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Abstract 
Despite their significant solving capabilities ASP solvers have not yet crossed the line between academic 
and widespread industrial use. Even in areas where classical AI solutions developed in the ASP 
framework exceed solvers that utilize procedural algorithms in terms of raw performance, the latter 
approach is usually preferred. The lack of integration between ASP solvers and standard software 
development components, such as SQL databases, is commonly cited as a reason for this tendency. To 
this end, a Python interface for converting an SQL database (where the healthcare system’s data reside) 
to a logic program knowledge base was developed1. This interface supports all the basic SQL 
transactions adding a level of abstraction on top of the Potassco backed CLORM2 module. 
Simultaneously, a new approach to medical appointment (re)scheduling is proposed taking into 
consideration the total community benefit, showcasing the immense potential of ASP in the modern 
software industry. An application that uses the ASP-SQL interface to solve the medical appointment 
(re)scheduling problem with this approach is the final product of this research. 
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1. Introduction 

Since its inception in 1972 [1], logic programming has 
developed to the point where contemporary solvers, 
such as clingo, are able to solve complex, mostly NP-
complete [2], optimization problems when they are 
expressed under answer set semantics. Based on those 
capabilities and the fact that it can greatly reduce 
development time due to its declarative nature, ASP 
has been successfully used in several research areas, 
including Artificial Intelligence, Bio-informatics , and 
Database querying while recently entering the 
software industry as a viable software alternative to 
procedural algorithms [3]. Specifically, modern 
healthcare systems pose a plethora of challenges in the 
road to full digitalization and the improvement of 
patient experience, one of which is the management of 
appointments in a way that maximizes the community 
benefit. This challenge arises from the sheer scale of 
data that characterizes a healthcare system and the 
ethical implications that come to the forefront when a 
patient’s health is at stake. In fact, digital systems are 
essential to overcome this challenge and as the paper 
proposes, AI and in particular ASP, can provide 
innovative perspectives and new capabilities to 
modern digital healthcare systems. Before solving the 
medical rescheduling problem with AI reasoning a 
technical challenge must be overcome. The gap 
between ASP solvers and the software industry, since 
every modern application consists of many separate 
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components interacting with one another, is a 
phenomenon commonly attributed to the absence of 
abstract interfaces between ASP solvers and modern 
high-level languages. For example, although few 
attempts to integrate SQL databases with logic 
programs have been made [4] an automated solution 
for converting an SQL database into an ASP knowledge 
base in a high-level programming language 
environment has yet to become available. Thus, in this 
paper the structure and use of an interface between a 
PostgreSQL database and a clingo logic program 
developed to simplify the data flow between the 
database and the solver is presented. 

The final software brings the possibility of using 
ASP solvers in the backend of industrial scale software 
applications to the spotlight. The Python programming 
language is used for the interface development 
utilizing the Predicate class of the Potassco backed 
CLORM module to encode the database records and 
the Control class to execute the logic program on the 
derived knowledge base. In Section 2 a more in-depth 
examination of the medical appointment 
(re)scheduling problem is presented followed by a 
simple example comparing a classical to an AI 
approach for attaining the optimal solution to the 
problem. Section 3 contains a structural and logical 
analysis of the ASP rescheduler program. First, the 
structure of the SQL database is presented. The second 
subsection is dedicated to the structure and usage of 
the Python interface. In the third subsection, the code 

1 The source code for the application can be found on 
https://github.com/StavrosKanias/Medical_Appointment_Reschedul
ing_App  
2 At the time of writing CLORM is an open-source project with its 
source code residing on https://clorm.readthedocs.io 
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structure rule content of the logic program used to 
solve the problem is thoroughly analyzed. 
Furthermore, in Section 4, various statistics describing 
the performance of the solution for different datasets 
are presented and comments are made on the factors 
that affect the program’s execution time. Finally, in 
Section 5, possible implications of a real-world 
application based on this solution are presented. 
 

2. The Appointment 
(Re)Scheduling Problem 

Consider a hospital with thousands of patients and 
dozens of doctors. Each doctor works for 8 hours daily 
providing 8 one-hour appointment timeslots per day 
from Monday to Friday. In most contemporary 
healthcare systems patients can book an appointment 
only if it is currently available. As soon as a vacant 
timeslot is requested it is granted by the system to the 
patient preventing all the other patients from 
requesting the same timeslot. The problem that arises 
from this policy is that in the case of a cancellation the 
timeslot will again become available but will most 
likely be wasted since no waiting queue was formed 
for another patient to claim it instantly. Even in the 
case where a waiting queue exists a first-come-first-
served approach will be followed, and the system will 
grant the request with the highest score for the 
timeslot in question. In this case, given that the 
patients would freely choose a better timeslot for 
themselves if asked, the community optimal 
assignment may be missed. As described in the 
following example, using an AI approach to 
maximization, if the system can choose not to give the 
canceled appointment to the highest-scoring request 
of the queue, a chain-reaction of rescheduled 
appointments can occur through which a much higher 
community benefit can emerge. A scenario that allows 
patients to select more than one timeslot with 
ascending preference order, where 6 patients claim 4 
timeslots can be seen in Table 1.  
 
Table 1 
Initial Schedule 

Timeslot Patient Queue Request Score 

Mon (9 am) Nikos (Granted) 
George 
Kostas 
 

90 
87 
86 

Tue (1 pm) George (Granted) 
John 
Maria 
 
 

72 
60 
55 

Thu (11 am) John (Granted) 
Maria 
 

45 
40 

Fri (3 pm) Kostas (Granted) 
Despoina 

71 
70 

 
The score of each request is calculated as the 

weighted sum of two factors, the request’s preference, 

and the patient’s priority. As preference we define the 
request’s temporal order among all the patient’s 
requests. For example, the first request made by the 
patient to the system will be registered with priority 1, 
the next with priority 2 etc. The second factor, priority, 
is considered as a combined metric of the patient’s 
health calculated by the system according to the 
patient’s history. It is used to determine the urgency 
attributed to a particular request. In the current 
implementation the scores are derived from the 
following formula. 

 

𝑆𝑐𝑜𝑟𝑒 =
0.3

𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
+ 0.7 ∙ 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 

(1) 

 
In the scenario presented in Table 1, after defining 

the community benefit as the sum of the scores of the 
granted requests, a community benefit of 278 is 
offered by the healthcare system to society. In the case 
where Nikos cancels his appointment, the first timeslot 
becomes unclaimed. If a first-come-first-served 
approach is used the timeslot will be granted to George 
and thus a community benefit of 258 will emerge. In 
contrast the AI approach previously mentioned and 
described in depth in the next section will create the 
schedule seen in Table 2 which yields a higher 
community benefit of 273. 

 
Table 2 
Schedule after AI rescheduling 

Timeslot Patient Queue Request Score 

Mon (9 am) Kostas (Granted) 86 
 
Tue (1 pm) 

 
George (Granted) 
 
 

 
72 
60 
55 
 

Thu (11 am) John (Granted)  
Maria 
 

45 
40 

Fri (3 pm) Despoina (Granted) 70  

 

3. Developing an AI solution 
using SQL, Python and ASP 

3.1. Database design 

A thoughtfully designed and implemented 
database was necessary to develop and test the clingo 
– database interface. The relational model was chosen 
for the design to make the structure of the database 
more obvious. Since the interface is developed with 
backend applications in mind the PostgreSQL 
environment was used alongside the Python psycopg2 
module. Simulating a typical hospital application, the 
database was structured as can be seen in Figure 2. 
This diagram was transformed into the final database 
schema seen in Figure 3   and translated to Python code 
as a dictionary of dictionaries. 

To be more specific, the database schema in the 
source code is a dictionary with the keys being the 
entities and the values being subdictionaries with the 



entity’s attributes as keys and tuples of two to four 
elements as their values. Each value follows the 
following convention, the first element is the type of 
the attribute, and the second element is a boolean 
signifying if the attribute is a primary key. The third 
element (if it exists) signifies the uniqueness of the 

attribute in a three-element tuple or the foreign entity 
that this attribute points to if it is a foreign key. Finally, 
the fourth element appearing only in foreign keys is 
the foreign attribute to which the attribute refers to. 
An example of this conversion methos for the request 
entity can be seen in Figure 1. 

 
Although in a real healthcare system the 

complexity of such a database would be much higher, 
only the request, timeslot and doctor entities are 
needed to feed the clingo rescheduler with data to 
output a general solution for the healthcare system as 
can be seen in the following section, making every 
other information stored in the database irrelevant. 

3.2. Python interface 

To fuel clingo with large scale data efficiently an 
interface was developed in the Python programming 
language. The functionalities required to enable the 
data flow between a database and the clingo solver 
were implemented as a KnowledgeBase Python class. 
This class instantiates a knowledge base structure that 
extends the FactBase class from the Potassco backed 
CLORM framework. The goal of the interface is to   

create a one-to-one copy of the database in a format 
intended to function as input for the solver provided 
by the Control class of the clingo Python module. A 
typical use case of the interface can be seen in Figure 

5. 
For the conversion of the database data to clingo 

predicates, two approaches were taken into 
consideration, each with its own strengths and 
weaknesses. Both extensively use Python’s dynamic 
typing capabilities for creating the KB predicates 
based on the database schema of Figure 3. An example 
of this record to predicate translation for both 
encodings can be found in Figure 4. 

These predicates extend the Predicate class found 
in the CLORM framework specifying each time the 
name and type of each database attribute. At this point 
it is useful to mention that clingo only supports 
integers as numerical values and thus the fabricated 
data used to test the application had to be adjusted to 
this constraint. Another challenge that arose while 
attempting to preserve the database properties in the 
knowledge base was the absence of the concept of 
foreign keys which was manually implemented. 

To this end the merged approach was 
implemented intending on keeping the information of 
each database record unified in one predicate and thus 
enabling the use of joins and other SQL capabilities 
based on matching foreign keys. Simultaneously it 
achieves minimization of the number of predicates in 
the knowledge leading to faster query execution times. 
Although the ability to solve the problem utilizing the 
merged encoding is given to the user (the ASP program 
must conform with the knowledge base encoding) the 
execution time for the optimization process is lacking 
behind compared to the second encoding. Another 
problem with this approach in the context of ASP code 
development is the creation of logic programs with 
many anonymous variables making them less readable 
and intuitive and simultaneously complicating the 
expression of more advanced logical rules.  

 
 

 
 

Figure 3: Database relational schema [10] 

(a) 
 

request(2, 

26057784758, 

1251, 

1, 

37, 

0) 

 
 

request(2) 

patient_id(2,26057784758) 

timeslot_id(2,1251) 

preference(2,1) 

score(2,37) 

status(2,0) 

 
 
cv 

(c) 
 

(b) 
 

Figure 4: Database record (a), conversion in merged encoding (b), 
conversion in split encoding(c)  

'REQUEST': { 

"ID": ('integer', True)  

"PATIENT_ID":  

('text', False, 'PATIENT', 'ID'),  

"TIMESLOT_ID": 

('integer', False, 'TIMESLOT', 

'ID'), 

"PREFERENCE": ('integer', False), 

"SCORE": ('integer', False), 

"STATUS": ('integer', False) 

} 

Figure 1: Conversion of the Request entity    
from the database schema to Python 

Figure 2: Database Entity Relationship Diagram [9] 



To resolve these issues different forms of encoding 
were considered for the optimization process. In the 
end, using a split approach in the process of translating 
the database records to knowledge base predicates 
two significant advantages emerged.  The first pertains 
to the linguistic aspect of ASP as it results in the 
declarative rules of the ASP program to resemble 
natural language sentences. This is achieved by 
splitting each table’s attribute and directly translating 
it to a predicate. This means that for every attribute in 
the database a new class is created containing in the 
case of a primary key, only the key’s value and for all 
the other attributes of a table the record’s primary key 
and the attribute’s value. Although this approach 
greatly simplifies the process of developing the clingo 
code and increases the code’s readability it also 
increases the internal complexity of the knowledge 
base slowing down the basic database transactions 
(select, insert, update, delete) thus making it less 
suitable for the data management inside the 
knowledge base. For example, in order to resolve a 

select query to a split encoded knowledge base it is 
necessary to first select all the primary keys that 
conform to the given conditions and then collect all the 
needed attributes matching the obtained primary 
keys. It also produces a knowledge base with more 
predicates leading to a larger data structure for the 
solver to handle. 

3.3. Optimal rescheduling with 
ASP 

Typically, every ASP program starts with the creation 
of its knowledge base which functions as its input [5]. 
Using the knowledge base, auxiliary predicates 
required to express facts and relations necessary for 
the problem’s description are created. At this point the 
core rules for the generation of all possible answer sets 
are stated. These answer sets, in their current form, 

are not always either correct (able to satisfy the real 
problem) or optimal. They just describe a potential 
solution of the problem’s state space. To reach a 
solution that satisfies the real problem, integrity 
constraints are applied, that is to say, each potential 
solution is tested according to the logical constraints 
imposed by the real world, becoming an actual 
solution if it complies. 

As each answer set describes a possible set of 
actions the set generation rules are often referred to as 
effect axioms. On the contrary, rules that specify 
immutable subsets of the answer sets are labeled as 
frame axioms. Finally, an aggregate rule is often used 
to specify the parameters and the type of the 
optimization process. In our case a maximization 
command was given taking into consideration the 
score of all the granted requests. What happens at a 
technical level is that the solver sums the parameter 
specified for every actual solution. If the user wants to 
print one or more predicates from an answer set, a 
show command can also be used. 

 
 
 
 
 
 
 
 
 
 
 

The clingo rescheduler was developed according to 
the ASP model described above. Independently of the 
approach used to encode the knowledge base (split or 
merged), six auxiliary predicates are used to fully 
describe the initial schedule. 

1. The granted predicate that is satisfied by all 
requests that are granted thus having a state 
value equal to one. 

2. The appointed predicate that is satisfied by 
all the patients having a granted request. 

3. The best predicate that is satisfied by the 
single highest scoring request among all the 
patient’s requests. It is generated by arguing 
that there is no other request belonging to 
the specific patient that has a greater score. 

4. The onlyOption predicate that is satisfied by 
the request belonging to a patient that has 
made one and only request. It is generated by 
arguing that there is no other request 
belonging to the specific patient in general. 

5. The singleRequest predicate that is satisfied 
a request that is the first and only request in 
a timeslot’s queue. It is generated by stating 
that there is no other request targeting this 
timeslot. 

Interface structure 

Input: Database name, schema, credentials, and conditions 
Solver parameters: Path to solver, Output predicates, Time 
and model constraints, Input data subset and the type of 
encoding as a boolean 
Output: The optimized answer set and optimization 
statistics 
 

A typical use case 

1: kb = KnowledgeBase (name, schema, credentials, 
conditions) # Create the knowledge base 
2: kb.toFile() (optional) # Export the knowledge base as a 
text file for a better data overview 
3: Create output auxiliary predicates to express the solution 
4: solution = kb.run (path, outPreds, searchDuration, 
models, subKB, merged) # Run an ASP program on the KB 
data 
5: Process the solution data (optional)  
6: kb.update(entity, conditions, values) # Update KB and 
DB with the results of the optimization process 

Space of potential 
solutions 

Actual solutions 

Optimal answer sets 

Figure 6: Venn diagram describing the ASP development 
process. 

Figure 5: Basic documentation for the Knowledge Base class 



6. The bestSingleRequest predicate that is 
satisfied by the patient’s best (highest 
scoring) request from those requests 
satisfying the singleRequest property. It is 
generated by arguing that there is no other 
single request belonging to this patient with 
a higher score. 

The generated answer sets cover the following 
three possible types of requests eligible for the system 
to grant: 

1. The granted but not best requests implying 
that a patient can retain their currently 
owned appointment if it appears in the 
answer set that maximizes the common 
benefit. 

2. The not granted requests of a patient 
already having a granted request, that 
present a higher score than the one 
currently appointed to the patient. This 
enables a patient to receive a request with 
higher priority if it helps to maximize the 
common benefit. 

3. All the requests that belong to a patient who 
has not been appointed a timeslot if this 
leads to the optimal answer set. 

As for the frame axiom, it generates the claimed 
predicate which is satisfied for every request that is 
already granted and is also the best request of the 
corresponding patient. This practically means that all 
the already claimed requests cannot be granted to 
another patient. 

At this point, eight integrity constraints were 
applied to the answer sets targeting three specific 
areas, logic, justice, and optimization. For the logic 
part two constraints were applied. 

 
1. Each timeslot can be appointed to only one 

patient. 
2. Each patient can only receive one timeslot 

(from a specific specialty if the general scope 
is used). 

 
The danger that appears when someone 

approaches this problem with the maximization of the 
common benefit in mind is that many times the system 
behaves unfairly towards the individual. To prevent 
this possibility and thus create a just system the 
following two constraints were applied. 

 

1. If a patient had an appointment in the 
previous schedule a timeslot must also be 
granted to that patient after the 
rescheduling. 

2. If a request is a patient’s only option, it 
cannot be dismissed for the sake of a lower 
scoring request even if it leads to a chain 
reaction that maximizes common benefit. If 
we don’t apply this constraint a patient with 
only one request will most probably never 
receive an appointment. 

The only acceptable case in which the individual 
gain will be sacrificed is when a better option 
becomes available for an already appointed patient 
and if granted will lead to a sub optimal common 
benefit. As can be seen in the example given in 
Section 2 George’s best request was not granted to 
him because he already had an appointment, 
resulting in the maximum common benefit without 
negatively impacting him. 

As for the optimization component, in order to 
reduce the execution time of the clingo rescheduler 
four presuppositions were introduced to the system 
reducing the number of requests to be examined for 
granting in the pursuit of the optimal answer set. 

 
1. All requests that claim an already claimed 

timeslot will not be taken into consideration. 
2. All the single requests that are not the patient’s 

best single request will not be taken into 
consideration. 

3. If a request is a patient’s best single request and 
it has a better score than the one already 
granted to the patient it will automatically be 
assigned to the patient blocking all the other 
requests made by the patient. 

4. If a single request is attributed to an 
unappointed patient, the system should grant it 
automatically and block all the other requests 
made by the patient. Both rules 3 and 4 intend 
to maximize the number of patients served by 
the system. 

 
Finally, a maximization rule is given to the solver 

leading to the selection of the answer set that satisfies 
all the constraints and simultaneously offers the 
highest common benefit through the grant action. 

4. Evaluation 

To assess whether the solution presented in this paper 
is a viable option for a real healthcare system a data 
fabricator class was developed in Python to produce 
pseudo-realistic data according to the database design 
described in subsection 3.1. The assumption made to 
produce the timeslot matches most conventional 
healthcare systems by assigning eight one-hour 
appointments to each doctor and provides the patients 
with the freedom to choose as many timeslots as they 
please with an average of two requests per patient. 
Also, to be more modular all the parameters needed to 
create the healthcare system such as the number of 
patients, the number of doctors, the time period to be 
simulated (in days), the timeslot availability and the 

(b) 
 

(a) 
 

Figure 7: The first integrity constraint (only one granted request per 
timeslot) expressed in clingo for the merged approach (a) and the split 
approach (b) 



average demand the healthcare system has to face can 
be tuned by the user. In this case, a timespan of two 
weeks (10 working days) was assumed for all the 
datasets. The tests were first run using a version of the 
rescheduler which assumes that a patient can request 
a timeslot from any medical department and is able to 
only receive one at the time of the rescheduler’s 
execution. This assumption was made to test the 
rescheduler in a context of a general scope where the 
AI has knowledge of the whole healthcare system.  This 
does not necessarily have to be the case as described 
in subsection 3.3 where a solution which also takes 
specialties into consideration is presented. The per-
specialty approach was used to test the performance 
capabilities of the rescheduler in a very high demand 
scenario where there is a multitude of requests 
targeting every timeslot offered by a medical 
department. In reality, the requests would be more 
evenly distributed among the medical departments. 
Finally, the option of creating the schedule described 
in Section 2 intended for validity check purposes is 
also provided.  
 
Table 3 
Execution time for three different datasets using split 
encoding 

Timeslots Patients Requests Execution Time (s) 

   Best Worst 

400 500 1000 0.06 2.79 
 
960 

 
1200 
 

 
2400 

 
0.18 

 
152.07 

2000 2500 
 

5000 421.4 >1800 
 

After extensive testing with various datasets, it 
seems that the only intrinsic variable meaningfully 
affecting the execution time of the rescheduler is the 
number of timeslots offered by the system. An outside 
factor that also seems to greatly affect the execution 
time is the prior state of the schedule. If the previous 
scheduling granted for example the lowest scoring 
request for every timeslot the rescheduling time 
appeared to be multiple times higher than in the case 
of a more logical scheduling that had previously 
granted the highest scoring requests for every 
timeslot. For that reason, both scenarios have been 
measured and assuming a reasonable demand of 2.5 
(the requests being 2.5 times the number of timeslots) 
the best and worst execution times shown in Tables 3 
and 4 were obtained. Two other factors observed to 
affect the execution time to a smaller degree are the 
patients to requests ratio and the requests to timeslots 
ratio (demand). In the first case an increase in the ratio 
leads to a greater execution time since the effect of the 
integrity constraint that allows each patient to only 
one appointment decreases. In the second case an 
increase in the ratio also leads to a greater execution 
time since the effect of the integrity constraint that 
allows each timeslot to be granted to only one request 
decreases. In every case the introduction of variation 
in the model makes the optimization process more 
computationally demanding. Moreover, the 
distribution of requests over the timeslots and 
patients over requests can affect the execution time. 
Namely, a more even distribution will lead to more 

effective combinations increasing the number of 
possible answer sets to be examined at the 
optimization stage. Finally, the type of encoding does 
not affect the result of the optimization. This was 
expected due to the identical logic statements used to 
express the problem. Unlike other attempts on ASP 
scheduling [3] where the difference in execution time 
between different encodings can be attributed to the 
difference in the rule content of the ASP program, 
differences in the execution time for this 
implementation based on the encoding of the database 
for two logically identical reschedulers can be caused 
by the difference in the optimization path followed by 
the solver. This can manifest in the case where 
multiple answer sets provide the same maximum 
community benefit. To be more precise, according to 
the syntax of the rules and the expression of the 
predicates clingo might choose a different path to the 
optimal answer set or reach a different optimal answer 
set altogether. In terms of performance the two 
encodings perform similarly for a small number of 
models. When the number of models becomes higher 
(above 200) the cost of choosing a longer path to the 
optimal answer set in terms of execution time becomes 
more noticeable. The execution times for three 
different datasets are displayed in tables 3 and 4 for 
the merged and split encoding respectively.  From the 
above, we can also conclude that the number of 
predicates in a knowledge base does not affect the 
execution time of the rescheduler to a noticeable 
degree. 

 
Table 4 
Execution time for three different datasets using 
merged encoding 

Timeslots Patients Requests Execution Time (s) 

   Best Worst 

400 500 1000 0.09 4.19 
 
960 

 
1200 
 

 
2400 

 
0.15 

 
448.9 

2000 2500 
 

5000 516.9 > 1800 

 
At this point, it can also be useful to grasp the scale 

of the test data and the complexity faced by the 
rescheduler. Given a scenario of T timeslots, R requests 
and d demand with a relatively even distribution the 
possible combinations are 2𝑅 or  2 𝑑∙𝑇  since every 
request can have only two states, granted, or not 
granted. This leads, even for a relatively small number 
of timeslots, to an extremely large number of possible 
combinations. Although this number is greatly 
reduced by the application of integrity constraints the 
fact remains that the complexity needed to be handled 
by the rescheduler is significant to say the least. As for 
a real-life application, in order to offer 2000 timeslots 
in two weeks with the assumptions previously 
mentioned, a hospital has to employ 25 doctors in a 
certain specialty, a realistic number for outpatient 
clinics in Greece. 



5. Challenges of real-world 
implementation 

To implement the rescheduler in the real world one 
must consider how the most basic assumption 
previously made will be realized. It is unreasonable to 
bluntly assume that given a better option at any point 
in time a patient will always choose to reschedule their 
appointment. Thus, for every request that was not 
granted and now satisfies the grant predicate the 
system will have to ask the patient for permission to 
change the appointment. One of the points where ASP 
solvers shine is that they not only give the optimized 
solution but are also able to describe the steps needed 
to reach it, thus having the ability to reason about the 
optimization process. Using this feature, for every time 
a granted request is canceled, the rescheduler will be 
executed, producing as its output an action chain that 
can lead to the schedule providing the higher 
community benefit. Following this chain, the system 
can notify the patients with an automated message 
giving the opportunity to claim their better option. At 
this point a time limit must be set for the patients to 
accept or reject their new option. Once a patient with a 
prior place in the chain accepts a request of higher 
preference than the one currently owned, the next 
patient will be notified continuing the confirmation 
process of the action chain in the case of a positive 
answer. Thus, each chain produced by clingo will only 
be realized up to the request prior to the one where the 
inability to re-schedule the appointment due to a lack 
of confirmation arises for the first time, resulting in the 
breaking of the chain. Only after a patient has 
confirmed the appointment change will the database 
be updated. This means that if a confirmation process 
is ongoing and a new cancelation takes place, the 
following options appear. The first option is to wait for 
the ongoing process of validating the previous 
rescheduling action chain to finish and then run the 
rescheduler with the new state of the database as its 
input. Another and probably most realistic approach is 
to break the confirmation process of the previous 
action chain and run the rescheduler after updating 
the state of the database using only its currently con-
firmed part. In no case can the execution of the 
rescheduler precede or coincide with the confirmation 
process as this can lead to fueling the rescheduler with 
an obsolete input that corresponds to a state of the 
database where rescheduling actions caused by the 
last cancelation have not been taken into 
consideration.  

The second aspect of this solution that needs to be 
addressed is the practical limitations of its execution 
time. It was observed that even in the best-case 
scenario after assuming a logical scheduling has 
preceded the rescheduling, if the number of timeslots 
exceeds 3000 or the distribution of data is extremely 
unfavorable, the time needed for the solver to output 
the optimal answer set renders it almost unusable in 
real circumstances. To overcome this challenge three 
actions can be taken. The first is to simply keep 
optimizing the code by adding rules that reduce the 
number of actual solutions taken into consideration 
during the optimization stage. Although the most 

theoretically correct approach, even if it was possible 
to forever continue optimizing, eventually each new 
optimization will have diminishing returns. To 
overcome this limitation, as is the case with most serial 
programs, a restructuring of the rescheduler’s code to 
run in parallel [6] will most probably cause a 
significant decrease in execution time. Another more 
practical approach is to set a time limit for the 
optimization process, interrupting it and retrieving the 
best available model when it expires. Following that, 
the system can compare the current community 
benefit to the newly acquired by the solver and choose 
the highest scoring one between them. This feature has 
been implemented using an interrupt in the on_model 
function used by the solver.  

 The third available solution, which does sacrifice 
the general optimality of the output but at the same 
time grants great flexibility to the application, is the 
use of a batching approach. Choosing to run the 
rescheduler on a subset of the data is probably the 
most useful method to reduce execution time for every 
kind of rescheduler even more so in a scenario like the 
medical appointment rescheduling where clear 
divisions can be made to separate the data needed for 
optimization according to each medical specialty (as 
was used in Section 4 for testing) or each doctor. This 
approach is really an attempt to scale down the 
problem to a department or an individual level, making 
the timespan and the demand able to be handled by the 
rescheduler much wider. The optimality tradeoff 
increases with each specialization step, and it lies with 
the system’s designer to find the right balance between 
performance and general maximization of the 
community benefit. It is worthwhile to mention that 
the last layer of specialization, providing the most 
localized maximization of community benefit, will 
always lie to the resource in demand in this case the 
doctor’s time, a surgical room in ORS [7], a nurse’s shift 
in nurse rescheduling [8] or a meeting room for a 
business focused application. 

6. Conclusion 

The capabilities of ASP solvers to optimize problems 
with an otherwise unmanageably large search space 
has yet to be utilized widely by the software industry. 
One of the obstacles has always been the lack of 
interfaces between the fundamental software 
components and the solvers. In this paper a software 
solution to bridge the gap between the database 
technologies and the clingo scheduler on a high-level 
programming language was presented. This solution 
developed in Python was used for the development of 
a fully functional application to manage large scale 
medical appointment scheduling and rescheduling. A 
theoretical analysis of the database design, interface 
structure and clingo code was made to aid the reader 
in understanding the logic used to solve the problem 
with a new perspective, the community benefit 
maximization approach, thus showing how the new 
software capabilities provided by integrating AI to 
modern software projects can revolutionize the 
service sector making it [9]fair and optimized. During 
the evaluation process, the application was thoroughly 
tested with the results being very promising especially 



when a ‘best request granted’ scheduling precedes the 
application’s execution. Even without the scheduling 
stage the solver proved capable of handling a 
significant number of patients. It is certainly the case 
that further optimization and improvements can be 
made both in the clingo and in the Python fronts to 
make the application more user-friendly, increase 
performance and provide new features enabling the 
rescheduler to handle real-life scenarios faced by large 
organizations such as hospitals and companies with 
large scale meeting scheduling requirements. As with 
many other ASP programs, this application is very 
adaptable to every sector in need of scheduling and 
rescheduling solutions, thus making the study of this 
paper beneficial for both understanding the ASP 
development process and for providing a base for 
future applications wanting to solve similar problems. 
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