and the distance-weighted KNN algorithm had similar performance. This
suggests that our proposed modification to the KNN algorithm, which allows more instances
to vote, did not significantly degrade performance. This is because the K nearest neighbors,
which have the largest voting weight, are still included in the set of voters. Table 1 also shows
that Random Forest and XGBoost outperformed IPS-KNN, with XGBoost achieving the highest
F1 score with a 3.26% increase over that of IPS-KNN. Both XGBoost and Random Forest use
decision trees, which means that their results can be interpreted using the tests performed at the
nodes along the paths through the structure used to classify a query instance. However, after
grid search, the number of decision trees used by Random Forest and XGBoost was 100 and
1000, respectively. This large number of decision trees makes direct interpretability a difficult
task.

The following is an example of how IPS-KNN classifies a new instance and provides inter-
pretability on the binary red wine quality dataset. Table 2 shows the features of the red wine
quality dataset, the values of these features for the query instance 𝑔𝜏 , the ranges of the features,
and the intervals of the reason of classification R. We obtained the value of the hyperparameter
K of 25 through grid search. The similarity of 25-nearest instances to 𝑔𝜏 chose 44 instances
to vote, 38 of which are positive and the remaining 6 are negative. The resulting positive and
negative scores were 𝑠+ = 19.3 and 𝑠− = 2.6; therefore, 𝑔𝜏 was classified as positive.

Out of the 38 positive instances, the nearest 4 were enough to give a positive score larger
than the negative one. The similarity of these 4 objects together with 𝑔𝜏 produced the reason of
classification denoted by R in Table 2. The intervals of 𝑅 provide the interpretability of why 𝑔𝜏
was classified as positive and what values should the features of instances similar to 𝑔𝜏 also
have in order to be classified as positive.

For example, the interval [6.3, 6.8] of 𝑅 corresponding to the feature (fixed acidity) shows
that this feature’s value should be low relative to the original range of values in order to the
classification result to be positive. The interval corresponding to the feature (alcohol) shows
that the value of this feature should be in in the middle of the range of possible values. The
intervals corresponding to the features (fixed acidity, residual sugar, sulphates) are short relative
to the ranges of their values, which mean that they are important to the classification process.

Table 2
Ranges of data set feature values (red wine quality) and interval classifier intervals.

Feature Feature values of 𝑔𝜏 Range of values Reason of classification R

Fixed acidity 6.3 [4.6, 15.9] [6.3, 6.8]
Volatile acidity 0.55 [0.1, 1.6] [0.49, 0.67]
Citric acid 0.15 [0, 1] [0.02, 0.22]

Residual sugar 1.8 [0.9, 15.5] [1.8, 2.3]
Chlorides 0.077 [0.01, 0.61] [0.061, 0.077]

Free sulfur dioxide 26 [1, 72] [13.0, 37.0]
Total sulfur dioxide 35 [6, 289] [24.0, 53.0]

Density 0.99314 [0.99, 1.004] [0.99314, 0.99489]
pH 3.32 [2.7, 4] [3.32, 3.41]

Sulfates 0.82 [0.3, 2] [0.76, 0.83]
Alcohol 11.63 [8.4, 14.9] [10.3, 11.6]

In contrast, intervals covering a large part of the entire range of values are less useful since
they describe almost all objects in the dataset.

5. Conclusion

Based on the results of the experiments, we can conclude that the IPS-KNN algorithm performs
similarly to the distance-weighted KNN algorithm in terms of classification performance. How-
ever, the IPS-KNN algorithm provides additional interpretability through the reason for the
classification in the form of a pattern of an interval pattern structure. The intervals in the reason
for classification provide insights into which features are important for the classification task
and what values these features should have in order to produce a specific classification result.

The proposed algorithm can be used in applications where interpretability is important, such
as in medical diagnosis or credit risk assessment. The interpretability provided by IPS-KNN can
help experts understand why a certain decision was made, which can lead to better decision
making and increased trust in the system.

6. Future Work

One limitation of the IPS-KNN algorithm is that the hyper-rectangle surrounding the query
instance and its neighbors is currently aligned with the coordinate axes in the feature space. To
address this limitation, we plan to investigate the introduction of a tilted hyper-rectangle in
future work. By tilting the hyper-rectangle at an angle, we aim to provide better separation of
the voters and potentially improve classification accuracy.

Introducing a tilted hyper-rectangle is a promising avenue for future research that could
enhance the performance of the IPS-KNN algorithm. However, it is important to conduct
more detailed investigation to explore the feasibility and potential benefits of this approach.
Specifically, we need to determine the optimal angle of tilt and evaluate the impact of this
approach on classification accuracy compared to the current IPS-KNN algorithm.

References

[1] D. W. Aha, D. Kibler, M. K. Albert, Instance-based learning algorithms, Machine learning
6 (1991) 37–66.

[2] D. G. Lowe, Learning in Autonomous Agents: Exploration, Curiosity, and Learning in the
Absence of External Rewards, Ph.D. thesis, Department of Computer Science, University
of British Columbia, 1991.

[3] D. Wettschereck, D. W. Aha, T. Mohri, A review and empirical evaluation of feature
weighting methods for a class of lazy learning algorithms, Artificial Intelligence Review
11 (1997) 273–314.

[4] T. Miller, Explanation in artificial intelligence: Insights from the social sciences, Artificial
intelligence 267 (2019) 1–38.

[5] E. Dudyrev, I. Semenkov, S. O. Kuznetsov, G. Gusev, A. Sharp, O. S. Pianykh, Human
knowledge models: Learning applied knowledge from the data, Plos one 17 (2022) e0275814.

[6] C. Molnar, Interpretable machine learning, Lulu. com, 2020.
[7] B. Ganter, S. O. Kuznetsov, Pattern structures and their projections, in: Conceptual

Structures: Broadening the Base: 9th International Conference on Conceptual Structures,
ICCS 2001 Stanford, CA, USA, July 30–August 3, 2001 Proceedings 9, Springer, 2001, pp.
129–142.

[8] S. Ferré, M. Huchard, M. Kaytoue, S. O. Kuznetsov, A. Napoli, Formal concept analysis: from
knowledge discovery to knowledge processing, A Guided Tour of Artificial Intelligence
Research: Volume II: AI Algorithms (2020) 411–445.

[9] S. O. Kuznetsov, Fitting pattern structures to knowledge discovery in big data, in: Formal
Concept Analysis: 11th International Conference, ICFCA 2013, Dresden, Germany, May
21-24, 2013. Proceedings 11, Springer, 2013, pp. 254–266.

[10] M. Kaytoue, S. O. Kuznetsov, A. Napoli, S. Duplessis, Mining gene expression data with
pattern structures in formal concept analysis, Information Sciences 181 (2011) 1989–2001.

[11] S. O. Kuznetsov, Scalable knowledge discovery in complex data with pattern structures,
in: Pattern Recognition and Machine Intelligence: 5th International Conference, PReMI
2013, Kolkata, India, December 10-14, 2013. Proceedings 5, Springer, 2013, pp. 30–39.

[12] B. Ganter, S. O. Kuznetsov, Hypotheses and version spaces, in: ICCS, volume 2746, Springer,
2003, pp. 83–95.

[13] A. Masyutin, Y. Kashnitsky, S. Kuznetsov, Lazy classification with interval pattern struc-
tures: Application to credit scoring, in: Workshop Notes, 2015, p. 43.

[14] B. Ganter, R. Wille, Formal concept analysis: mathematical foundations, Springer Science
& Business Media, 2012.

[15] B. De Ville, P. Neville, Decision trees for analytics: using SAS Enterprise miner, SAS
Institute Cary, NC, 2013.

	1 Introduction
	2 Formal Definitions of Pattern Structures and Interval Pattern Structures
	2.1 Pattern Structures
	2.2 Interval Pattern Structures

	3 KNN-based Interval Pattern Structure Lazy Classifier
	3.1 IPS-KNN Lazy Classifier
	3.2 IPS-KNN Interpretability

	4 Experiments
	5 Conclusion
	6 Future Work

