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Abstract  
Monitoring of bird species plays a vital role in understanding biodiversity trends, as birds serve 

as reliable indicators of ecological change. Traditional observer-based bird surveys are often 

resource-intensive and logistically challenging, prompting the need for advanced technological 

solutions. In this study, we explored the use of Convolutional Neural Networks (CNNs) for 

feature extraction and classification, along with training strategies that maximize the 

performance of these models given limited training data. Furthermore, we evaluate the 

implementation of the OpenVINO toolkit to accelerate the inference speed. Our goal is to 

establish a reliable classification model that can, with limited training data, recognize bird 

species by their calls in real time. The solution based on the study achieved 2nd rank among 

1189 teams at BirdCLEF 2023 challenge hosted in Kaggle. 
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1. Introduction 

The rapid decline in global biodiversity has become a significant concern in recent years, putting 

numerous species at risk of extinction and threatening the stability of ecosystems. As birds serve as 

important indicators of biodiversity change, monitoring their populations is essential. Traditional bird 

surveys, which primarily rely on direct observation and human expertise, can be resource-intensive and 

face logistical challenges when applied at large scales and high temporal resolutions. This highlights 

the need for more efficient, scalable, and cost-effective methods to monitor bird populations. 

Advancements in passive acoustic monitoring (PAM) technology, combined with innovative machine 

learning algorithms, present a promising solution to these challenges.  

The aim of BirdCLEF 2023 [1, 2] is to identify Eastern African bird species by sound, which is a 

pilot work of testing the effect of various management regimes and states of degradation on bird 

biodiversity in rangeland systems around Northern Mount Kenya. This is done with the aim of 

demonstrating the efficacy and cost-effectiveness of using machine learning algorithms in measuring 

the success of restoration projects. Ultimately, the goal is to achieve large-scale restoration and 

protection of the planet in a cost-effective manner. 

2. Related Work 

Challenges in training machine learning models with audios to identify bird species are [3]: 
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1. Weak labels. The main challenge is that given an audio, we have no information about where 

the bird call appears. When we clip the audio, there is a chance that the audio clip does not 

contain bird call, which introduce noise to the training process.  

2. The gap between the bird call in short audios(training data) and that in long soundscapes(test 

data). Short audios usually focus on one certain species and the bird call appears in the 

foreground. However, in soundscape, usually there are several species speaking over each 

other in the background. Making the classification model trained on short audios applicable 

to soundscape is very important because scientists need to identify birds recorded in a 

relatively noisy environment, while short audios are cost-effective as training data. 

3. Long-tailed and imbalanced distribution. Rare species have less training audios available, 

while major species have many available audios. Classification model trained with 

imbalanced dataset may give a poor performance when classifying rare species. 

 

In previous BirdCLEF challenges [4, 5, 6], state-of-the-art solutions transform the raw audio to Mel-

spectrograms and train with Deep Convolutional Neural Networks (CNNs), treating the task as an image 

classification problem. In addition, ensembles and post-processing techniques are usually implemented. 

To deal with weak labels, researchers proposed model which can be trained with longer audio clips 

by combining Convolutional Neural Networks (CNNs) with simple pooling layer on time and frequency 

dimension [7, 8]. Other approaches like Sound Event Detection (SED) employs two-dimensional CNNs 

to extract time and frequency information from audio samples, then the information is processed by an 

attention head to calculate the probability of the appearance of birds over the time dimension [9]. 

To deal with the gap between short audios and soundscape, data Augmentation and pretraining were 

implemented. Adding environmental sound without bird calls as background noise [10, 11] and Mixup 

are considered most effective. Researchers implemented Mixup [12] on both audio and Mel-

spectrograms to mix different bird calls into one training sample in order to simulate the soundscape. 

To deal with imbalanced distribution, oversampling the rare species by splitting one short audio to 

several audio clips are implemented [8]. 

In the previous BirdCLEF challenges, soundscapes are allowed to compute with GPU within 9 hours 

of inference time. In BirdCLEF 2023, soundscapes are only allowed to compute with CPU within 2 

hours of inference time. This change encouraged a focus on efficient models with a good balance 

between accuracy and speed, which can be used in the real field work. 

3. Methods 

In this section, we explains the main components of our solution to the BirdCLEF 2023 Challenge. 

3.1. Dataset 

As in previous BirdCLEF challenges, training data is provided by the Xeno-canto [13] community. 

More than 16000 audios covering 264 species are provided by the competition host.  

To further expand the dataset size, we collected additional 21000 audios which from Xeno-canto 

community. Besides the audios in which the target species appear in foreground, which we call them 

foreground audios, audios with duration less than 60 seconds in which the target species only appear in 

background, which we call them background audios, were also included.  

For pretraining, audios from previous BirdCLEF challenges were included [4, 5, 6]. The total dataset 

size was about 119000 covering 834 species. 

3.2. Evaluation 

The evaluation metric for this challenge is padded cmAP, a derivative of the macro-averaged average 

precision score as implemented by scikit-learn. The prediction data and target data of each species are 

padded with five rows of true positives, which makes it possible for the metrics to accept zero positive 

labels and less influenced by the species with very few positive labels. 



3.3. Preprocessing 

10-20 second audio clip randomly selected from raw audio is converted to Mel-spectrograms using 

librosa library [14]. For background audios, to ensure that the target species appear in the audio clip, 

we first clipped 60 seconds from the audio, cut it into for example, six 10 second audio clips and 

summed up to one 10 second mixed audio clip. After converting the audio clip to Mel-spectrograms, 

Deltas and Delta-deltas are calculated as additional input feature using torchaudio library [15]. 

3.4. Augmentations 

7 types of audio augmentations implemented using audiomentations [16] are as follows:  

1. GaussianNoise: This technique involves adding random Gaussian noise to the audio signal. 

2. PinkNoise: Noise with a power spectral density inversely proportional to frequency.  

3. Gain: Gain is used to adjust the overall volume of the audio signal. 

4. Background Noise: Adding background noise simulates the presence of other sounds in the 

environment, such as wind, rain, or human activity [10, 11]. 

5. PitchShift: Pitch shifting changes the pitch of the audio signal without altering its duration. 

6. TimeShift: Moving the audio signal in time, without changing its pitch or duration. 

7. OR Mixup: Compared to classic Mixup [12], OR Mixup uses the formula as follows: 

𝑥 = 𝑥𝑖 + (1 −  𝜏)𝑥𝑗 (1) 

𝑦 = 𝑦𝑖 + (1 −  𝜏)𝑦𝑗  (2) 

where (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗, 𝑦𝑗) are the two randomly selected samples and 𝜏 is Mixup ratio. 

 

For Mel-spectrograms, Frequency Masking and Time Masking [17] were implemented using 

torchaudio. Classic Mixup was also implemented to the Mel-spectrograms. 

3.5. Model Architecture 

We used Custom CNN and Sound Event Detection Model, proposed in [7] and [9]. 

3.5.1. Sound Event Detection Model (SED) 

As we can see in Figure 1, this model employs two-dimensional CNNs to extract and process time 

and frequency information from audio samples, then the information is processed by an attention head 

to calculate the probability of the appearance of birds over the time dimension. 

We trained this model using 10 seconds audio clips randomly selected from the audio. For inference, 

we used 10 seconds audio clip, in which the 5 seconds to predict were in the center of the audio clip. 

With this implementation, we can make prediction with attention layer on the central 5 seconds of the 

deep features encoded by CNN, which contains extra global information useful for prediction. 

 
Figure 1: Model Architecture of SED 

3.5.2. CNNs with simple pooling layer (Custom CNN) 

As we can see in Figure 2, this model splits the Mel-spectrogram along the time axis and extract 

deep features on each splitted Mel-spectrogram. After that, a GeM layer implemented to apply pooling 



on time and frequency to gather the overall information of each deep feature and create an embedding. 

Then the embedding is computed by a linear head to generate probabilities for each species. With this 

architecture, the model can be trained with long audio clip to deal with absence of bird call in short 

audio clip, while being able to make prediction on short audio clip. 

 
Figure 2: Model Architecture of Custom CNN 

 

We trained this model using 15 to 20 seconds audio clips randomly selected from the audio. For 

inference, we used 5 seconds audio clips.  

3.6. Training Details 

Virtual environment on Google Colaboratory with an A100 GPU has been used for training. We 

used Pytorch to train our models and the CNN encoders were provided by timm library [18]. For training, 

a two-stage approach was utilized. Initially, pretraining was conducted on the entire dataset comprising 

834 species. Subsequently, fine-tuning was performed on the subset of 264 species. Throughout both 

of these stages, the model was trained using CrossEntropyLoss (CE Loss) prior to employing 

BCEWithLogitsLoss (BCE Loss). The model exhibited a more rapid convergence with CE Loss 

compared to BCE Loss. However, the latter proved to yield higher performance. 

For validation, we randomly selected about 4000 audios covering 264 species as validation subset. 

The number of each species in the validation subset was in proportion to that in the whole dataset. We 

computed the Padded cmAP as Cross Validation score (CV) on the first 60 seconds of the audio. 

To deal with the class imbalance of the dataset, we used WeightedRandomSampler [19] to sample 

the audios of each species according to a uniform distribution. 

To enhance the diversity of the models in ensemble process, models were developed based on Mel-

spectrogram generated by varied parameters, with some trained utilizing CE Loss only, and with some 

trained without pretraining process. Moreover, three of the models’ head layers were additionally fine-

tuned on 30-second audio clips. Details of Mel-spectrogram parameters for each model are shown in 

Table 1 and details of other training conditions mentioned above are shown in Table 2. 

 

Table 1 
Varied Mel-spectrogram parameters were set for each model to make difference in input train data. 

Model type CNN encoder Mel bins Frequency Window  Hop length 

SED EfficientNetV2-s 128 (0 Hz, 16000 Hz) 2048 417 
SED EfficientNet-b3-ns 128 (50 Hz, 14000 Hz) 1024 535 
SED SeResnext26t-32x4d 128 (0 Hz, 16000 Hz) 2048 627 

Custom CNN EfficientNetV2-s 64 (50 Hz, 14000 Hz) 1024 320 
Custom CNN EfficientNet-b3-ns 128 (50 Hz, 14000 Hz) 1024 535 
Custom CNN EfficientNet-b0-ns 128 (0 Hz, 16000 Hz) 2048 627 
Custom CNN ResNet34d 128 (0 Hz, 16000 Hz) 2048 627 

 



Table 2 
To further enhance the diversity of models, different training conditions were set for each model. 

Model type CNN encoder Loss funtion Pretrained 30s fine-tined  

SED EfficientNetV2-s CE Loss and BCE Loss Yes Yes 
SED EfficientNet-b3-ns CE Loss and BCE Loss Yes Yes 
SED SeResnext26t-32x4d CE Loss Yes No 

Custom CNN EfficientNetV2-s CE Loss and BCE Loss Yes Yes 
Custom CNN EfficientNet-b3-ns CE Loss and BCE Loss Yes No 
Custom CNN EfficientNet-b0-ns CE Loss No No 
Custom CNN ResNet34d CE Loss and BCE Loss Yes No 

3.7. Inference Acceleration using OpenVINO 

In inference process, we generated predictions on each 5 seconds of the soundscape with 7 models 

and ensembled the predictions using weighted average method. 

To accelerate the inference speed, we used OpenVINO toolkit [20]. OpenVINO is a comprehensive 

toolkit developed by Intel to facilitate the development and deployment of deep learning models for 

various applications. The toolkit supports several deep learning frameworks, such as TensorFlow, Caffe, 

and ONNX. For Pytorch framework, we first converted the models to ONNX format and then converted 

the ONNX model to OpenVINO format.  

4. Results 
4.1. Experimental Results of Training Strategies 

Padded cmAP was calculated as the metrics in BirdCLEF 2023 challenge’s Leaderboard, denoted 

as LB which consists of two variants of public and private. Table 3 presents the experimental results of 

training strategies. In our experiment, increasing dataset size and applying OR Mixup on audios 

significantly improved the LB of single model. In addition, although class balanced sampling did not 

increase the LB of single model, it increased the LB of ensemble prediction.  

 

Table 3 
Experimental results of training strategies. Effective training strategies include increasing dataset 
size(No.2), adding background noise(No.3), OR Mixup(No.4), class balanced sampling(No.5) and 
ensemble(No.7 and No.8).  

No Models CNN encoder CV Public LB Private LB  

1 SED (baseline) EfficientNetV2-s 0.86547 0.81257 0.71667 
2 SED (1 + additional audios) EfficientNetV2-s 0.86741 0.81725 0.72584 
3 SED  (2 + more background noise) EfficientNetV2-s 0.86484 0.81935 0.73047 
4 SED (3 + OR Mixup) EfficientNetV2-s 0.86053 0.82349 0.73141 
5 SED (4 + class balanced sampling) EfficientNetV2-s 0.85610 0.82209 0.73008 
6 Custom CNN  

(additional audios included) 
ResNet34d 0.86511 0.81127 0.71187 

7 Ensemble (4 + 6) - - 0.82922 0.73869 
8 Ensemble (5 + 6) - - 0.83110 0.74318 

 

From Table3, we can see that adding more background noise to SED model improves the 

performance, implying that heavy background noise augmentation can improve the robustness of the 

model. To further investigate the effect of background noise, additional experiment was conducted on 

Custom CNN with EfficientNetV2-s encoder. The results of the experiment are presented in table 4.  

Comparing the results in Table3 and Table 4, we can see that the impact of adding background noise 

actually varies. Adding background noise improves the performance of SED model while worsening 



the performance of Custom CNN. In addition, with the same training dataset, SED model performs 

better than Custom CNN in the test set. The result indicates that model architecture with attention 

mechanism may be more robust to the complex acoustic environments in the real world. 

 

Table 4 
Experiment on background noise augmentation. The value in () shows the LB of SED model trained on 
whole dataset. The effect of aggressive background noise varies between SED and Custom CNN. 

No Models CNN encoder Public LB Private LB  

1 SED 
 (trained on training subset) 

EfficientNetV2-s 0.81725 0.72584 

2 SED  
(1 + more background noise) 

EfficientNetV2-s 0.81935 
(0.82643) 

0.73047 
(0.73754) 

3 Custom CNN 
(trained on whole dataset) 

EfficientNetV2-s 0.82162 0.73684 

4 Custom CNN 
(3 + more background noise) 

EfficientNetV2-s 0.81823 0.73426 

4.2. Inference time with OpenVINO toolkit 

Inference was conducted on Kaggle CPU environment. The inference time estimation of 10 minutes 

soundscape with EfficientNetV2-s based SED model in Pytorch format and that with OpenVINO format 

is presented in Figure 3. We can reduce inference time by about 45% with OpenVINO toolkit. 

 

 
Figure 3: Inference time estimation of Pytorch model and OpenVINO model on 10 minutes 
soundscape, with 50 loops for each model.  

4.3. Performance of Final Submission Models 

The performance of single model for final submission and ensemble result are listed in Table 5. The 

final submission achieved 2nd rank among 1189 teams at BirdCLEF 2023. The top 2 best-performing 

models are SED with EfficienNetV2-s encoder and Custom CNN with ResNet34d encoder. 

 



Table 5 
Single model performance of final submission models and the ensemble result. 

Model type CNN encoder Public LB Private LB  

SED EfficientNetV2-s 0.82643 0.73754 
SED EfficientNet-b3-ns 0.82534 0.73602 
SED SeResnext26t-32x4d 0.81947 0.72688 

Custom CNN EfficientNetV2-s 0.82070 0.73681 
Custom CNN EfficientNet-b3-ns 0.81652 0.71963 
Custom CNN EfficientNet-b0-ns 0.81564 0.71734 
Custom CNN ResNet34d 0.82593 0.73985 

Ensemble - 0.84123 0.76369 

 

5. Conclusion and future work 

This study demonstrates the effectiveness of employing Convolutional Neural Networks and 

effective training strategies for recognizing bird species in complex acoustic environments. By 

expanding the dataset, applying various augmentation techniques, and utilizing different model 

architectures, we were able to enhance the model's performance and mitigate challenges presented by 

weak labels, gap between train and test audios, and imbalanced data distribution. Our experiments 

suggest that model architecture containing attention layer is more robust to the environmental noise and 

is better suited for recognizing bird species in complex acoustic environments of the real world. 

Furthermore, the implementation of OpenVINO toolkit substantially accelerated the inference speed, 

highlighting the potential for real-time bird species recognition in biodiversity monitoring applications. 

Future work may include experiments on more diverse datasets and encoders. In order to better 

gauge the generalizability of our models, performance should be evaluated on more diverse and 

challenging datasets, including recordings from different geographical regions, seasons, and habitats, 

as well as those containing rare or endangered species. The effect of the training strategies should be 

evaluated on other CNN encoders, as well as Vision Transformers. Integration with IoT devices and 

real-time monitoring systems is another challenging future work for the ultimate goal to achieve the 

vision of restoring and protecting the planet at scale. 
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