
An AI Approach to Large-Scale Medical Appointment
(Re)Scheduling Using ASP

Stavros Kanias

University of Patras, University Campus Rion, Patra, GR26504, Greece

Abstract
Despite their significant solving capabilities ASP solvers have not yet crossed the line between academic
and widespread industrial use. Even in areas where classical AI solutions developed in the ASP
framework exceed solvers that utilize procedural algorithms in terms of raw performance, the latter
approach is usually preferred. The lack of integration between ASP solvers and standard software
development components, such as SQL databases, is commonly cited as a reason for this tendency. To
this end, a Python interface for converting an SQL database (where the healthcare system’s data reside)
to a logic program knowledge base was developed1. This interface supports all the basic SQL
transactions adding a level of abstraction on top of the Potassco backed CLORM2 module.
Simultaneously, a new approach to medical appointment (re)scheduling is proposed taking into
consideration the total community benefit, showcasing the immense potential of ASP in the modern
software industry. An application that uses the ASP-SQL interface to solve the medical appointment
(re)scheduling problem with this approach is the final product of this research.

Keywords
Answer Set Programming, Appointment Rescheduling, Common Benefit Maximization, Clingo, Python

3

1. Introduction

Since its inception in 1972 [1], logic programming has
developed to the point where contemporary solvers,
such as clingo, are able to solve complex, mostly NP-
complete [2], optimization problems when they are
expressed under answer set semantics. Based on those
capabilities and the fact that it can greatly reduce
development time due to its declarative nature, ASP
has been successfully used in several research areas,
including Artificial Intelligence, Bio-informatics , and
Database querying while recently entering the
software industry as a viable software alternative to
procedural algorithms [3]. Specifically, modern
healthcare systems pose a plethora of challenges in the
road to full digitalization and the improvement of
patient experience, one of which is the management of
appointments in a way that maximizes the community
benefit. This challenge arises from the sheer scale of
data that characterizes a healthcare system and the
ethical implications that come to the forefront when a
patient’s health is at stake. In fact, digital systems are
essential to overcome this challenge and as the paper
proposes, AI and in particular ASP, can provide
innovative perspectives and new capabilities to
modern digital healthcare systems. Before solving the
medical rescheduling problem with AI reasoning a
technical challenge must be overcome. The gap
between ASP solvers and the software industry, since
every modern application consists of many separate

ENIGMA-23, September 03-04, 2023, Rhodes, Greece

 up1066563@upnet.gr

 0009-0003-2328-9660

© 2023 Copyright for this paper by its authors. The use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

components interacting with one another, is a
phenomenon commonly attributed to the absence of
abstract interfaces between ASP solvers and modern
high-level languages. For example, although few
attempts to integrate SQL databases with logic
programs have been made [4] an automated solution
for converting an SQL database into an ASP knowledge
base in a high-level programming language
environment has yet to become available. Thus, in this
paper the structure and use of an interface between a
PostgreSQL database and a clingo logic program
developed to simplify the data flow between the
database and the solver is presented.

The final software brings the possibility of using
ASP solvers in the backend of industrial scale software
applications to the spotlight. The Python programming
language is used for the interface development
utilizing the Predicate class of the Potassco backed
CLORM module to encode the database records and
the Control class to execute the logic program on the
derived knowledge base. In Section 2 a more in-depth
examination of the medical appointment
(re)scheduling problem is presented followed by a
simple example comparing a classical to an AI
approach for attaining the optimal solution to the
problem. Section 3 contains a structural and logical
analysis of the ASP rescheduler program. First, the
structure of the SQL database is presented. The second
subsection is dedicated to the structure and usage of
the Python interface. In the third subsection, the code

1 The source code for the application can be found on
https://github.com/StavrosKanias/Medical_Appointment_Reschedul
ing_App
2 At the time of writing CLORM is an open-source project with its
source code residing on https://clorm.readthedocs.io

https://github.com/StavrosKanias/Medical_Appointment_Rescheduling_App
https://github.com/StavrosKanias/Medical_Appointment_Rescheduling_App
https://clorm.readthedocs.io/

structure rule content of the logic program used to
solve the problem is thoroughly analyzed.
Furthermore, in Section 4, various statistics describing
the performance of the solution for different datasets
are presented and comments are made on the factors
that affect the program’s execution time. Finally, in
Section 5, possible implications of a real-world
application based on this solution are presented.

2. The Appointment
(Re)Scheduling Problem

Consider a hospital with thousands of patients and
dozens of doctors. Each doctor works for 8 hours daily
providing 8 one-hour appointment timeslots per day
from Monday to Friday. In most contemporary
healthcare systems patients can book an appointment
only if it is currently available. As soon as a vacant
timeslot is requested it is granted by the system to the
patient preventing all the other patients from
requesting the same timeslot. The problem that arises
from this policy is that in the case of a cancellation the
timeslot will again become available but will most
likely be wasted since no waiting queue was formed
for another patient to claim it instantly. Even in the
case where a waiting queue exists a first-come-first-
served approach will be followed, and the system will
grant the request with the highest score for the
timeslot in question. In this case, given that the
patients would freely choose a better timeslot for
themselves if asked, the community optimal
assignment may be missed. As described in the
following example, using an AI approach to
maximization, if the system can choose not to give the
canceled appointment to the highest-scoring request
of the queue, a chain-reaction of rescheduled
appointments can occur through which a much higher
community benefit can emerge. A scenario that allows
patients to select more than one timeslot with
ascending preference order, where 6 patients claim 4
timeslots can be seen in Table 1.

Table 1
Initial Schedule

Timeslot Patient Queue Request Score

Mon (9 am) Nikos (Granted)
George
Kostas

90
87
86

Tue (1 pm) George (Granted)
John
Maria

72
60
55

Thu (11 am) John (Granted)
Maria

45
40

Fri (3 pm) Kostas (Granted)
Despoina

71
70

The score of each request is calculated as the

weighted sum of two factors, the request’s preference,

and the patient’s priority. As preference we define the
request’s temporal order among all the patient’s
requests. For example, the first request made by the
patient to the system will be registered with priority 1,
the next with priority 2 etc. The second factor, priority,
is considered as a combined metric of the patient’s
health calculated by the system according to the
patient’s history. It is used to determine the urgency
attributed to a particular request. In the current
implementation the scores are derived from the
following formula.

𝑆𝑐𝑜𝑟𝑒 =
0.3

𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
+ 0.7 ∙ 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

(1)

In the scenario presented in Table 1, after defining

the community benefit as the sum of the scores of the
granted requests, a community benefit of 278 is
offered by the healthcare system to society. In the case
where Nikos cancels his appointment, the first timeslot
becomes unclaimed. If a first-come-first-served
approach is used the timeslot will be granted to George
and thus a community benefit of 258 will emerge. In
contrast the AI approach previously mentioned and
described in depth in the next section will create the
schedule seen in Table 2 which yields a higher
community benefit of 273.

Table 2
Schedule after AI rescheduling

Timeslot Patient Queue Request Score

Mon (9 am) Kostas (Granted) 86

Tue (1 pm)

George (Granted)

72
60
55

Thu (11 am) John (Granted)
Maria

45
40

Fri (3 pm) Despoina (Granted) 70

3. Developing an AI solution
using SQL, Python and ASP

3.1. Database design

A thoughtfully designed and implemented
database was necessary to develop and test the clingo
– database interface. The relational model was chosen
for the design to make the structure of the database
more obvious. Since the interface is developed with
backend applications in mind the PostgreSQL
environment was used alongside the Python psycopg2
module. Simulating a typical hospital application, the
database was structured as can be seen in Figure 2.
This diagram was transformed into the final database
schema seen in Figure 3 and translated to Python code
as a dictionary of dictionaries.

To be more specific, the database schema in the
source code is a dictionary with the keys being the
entities and the values being subdictionaries with the

entity’s attributes as keys and tuples of two to four
elements as their values. Each value follows the
following convention, the first element is the type of
the attribute, and the second element is a boolean
signifying if the attribute is a primary key. The third
element (if it exists) signifies the uniqueness of the

attribute in a three-element tuple or the foreign entity
that this attribute points to if it is a foreign key. Finally,
the fourth element appearing only in foreign keys is
the foreign attribute to which the attribute refers to.
An example of this conversion methos for the request
entity can be seen in Figure 1.

Although in a real healthcare system the

complexity of such a database would be much higher,
only the request, timeslot and doctor entities are
needed to feed the clingo rescheduler with data to
output a general solution for the healthcare system as
can be seen in the following section, making every
other information stored in the database irrelevant.

3.2. Python interface

To fuel clingo with large scale data efficiently an
interface was developed in the Python programming
language. The functionalities required to enable the
data flow between a database and the clingo solver
were implemented as a KnowledgeBase Python class.
This class instantiates a knowledge base structure that
extends the FactBase class from the Potassco backed
CLORM framework. The goal of the interface is to

create a one-to-one copy of the database in a format
intended to function as input for the solver provided
by the Control class of the clingo Python module. A
typical use case of the interface can be seen in Figure

5.
For the conversion of the database data to clingo

predicates, two approaches were taken into
consideration, each with its own strengths and
weaknesses. Both extensively use Python’s dynamic
typing capabilities for creating the KB predicates
based on the database schema of Figure 3. An example
of this record to predicate translation for both
encodings can be found in Figure 4.

These predicates extend the Predicate class found
in the CLORM framework specifying each time the
name and type of each database attribute. At this point
it is useful to mention that clingo only supports
integers as numerical values and thus the fabricated
data used to test the application had to be adjusted to
this constraint. Another challenge that arose while
attempting to preserve the database properties in the
knowledge base was the absence of the concept of
foreign keys which was manually implemented.

To this end the merged approach was
implemented intending on keeping the information of
each database record unified in one predicate and thus
enabling the use of joins and other SQL capabilities
based on matching foreign keys. Simultaneously it
achieves minimization of the number of predicates in
the knowledge leading to faster query execution times.
Although the ability to solve the problem utilizing the
merged encoding is given to the user (the ASP program
must conform with the knowledge base encoding) the
execution time for the optimization process is lacking
behind compared to the second encoding. Another
problem with this approach in the context of ASP code
development is the creation of logic programs with
many anonymous variables making them less readable
and intuitive and simultaneously complicating the
expression of more advanced logical rules.

Figure 3: Database relational schema [10]

(a)

request(2,

26057784758,

1251,

1,

37,

0)

request(2)

patient_id(2,26057784758)

timeslot_id(2,1251)

preference(2,1)

score(2,37)

status(2,0)

cv

(c)

(b)

Figure 4: Database record (a), conversion in merged encoding (b),
conversion in split encoding(c)

'REQUEST': {

"ID": ('integer', True)

"PATIENT_ID":

('text', False, 'PATIENT', 'ID'),

"TIMESLOT_ID":

('integer', False, 'TIMESLOT',

'ID'),

"PREFERENCE": ('integer', False),

"SCORE": ('integer', False),

"STATUS": ('integer', False)

}

Figure 1: Conversion of the Request entity
from the database schema to Python

Figure 2: Database Entity Relationship Diagram [9]

To resolve these issues different forms of encoding
were considered for the optimization process. In the
end, using a split approach in the process of translating
the database records to knowledge base predicates
two significant advantages emerged. The first pertains
to the linguistic aspect of ASP as it results in the
declarative rules of the ASP program to resemble
natural language sentences. This is achieved by
splitting each table’s attribute and directly translating
it to a predicate. This means that for every attribute in
the database a new class is created containing in the
case of a primary key, only the key’s value and for all
the other attributes of a table the record’s primary key
and the attribute’s value. Although this approach
greatly simplifies the process of developing the clingo
code and increases the code’s readability it also
increases the internal complexity of the knowledge
base slowing down the basic database transactions
(select, insert, update, delete) thus making it less
suitable for the data management inside the
knowledge base. For example, in order to resolve a

select query to a split encoded knowledge base it is
necessary to first select all the primary keys that
conform to the given conditions and then collect all the
needed attributes matching the obtained primary
keys. It also produces a knowledge base with more
predicates leading to a larger data structure for the
solver to handle.

3.3. Optimal rescheduling with
ASP

Typically, every ASP program starts with the creation
of its knowledge base which functions as its input [5].
Using the knowledge base, auxiliary predicates
required to express facts and relations necessary for
the problem’s description are created. At this point the
core rules for the generation of all possible answer sets
are stated. These answer sets, in their current form,

are not always either correct (able to satisfy the real
problem) or optimal. They just describe a potential
solution of the problem’s state space. To reach a
solution that satisfies the real problem, integrity
constraints are applied, that is to say, each potential
solution is tested according to the logical constraints
imposed by the real world, becoming an actual
solution if it complies.

As each answer set describes a possible set of
actions the set generation rules are often referred to as
effect axioms. On the contrary, rules that specify
immutable subsets of the answer sets are labeled as
frame axioms. Finally, an aggregate rule is often used
to specify the parameters and the type of the
optimization process. In our case a maximization
command was given taking into consideration the
score of all the granted requests. What happens at a
technical level is that the solver sums the parameter
specified for every actual solution. If the user wants to
print one or more predicates from an answer set, a
show command can also be used.

The clingo rescheduler was developed according to
the ASP model described above. Independently of the
approach used to encode the knowledge base (split or
merged), six auxiliary predicates are used to fully
describe the initial schedule.

1. The granted predicate that is satisfied by all
requests that are granted thus having a state
value equal to one.

2. The appointed predicate that is satisfied by
all the patients having a granted request.

3. The best predicate that is satisfied by the
single highest scoring request among all the
patient’s requests. It is generated by arguing
that there is no other request belonging to
the specific patient that has a greater score.

4. The onlyOption predicate that is satisfied by
the request belonging to a patient that has
made one and only request. It is generated by
arguing that there is no other request
belonging to the specific patient in general.

5. The singleRequest predicate that is satisfied
a request that is the first and only request in
a timeslot’s queue. It is generated by stating
that there is no other request targeting this
timeslot.

Interface structure

Input: Database name, schema, credentials, and conditions
Solver parameters: Path to solver, Output predicates, Time
and model constraints, Input data subset and the type of
encoding as a boolean
Output: The optimized answer set and optimization
statistics

A typical use case

1: kb = KnowledgeBase (name, schema, credentials,
conditions) # Create the knowledge base
2: kb.toFile() (optional) # Export the knowledge base as a
text file for a better data overview
3: Create output auxiliary predicates to express the solution
4: solution = kb.run (path, outPreds, searchDuration,
models, subKB, merged) # Run an ASP program on the KB
data
5: Process the solution data (optional)
6: kb.update(entity, conditions, values) # Update KB and
DB with the results of the optimization process

Space of potential
solutions

Actual solutions

Optimal answer sets

Figure 6: Venn diagram describing the ASP development
process.

Figure 5: Basic documentation for the Knowledge Base class

6. The bestSingleRequest predicate that is
satisfied by the patient’s best (highest
scoring) request from those requests
satisfying the singleRequest property. It is
generated by arguing that there is no other
single request belonging to this patient with
a higher score.

The generated answer sets cover the following
three possible types of requests eligible for the system
to grant:

1. The granted but not best requests implying
that a patient can retain their currently
owned appointment if it appears in the
answer set that maximizes the common
benefit.

2. The not granted requests of a patient
already having a granted request, that
present a higher score than the one
currently appointed to the patient. This
enables a patient to receive a request with
higher priority if it helps to maximize the
common benefit.

3. All the requests that belong to a patient who
has not been appointed a timeslot if this
leads to the optimal answer set.

As for the frame axiom, it generates the claimed
predicate which is satisfied for every request that is
already granted and is also the best request of the
corresponding patient. This practically means that all
the already claimed requests cannot be granted to
another patient.

At this point, eight integrity constraints were
applied to the answer sets targeting three specific
areas, logic, justice, and optimization. For the logic
part two constraints were applied.

1. Each timeslot can be appointed to only one

patient.
2. Each patient can only receive one timeslot

(from a specific specialty if the general scope
is used).

The danger that appears when someone

approaches this problem with the maximization of the
common benefit in mind is that many times the system
behaves unfairly towards the individual. To prevent
this possibility and thus create a just system the
following two constraints were applied.

1. If a patient had an appointment in the
previous schedule a timeslot must also be
granted to that patient after the
rescheduling.

2. If a request is a patient’s only option, it
cannot be dismissed for the sake of a lower
scoring request even if it leads to a chain
reaction that maximizes common benefit. If
we don’t apply this constraint a patient with
only one request will most probably never
receive an appointment.

The only acceptable case in which the individual
gain will be sacrificed is when a better option
becomes available for an already appointed patient
and if granted will lead to a sub optimal common
benefit. As can be seen in the example given in
Section 2 George’s best request was not granted to
him because he already had an appointment,
resulting in the maximum common benefit without
negatively impacting him.

As for the optimization component, in order to
reduce the execution time of the clingo rescheduler
four presuppositions were introduced to the system
reducing the number of requests to be examined for
granting in the pursuit of the optimal answer set.

1. All requests that claim an already claimed

timeslot will not be taken into consideration.
2. All the single requests that are not the patient’s

best single request will not be taken into
consideration.

3. If a request is a patient’s best single request and
it has a better score than the one already
granted to the patient it will automatically be
assigned to the patient blocking all the other
requests made by the patient.

4. If a single request is attributed to an
unappointed patient, the system should grant it
automatically and block all the other requests
made by the patient. Both rules 3 and 4 intend
to maximize the number of patients served by
the system.

Finally, a maximization rule is given to the solver

leading to the selection of the answer set that satisfies
all the constraints and simultaneously offers the
highest common benefit through the grant action.

4. Evaluation

To assess whether the solution presented in this paper
is a viable option for a real healthcare system a data
fabricator class was developed in Python to produce
pseudo-realistic data according to the database design
described in subsection 3.1. The assumption made to
produce the timeslot matches most conventional
healthcare systems by assigning eight one-hour
appointments to each doctor and provides the patients
with the freedom to choose as many timeslots as they
please with an average of two requests per patient.
Also, to be more modular all the parameters needed to
create the healthcare system such as the number of
patients, the number of doctors, the time period to be
simulated (in days), the timeslot availability and the

(b)

(a)

Figure 7: The first integrity constraint (only one granted request per
timeslot) expressed in clingo for the merged approach (a) and the split
approach (b)

average demand the healthcare system has to face can
be tuned by the user. In this case, a timespan of two
weeks (10 working days) was assumed for all the
datasets. The tests were first run using a version of the
rescheduler which assumes that a patient can request
a timeslot from any medical department and is able to
only receive one at the time of the rescheduler’s
execution. This assumption was made to test the
rescheduler in a context of a general scope where the
AI has knowledge of the whole healthcare system. This
does not necessarily have to be the case as described
in subsection 3.3 where a solution which also takes
specialties into consideration is presented. The per-
specialty approach was used to test the performance
capabilities of the rescheduler in a very high demand
scenario where there is a multitude of requests
targeting every timeslot offered by a medical
department. In reality, the requests would be more
evenly distributed among the medical departments.
Finally, the option of creating the schedule described
in Section 2 intended for validity check purposes is
also provided.

Table 3
Execution time for three different datasets using split
encoding

Timeslots Patients Requests Execution Time (s)

 Best Worst

400 500 1000 0.06 2.79

960

1200

2400

0.18

152.07

2000 2500

5000 421.4 >1800

After extensive testing with various datasets, it
seems that the only intrinsic variable meaningfully
affecting the execution time of the rescheduler is the
number of timeslots offered by the system. An outside
factor that also seems to greatly affect the execution
time is the prior state of the schedule. If the previous
scheduling granted for example the lowest scoring
request for every timeslot the rescheduling time
appeared to be multiple times higher than in the case
of a more logical scheduling that had previously
granted the highest scoring requests for every
timeslot. For that reason, both scenarios have been
measured and assuming a reasonable demand of 2.5
(the requests being 2.5 times the number of timeslots)
the best and worst execution times shown in Tables 3
and 4 were obtained. Two other factors observed to
affect the execution time to a smaller degree are the
patients to requests ratio and the requests to timeslots
ratio (demand). In the first case an increase in the ratio
leads to a greater execution time since the effect of the
integrity constraint that allows each patient to only
one appointment decreases. In the second case an
increase in the ratio also leads to a greater execution
time since the effect of the integrity constraint that
allows each timeslot to be granted to only one request
decreases. In every case the introduction of variation
in the model makes the optimization process more
computationally demanding. Moreover, the
distribution of requests over the timeslots and
patients over requests can affect the execution time.
Namely, a more even distribution will lead to more

effective combinations increasing the number of
possible answer sets to be examined at the
optimization stage. Finally, the type of encoding does
not affect the result of the optimization. This was
expected due to the identical logic statements used to
express the problem. Unlike other attempts on ASP
scheduling [3] where the difference in execution time
between different encodings can be attributed to the
difference in the rule content of the ASP program,
differences in the execution time for this
implementation based on the encoding of the database
for two logically identical reschedulers can be caused
by the difference in the optimization path followed by
the solver. This can manifest in the case where
multiple answer sets provide the same maximum
community benefit. To be more precise, according to
the syntax of the rules and the expression of the
predicates clingo might choose a different path to the
optimal answer set or reach a different optimal answer
set altogether. In terms of performance the two
encodings perform similarly for a small number of
models. When the number of models becomes higher
(above 200) the cost of choosing a longer path to the
optimal answer set in terms of execution time becomes
more noticeable. The execution times for three
different datasets are displayed in tables 3 and 4 for
the merged and split encoding respectively. From the
above, we can also conclude that the number of
predicates in a knowledge base does not affect the
execution time of the rescheduler to a noticeable
degree.

Table 4
Execution time for three different datasets using
merged encoding

Timeslots Patients Requests Execution Time (s)

 Best Worst

400 500 1000 0.09 4.19

960

1200

2400

0.15

448.9

2000 2500

5000 516.9 > 1800

At this point, it can also be useful to grasp the scale

of the test data and the complexity faced by the
rescheduler. Given a scenario of T timeslots, R requests
and d demand with a relatively even distribution the
possible combinations are 2𝑅 or 2 𝑑∙𝑇 since every
request can have only two states, granted, or not
granted. This leads, even for a relatively small number
of timeslots, to an extremely large number of possible
combinations. Although this number is greatly
reduced by the application of integrity constraints the
fact remains that the complexity needed to be handled
by the rescheduler is significant to say the least. As for
a real-life application, in order to offer 2000 timeslots
in two weeks with the assumptions previously
mentioned, a hospital has to employ 25 doctors in a
certain specialty, a realistic number for outpatient
clinics in Greece.

5. Challenges of real-world
implementation

To implement the rescheduler in the real world one
must consider how the most basic assumption
previously made will be realized. It is unreasonable to
bluntly assume that given a better option at any point
in time a patient will always choose to reschedule their
appointment. Thus, for every request that was not
granted and now satisfies the grant predicate the
system will have to ask the patient for permission to
change the appointment. One of the points where ASP
solvers shine is that they not only give the optimized
solution but are also able to describe the steps needed
to reach it, thus having the ability to reason about the
optimization process. Using this feature, for every time
a granted request is canceled, the rescheduler will be
executed, producing as its output an action chain that
can lead to the schedule providing the higher
community benefit. Following this chain, the system
can notify the patients with an automated message
giving the opportunity to claim their better option. At
this point a time limit must be set for the patients to
accept or reject their new option. Once a patient with a
prior place in the chain accepts a request of higher
preference than the one currently owned, the next
patient will be notified continuing the confirmation
process of the action chain in the case of a positive
answer. Thus, each chain produced by clingo will only
be realized up to the request prior to the one where the
inability to re-schedule the appointment due to a lack
of confirmation arises for the first time, resulting in the
breaking of the chain. Only after a patient has
confirmed the appointment change will the database
be updated. This means that if a confirmation process
is ongoing and a new cancelation takes place, the
following options appear. The first option is to wait for
the ongoing process of validating the previous
rescheduling action chain to finish and then run the
rescheduler with the new state of the database as its
input. Another and probably most realistic approach is
to break the confirmation process of the previous
action chain and run the rescheduler after updating
the state of the database using only its currently con-
firmed part. In no case can the execution of the
rescheduler precede or coincide with the confirmation
process as this can lead to fueling the rescheduler with
an obsolete input that corresponds to a state of the
database where rescheduling actions caused by the
last cancelation have not been taken into
consideration.

The second aspect of this solution that needs to be
addressed is the practical limitations of its execution
time. It was observed that even in the best-case
scenario after assuming a logical scheduling has
preceded the rescheduling, if the number of timeslots
exceeds 3000 or the distribution of data is extremely
unfavorable, the time needed for the solver to output
the optimal answer set renders it almost unusable in
real circumstances. To overcome this challenge three
actions can be taken. The first is to simply keep
optimizing the code by adding rules that reduce the
number of actual solutions taken into consideration
during the optimization stage. Although the most

theoretically correct approach, even if it was possible
to forever continue optimizing, eventually each new
optimization will have diminishing returns. To
overcome this limitation, as is the case with most serial
programs, a restructuring of the rescheduler’s code to
run in parallel [6] will most probably cause a
significant decrease in execution time. Another more
practical approach is to set a time limit for the
optimization process, interrupting it and retrieving the
best available model when it expires. Following that,
the system can compare the current community
benefit to the newly acquired by the solver and choose
the highest scoring one between them. This feature has
been implemented using an interrupt in the on_model
function used by the solver.

 The third available solution, which does sacrifice
the general optimality of the output but at the same
time grants great flexibility to the application, is the
use of a batching approach. Choosing to run the
rescheduler on a subset of the data is probably the
most useful method to reduce execution time for every
kind of rescheduler even more so in a scenario like the
medical appointment rescheduling where clear
divisions can be made to separate the data needed for
optimization according to each medical specialty (as
was used in Section 4 for testing) or each doctor. This
approach is really an attempt to scale down the
problem to a department or an individual level, making
the timespan and the demand able to be handled by the
rescheduler much wider. The optimality tradeoff
increases with each specialization step, and it lies with
the system’s designer to find the right balance between
performance and general maximization of the
community benefit. It is worthwhile to mention that
the last layer of specialization, providing the most
localized maximization of community benefit, will
always lie to the resource in demand in this case the
doctor’s time, a surgical room in ORS [7], a nurse’s shift
in nurse rescheduling [8] or a meeting room for a
business focused application.

6. Conclusion

The capabilities of ASP solvers to optimize problems
with an otherwise unmanageably large search space
has yet to be utilized widely by the software industry.
One of the obstacles has always been the lack of
interfaces between the fundamental software
components and the solvers. In this paper a software
solution to bridge the gap between the database
technologies and the clingo scheduler on a high-level
programming language was presented. This solution
developed in Python was used for the development of
a fully functional application to manage large scale
medical appointment scheduling and rescheduling. A
theoretical analysis of the database design, interface
structure and clingo code was made to aid the reader
in understanding the logic used to solve the problem
with a new perspective, the community benefit
maximization approach, thus showing how the new
software capabilities provided by integrating AI to
modern software projects can revolutionize the
service sector making it [9]fair and optimized. During
the evaluation process, the application was thoroughly
tested with the results being very promising especially

when a ‘best request granted’ scheduling precedes the
application’s execution. Even without the scheduling
stage the solver proved capable of handling a
significant number of patients. It is certainly the case
that further optimization and improvements can be
made both in the clingo and in the Python fronts to
make the application more user-friendly, increase
performance and provide new features enabling the
rescheduler to handle real-life scenarios faced by large
organizations such as hospitals and companies with
large scale meeting scheduling requirements. As with
many other ASP programs, this application is very
adaptable to every sector in need of scheduling and
rescheduling solutions, thus making the study of this
paper beneficial for both understanding the ASP
development process and for providing a base for
future applications wanting to solve similar problems.

References

[1] V. Lifschitz, Answer Set Programming,

Texas: Springer, 2019.

[2] O. E. Khatib, "Job shop Scheduling under
Answer Set Programming Environment,"
International Journal of Engineering and
Innovative Technology (IJEIT), vol. 5, no. 5,
2015.

[3] C. Dodaro and M. Maratea, "Nurse
Scheduling via Answer Set Programming,"
2017.

[4] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G.
Gottlob, S. Perri and F. Scarcello, "The DLV
System for Knowledge Representation,"
2003.

[5] G. Brewka, T. Eiter and M. Truszczyński,
"Answer Set Programming at a Glance,"
2011.

[6] H. Hoos, R. Kaminski, M. Lindauer and T.
Schaub, "aspeed: Solver Scheduling via
Answer Set," 2013.

[7] C. Dorado, G. Galatà, M. Kamran, M.
Maratea and I. Porro, "Operating Room
(Re)Scheduling with Bed," 2021.

[8] M. Alviano, C. Dodaro and M. Maratea,
"Nurse (Re)scheduling Via Answer Set
Programming," 2014.

[9] N. Jukić, S. Vrbsky, S. Nestorov and A.
Sharma, "ERD Plus," 2015. [Online].
Available: https://erdplus.com/. [Accessed
2023].

[10] J. Perez, "DB Designer," 2006. [Online].
Available: https://erd.dbdesigner.net/.
[Accessed 2023].

