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Abstract
In this study, we advance the field of scientific text simplification by harnessing the capabilities of Alpaca
LoRA 7B [1], a large language model derivative of the 7B LLaMA [2]. We expand the dataset for Task 3
of SimpleText@CLEF-2023 [3] by integrating data from Task 2, aiming to identify complex terms in need
of explanation for better text comprehension. Our methodology involves rigorous fine-tuning, prompt
engineering, and the application of the LENS score [4] as a tool for model reranking and evaluation.
Our findings suggest the efficacy of our approach in creating a more effective text simplification system.
Our final model demonstrates expertise not only in expanding abbreviations, but also in explaining
complex terms present in the input sentence. This ability allows it to create texts that are both easy to
understand and simple to comprehend, making the information presented more accessible and opening
the door for more efficient communication. However, the study also highlights several challenges and
areas of improvement, providing a valuable contribution to future research in text simplification. Our
research underscores the potential of large language models like Alpaca LoRA 7B in transforming
complex terminologies into more accessible language, ultimately enhancing the public’s understanding
of scientific literature.
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1. Introduction

In the rapidly evolving landscape of Natural Language Processing (NLP), the simplification of
intricate texts remains a prevalent challenge. To tackle this, we engage Alpaca LoRA 7B [1], a
state-of-the-art large language model fine-tuned from the LLaMA architecture [2] using 52K
instruction-following data [5]. This model, further refined using the Low-Rank Adaptation
(LoRA) technique [6], presents an effective solution for condensing and simplifying complex
scientific narratives.

This paper explores our experiment in using Alpaca LoRA 7B [1] to address Task 3 of the
SimpleText CLEF shared task [3], which aims to simplify scientific abstracts given a specific
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Input snt_id: G06.2_2805209921_6: we have proven that transfer learning is not only applicable
in this field, but it requires smaller well-prepared training datasets, trains significantly faster
and reaches similar accuracy compared to the original method, even improving it on some
aspects.
Output extended, simplification, complex words: Transfer learning is a technique used
in machine learning which involves taking a pre-trained model and using it as a starting point
for a new model. It requires smaller well-prepared training datasets, trains significantly faster
and reaches similar accuracy compared to the original method, even improving it on some
aspects.
Output default, simplification, default: Transfer learning is better than the original
method.

Figure 1: Example of text simplification, comparing the different model approaches. The examples
demonstrate how the extended model with the simplification prompt and complex words evaluation
provides a detailed explanation of the concept transfer learning. In contrast, the default model with the
simplification prompt and default evaluation provides a much simpler, yet less informative statement.

query. While previous efforts have made progress in automatic simplification of scientific texts,
there remains a gap between these scholarly texts and their accessibility to the public. Our goal
is to further diminish this barrier by deploying an automated text simplification system that
retains critical information while reducing linguistic complexity.

Building upon the findings from prior research that demonstrated the complementary nature
of Task 2 and Task 3 [7], we also explored incorporating data from Task 2 to extend the data for
Task 3 of the SimpleText shared tasks. With the data from Task 2, we seek to identify terms
or concepts that need explanation for understanding a passage. With this, we aim to provide
valuable insight into the key elements of scientific texts that typically impede understanding. By
incorporating this data into our work with Alpaca LoRA 7B, we intend to create a more attuned
and efficient text simplification system that anticipates and addresses potential comprehension
obstacles.

The key contributions and findings of this study are the following:

• We illustrate the benefits of dataset augmentation by showing that the integration of the
Task 2 dataset (consisting of difficult terms, identified in scientific abstracts, and their
corresponding explanations) into the Task 3 dataset (comprising simplified sentences)
can enhance the performance and generalization capabilities of the model, improving the
text simplification process.

• We demonstrate the effectiveness of the Alpaca LoRA 7B model for the text simplification
task. By leveraging its instruction following capabilities, Alpaca LoRA 7B was able to
effectively simplify complex linguistic constructs.

• We highlight the efficacy of the LENS score as a method for model re-ranking and
evaluation in the context of text simplification. Compared to traditional metrics such as
SARI, the LENS score more accurately captures the nuances of text simplification and
aligns more closely with human judgement on the quality of text simplifications.

Our study marks an exploratory step towards understanding how effectively large language
models like Alpaca LoRA 7B [1] can simplify complex terminologies and concepts into more



accessible language. Our findings offer insights into the potential of these models and their
applicability to text simplification, making a contribution to improving public understanding
of the scientific literature. Figure 1 shows an example of how our model can explain complex
terms like transfer learning and simplify the sentence.

The structure of the paper continues as follows: Section 3 discusses our default and extended
datasets used in model training, their origin, the process of their integration, and their effect on
the model’s performance.

In Section 4, we provide a comprehensive overview of the various components and steps
involved in our approach. We begin by discussing the utilized model architectures in Section
4.1, followed by an exploration of the prompt engineering process in Section 4.2. We then
investigate the incorporation of complex terms in Section 4.3, and subsequently explain the
fine-tuning procedure in Section 4.4. The evaluation methodology is presented in Section 4.5,
and finally, we introduce the LENS Score in Section 4.6 as a metric for assessing the quality of
our results.

Finally, sections 5-7 outline our text simplification findings, highlighting the importance of
suitable approaches and strategies, and ending with prospects for future research.

2. Background

Text-to-Text Transfer Transformer (T5) T5 [8], grounded in transformer architecture,
operationalized a notable approach in the field of natural language processing (NLP) by recasting
all tasks as text-to-text problems. This strategy allowed a single model to address a wide variety
of NLP tasks, which was an important step in the development of these technologies. Despite
its advancements, T5’s effectiveness is intimately tied to the quality and volume of its training
data, and the model lacks the ability to genuinely understand the textual content it processes.
These factors have shaped its strengths and limitations in practice [8].

Despite these limitations, the success of T5 underscores the potential of transformer-based
Large Language Models (LLMs) in tasks like text simplification. LLMs generate contextu-
ally appropriate responses, enabling nuanced simplifications. Yet, they require considerable
computational resources and can occasionally produce verbose or off-topic outputs.

Alpaca 7B The Alpaca 7B model [9], introduced by Stanford University, is an instruction-
following language model, fine-tuned from Meta’s LLaMA 7B [2]. This compact and efficient
model closely parallels the capabilities of OpenAI’s models, notably text-davinci-003, but
offers a cost-efficiency alternative for academic research.

The development of Alpaca 7B addresses key challenges in training high-quality, budget-
friendly instruction-following models. For that, an innovative adaptation of the self-
instruct method was utilized. With 175 initial human-written instruction-output pairs,
text-davinci-003 was used to generate an additional 52,000 instruction-following demon-
strations [5], which were then employed to fine-tune Alpaca 7B using Hugging Face’s training
framework. text-davinci-003 refers to the third version of a text-based model developed
by OpenAI [10].



Preliminary human evaluations demonstrated favorable performance of Alpaca compared to
text-davinci-003 [9]. However, Alpaca does share common language model limitations, such as
generating false information and perpetuating social stereotypes. Further, although 7 billion
parameters are already small in terms of Large Language Models, Alpaca 7B’s size remains a
barrier. Hence, the need for more compact models is evident. Parameter-efficient Fine-tuning
(PEFT) techniques like Low Rank Adaptation (LoRA) come into play as a potential solution for
size constraints without compromising performance.

Low Rank Adaptation LoRA Emphasizing efficiency in advanced natural language pro-
cessing, and because of limitations to the available hardware, Low-Rank Adaptation (LoRA) [6]
was applied to the Alpaca 7B model. This technique introduces trainable rank decomposition
matrices at each Transformer layer, substantially reducing the number of trainable parameters.

The impact of LoRA on Alpaca 7B has been transformational, reducing trainable parame-
ters to a mere 16 million, while preserving model performance [1]. This reduction mitigates
computational demands and cost constraints, rendering deployment of the model more feasible.

Learnable Evaluation Metric for Text Simplification (LENS) LENS was developed to
address limitations in current text simplification evaluation metrics. Leveraging a modern
language model, LENS is trained on the SimpEval corpus, a robust dataset featuring human
ratings of text simplifications from multiple sources, including GPT-3.5. Through this method,
LENS captures nuanced aspects of text simplification that conventional metrics might overlook.
The crux of its functionality lies in its adaptivity: LENS adjusts and improves as it encounters
more data, increasing the accuracy and relevance of its evaluations. By aligning more closely
with human judgment than traditional metrics, LENS offers a promising tool for evaluating and
advancing text simplification technologies, as shown by Maddela et al. [4].

3. Dataset

During our training procedure, we primarily utilized the Task 3 dataset for fine-tuning our
models. Task 3 comprised a parallel corpus of simplified sentences originating from Medicine
and Computer Science domains. The simplification was performed either by a master student
in Technical Writing and Translation or by an expert duo consisting of a computer scientist and
a professional translator [3]. Despite its quality, the Task 3 dataset posed a challenge in terms
of data scarcity, as it consisted of only 648 sentence pairs.

In an effort to address this challenge and enhance the stability of our model, we incorporated
data from Task 2. The Task 2 dataset, also drawn from Medicine and Computer Science domains,
consisted of scientific abstracts sourced from the Citation Network Dataset and Google Scholar
and PubMed articles focusing on muscle hypertrophy and health. These were annotated by a
master student in Technical Writing and Translation, who assigned difficulty scores to extracted
terms, resulting in a total of 453 annotated examples [3].

Our approach was to integrate the Task 2 dataset into the training process to assess if a larger
amount of data, pointing out difficult terms, could potentially boost the model’s performance.
By merging Task 2 and Task 3 datasets, we aimed to not only increase the quantity of the



training data but also its diversity, thereby enhancing the model’s overall performance and
generalization capabilities.

It is important to highlight that our approach did not involve the utilization of any supple-
mentary data or the implementation of other data augmentation techniques. We solely relied
on the data from Task 3 as the default dataset, and the integration of Task 2 data resulted in the
extended dataset. In the subsequent sections, we will refer to the dataset sourced from Task 3 as
the default dataset and the combined dataset from Task 2 and Task 3 as the extended dataset.

4. Methodology

In this section, we outline our research methodology involving the utilization of the Alpaca 7B
model optimized by Low Rank Adaptation (LoRA) for text simplification. We employed strategies
such as prompt engineering, identification of complex terms, rigorous fine-tuning, and a unique
two-option evaluation process. Furthermore, we used the LENS score for assessment and model
fusion to combine the strengths of multiple models. The overall setup of our submission is
shown in Figure 2.
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Figure 2: Schematic depiction of the training architecture. Input data, originating either from Task
3 (default) or a combination of Task 2 and 3 (extended), is paired with predefined prompt templates.
The models are then fine-tuned using a wide variety of combinations of the hyperparameters. After
fine-tuning, these models are evaluated on two tasks: (1. default) direct text simplification or (2. complex
terms) a combination of intermediate outcomes from Task 2 (identification and explanation of challenging
terms) with text simplification. Performance assessment is further conducted by computing the LENS
score of text simplifications generated on the test set. The output attaining the highest LENS score was
selected for the final submission.



4.1. Explored Model Architectures

In this section, we conducted tests on various language models and manually evaluated them to
determine the most suitable model for the given task. We analyzed T5 and Alpaca LoRA 7B
models.

Text-to-Text Transfer Transformer (T5) In our initial experimentation, we adopted T5,
t5-base from Hugging Face, as a baseline model for the text simplification task. However, we
encountered a significant limitation with this approach. The output generated by the T5 model
was essentially identical to the input, which rendered it ineffective for our purposes. As a result,
we swiftly rejected the idea of using T5 as our primary model.

Alpaca LoRA 7B Even without fine-tuning, the Alpaca LoRA 7B model demonstrated poten-
tial in our preliminary manual evaluations of the text simplification outputs. One example can
be seen in Figure 3. Thus, we pursued further investigation and optimization of this model to
potentially extend its usability in the context of text simplification.

4.2. Prompt Engineering

We conducted experiments using three distinct prompt templates: default, short, and simplifica-
tion. The simplification prompt template aimed to tackle the challenge of explaining complex
concepts in a way that is understandable to a 5-year-old child. By utilizing this prompt tem-
plate, we sought to simplify the language and structure of the generated responses, making
them more accessible and easier to comprehend. These templates were designed to provide
specific instructions to guide the model’s generation process and explore different approaches
to improve the output quality.

For a detailed list of the prompt templates used in our experiments and their corresponding
instruction prompts, please refer to Appendix A.

Input snt_id: G06.2_2805209921_6: we have proven that transfer learning is not only applicable
in this field, but it requires smaller well-prepared training datasets, trains significantly faster
and reaches similar accuracy compared to the original method, even improving it on some
aspects.
Output default: Transfer learning is not only applicable in this field, but it requires smaller
well-prepared training datasets, trains significantly faster and reaches similar accuracy com-
pared to the original method, even improving it on some aspects.
Output simplification: Transfer learning is applicable in this field, trains significantly faster
and reaches similar accuracy compared to the original method, even improving it on some
aspects.

Figure 3: Comparison of Alpaca LoRA 7B model’s text simplification output without fine-tuning. default
prompt template shows the model’s output with a default prompt which is nearly identical to the input.
simplification prompt template presents a simplified version, showing the model’s potential for text
simplification without any fine-tuning.



4.3. Complex Terms Identification

First, we employ the model to identify complex terms within a given input text. We then retrieve
definitions for these complex terms, providing a way to make them more understandable. Now
we have a set of complex terms (e.g., transfer learning) and their definition. Next, we provide
the model with these definitions as well as the original text to create a simplified version of the
text. By integrating the explanations of complex concepts into the simplified text, we intend
to minimize the need for prior knowledge, thus enhancing the text’s understandability for
a wider audience. The process is visualized in Figure 4. The idea of enhancing our model’s
performance by utilizing intermediate results draws inspiration from the Chain-of-Thought
Prompting approach. This strategy significantly improved the outcomes of large language
models in tasks like complex reasoning [11]. In the following section, we refer to this idea of
using complex terms and their definitions as complex terms.

4.4. Fine-Tuning

The fine-tuning process was carried out on numerous models, incorporating the two distinct
datasets presented in Section 3 (default and extended), three varying prompt templates presented
in Section 4.2 (default, short, and simplification), as well as a variety of hyperparameters.

The training was subjected to a series of hyperparameter tuning experiments. In this context,
the number of epochs was varied, ranging from 3 to 10, to investigate the optimal duration for
training to balance the trade-off between model performance and computational efficiency.

Another important aspect of the training was the learning rate scheduler. The use of the
learning rate scheduler aimed to optimize the learning rate during the training process, adapting
it based on the progress of the training. Two batch sizes, 32 and 64, were considered to observe
their influence on the model’s learning and performance. It’s worth noting that a single training
epoch typically took around 8 minutes, highlighting the computationally intensive nature of
the procedure. Please refer to Appendix B for detailed information on the hardware used.

In addition to the aforementioned parameters, we evaluated the performance of various input
prompts using the three given prompt templates. This involved experimenting with diverse
instructions and task descriptions, as these factors can significantly influence the effectiveness
of the model’s training and eventual performance.

4.5. Evaluation of Fine-Tuned Models

The fine-tuned models from the previous section were evaluated using two different methods:
(1. default) where text simplification was exclusively applied to the source sentence, following

Identify terms in {input}
= terms

Define {terms}
= definitions

Given {terms} & {definitions}. Simplify {input}
= simplified

Figure 4: Illustration of the complex term identification pipeline. The process involves identifying
and explaining difficult terms first and then performing the text simplification task using intermediate
results.



the default approach, or (2. complex terms) where the process involved starting with complex
terms, providing explanations for those terms, and leveraging all intermediate results to simplify
the text, as elaborated in Section 4.3. Evaluating the fine-tuned models on the default dataset
should naturally align with the default method, and similarly, the extended dataset with the
complex terms approach. Nevertheless, we tried an alternative, which involves blending these
approaches, illustrated by the dotted line in Figure 2.

4.6. Model Fusion

In our approach, we leverage the power of ensemble learning to tackle the task of text sim-
plification. Our goal is to enhance the understandability and readability of text by combining
the outputs of multiple models and selecting the best result for each sample. We do this with
LENS [4], which forms a critical aspect of our evaluation process.

5. Results

In this section, we elaborate on the findings from our experiments. We noted that some models,
like T5 or specific configurations of the Alpaca LoRA model using the short template with the
default dataset, showed inadequate performance during testing. The simplifications made by
these models were either identical to the input or incomplete, with some instances resulting in
the repeated use of the same word. Given these limitations, we chose not to further investigate
or utilize these models in our project.

One interesting result we observed was that our approach using the Alpaca LoRA 7B resulted
in a 10% average reduction in sentence size. However, shorter sentences do not necessarily
equate to better readability. The readability improvement rate was found to be within the
range of 2%-5%. Like the T5 model, our fine-tuned models also had their share of imperfections.
These included instances of incomplete translations, representation of summaries as bullet
points, and in some cases, over-complication of the simplification process. The latter was
particularly noticeable when the model using complex terms introduced too many definitions,
which counterintuitively complicated the text rather than simplifying it. These are areas that
require attention for improvement in subsequent iterations of our text simplification model.

The experimentation also revealed an intriguing trend where simpler methods often outper-
formed their more complex counterparts. For example, using the default dataset, coupled with
fine-tuning via the simplification prompt template and evaluation using the default method,
yielded a selection rate of over 50% in the model fusion phase. This showcases the potential
effectiveness of simpler training and evaluation processes.

Fine-tuning with the extended dataset and evaluating using complex terms with the simpli-
fication prompt template resulted in a selection rate of over 20%. This further underlines the
importance of customizing the training and evaluation processes based on the unique demands
of text simplification tasks. This specific model stands out in simplifying and elaborating on
complex terms. It provided detailed explanations which aided the simplification process. An
example of this can be seen in Figure 1. Here, the model clarifies the concept of transfer learning
before beginning the summarization. This example demonstrates how our model successfully
adds new information to help to understand and simplify complex concepts.



The model also demonstrated proficiency in explaining abbreviations. For instance, it could
expand www into World Wide Web (WWW) and p2p into peer-to-peer (P2P). This capa-
bility adds another layer of utility in simplifying and clarifying complex text by demystifying
unfamiliar abbreviations for the reader.

However, not all approaches proved successful. The short prompt template, for instance, con-
sistently underperformed across all provided configuration choices. This stresses the necessity
to strike a balance between simplicity and effectiveness in text simplification tasks. Figure 5
shows the selection rate of the models during the model fusion phase.

In addition to our evaluation, the official evaluation results utilizing established metrics such
as SARI, BLEU, and FKGL can be found in Appendix C. These results offer a comprehensive
assessment of the performance of our text simplification models.

6. Limitations

Our approach, while promising in its outcomes, is subject to certain limitations that are essential
to acknowledge. One of the issues is the occasional equivalence of input and output. While this
does not increase the complexity of the input, it is not the outcome we desire. Ideally, a simplifi-
cation model should always render an output that is less complex and more comprehensible
than the input. However, our model does not consistently ensure this.

Furthermore, some cases require additional information to simplify a sentence effectively,
such as providing a simpler explanation for a complex term or concept. We attempted this with
our model using the extended dataset and complex terms for evaluation. However, these results
might not be incorporated into the model fusion phase. This is because our model fusion phase
struggles to automatically evaluate scenarios where the simplification significantly deviates
from the original input due to the lack of a reliable metric. This limitation presents a challenge
in delivering accurate text simplification when necessary.

Even with the useful LENS score as a tool for evaluating simplification, it carries inherent
limitations, particularly when applied to unlabeled data. For example, instances of excessive
explanatory information or elaboration can be misinterpreted as hallucinations by the LENS
evaluator, consequently leading to inaccurately low scores. Moreover, when employing Large
Language Models (LLMs), the issue of hallucinations continues to pose a significant challenge,
underscoring an area that requires further exploration and methodological refinement.

8%
5%
8%

21%
57%

Dataset Prompt Template Evaluation Method
default simplification default
extended simplification complex terms
extended default complex terms
default default default

other

Figure 5: Selection rate of the models during the model fusion phase.



An additional limitation lies in the common misconception equating text simplification to
summarization. While both share the aim of rendering complex information more digestible,
they are distinct tasks. Summarization concentrates on shortening the text while retaining
its core ideas, whereas simplification is dedicated to reducing complexity, which does not
necessarily involve decreasing the text’s length. This divergence in objectives introduces unique
challenges not fully addressed by our present model.

Constraints concerning time and computational power further limit the exploration of di-
verse approaches and models. Identifying suitable evaluation metrics that accurately measure
the effectiveness of text simplification also remains a substantial challenge. These factors un-
derline the complexities and challenges involved in the quest for effective text simplification
methodologies.

7. Conclusion

The field of text simplification presents various challenges, but our research has revealed
promising pathways. Simple approaches utilizing pretrained large language models, targeted
prompts, and adapted training strategies can lead to significant strides towards more effective
text simplification. The findings emphasize the importance of using the right techniques and
prompts to find a balance between simplicity and effectiveness in text simplification tasks.

A successful text simplification process should aim to elucidate complex words that may be
unfamiliar to the reader and expand abbreviations to ensure clarity. These elements are crucial
in reducing textual complexity without compromising on the richness of the information being
conveyed.
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A. Prompt Engineering

A.1. Templates

Default Default prompt template provided by Alpaca-LoRA [1]:

Below is an instruction that describes a task,
paired with an input that provides further
context. Write a response that appropriately
completes the request.
###
Instruction:
{instruction}
###
Input:
{input}
###
Response:

Short Short prompt template without any instruction:

###
Instruction:
{instruction}
###
Input:
{input}
###
Response:
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Simplification Modified prompt template specifically for simplification tasks:
Below is an instruction that describes a
simplification task, paired with an input
that provides further context.
Write a simple response that appropriately
completes the request. Write your response
as you would talk to a 5-year-old.
###
Instruction:
{instruction}
###
Input:
{input}
###
Response:

A.2. Instructions

This section shows the prompts for the two datasets used in this paper. The instructions are
interpolated in the previously provided template.

Default For the default evaluation process, we used a simple instruction prompt.
Simplify the following sentence

Complex Terms For the complex terms evaluation, we used chained the model using the
following two instruction prompts.

1. To identify the difficult terms:
Decide which terms (up to 5) require
explanation and contextualization to
help a reader understand a complex
scientific text

2. To obtain definitions for the previously identified terms:
Provide a short (one/two sentence)
explanations/definitions for the detected
difficult terms: {term} in
the context of the following sentence:

B. System Environment

This section provides an overview of the system configuration and software dependencies
employed in the development and implementation of our research system.

To fine-tune and perform inference with the model, 8 cores 32 GB RAM with a 16 GB Tesla
T4 GPU was utilized, providing the necessary computational resources. The model we used is
chainyo/alpaca-lora-7b from Hugging Face, which is a LLaMA-7B fine-tuned model on
the Stanford Alpaca cleaned version dataset.



C. Official Assessment

This section presents a detailed analysis of the official evaluation of the SimpleText CLEF shared
task. All figures in this section show a graphical representation of the ranking of all submissions.

Figure 6 shows the FKGL scores, a measure of text complexity. Here, our ensemble model
outperforms all the models we submitted, achieving the lowest FKGL score. This result is
expected given the way our model fusion works, which always selects the simplest version of
our models.

Figure 7 shows the SARI scores. Once again, our ensemble model stands out with the highest
SARI score of all our submissions. As SARI is a critical criterion for our model fusion, this high
score is not surprising. However, it is worth noting that models that clarify complex terms can
deviate significantly from the target sentence, and consequently receive a lower score. This is
despite the potential improvement in overall readability and comprehension.

Figures 8 and 11 show the BLEU scores and Levenshtein similarity scores respectively. Both
metrics highlight a correlation between models that produce outputs that are very similar to
their inputs. Since this pattern was observed in our models without fine-tuning or prompt
engineering, it is expected that these models would also achieve the highest overall BLEU
scores. It is clear from these figures that preserving the original sentence structure and content
contributes significantly to higher scores.

In conclusion, our ensemble model, which is designed to incorporate the strengths of all our
models, consistently shows superior performance across multiple evaluation metrics. However,
it is important to keep in mind that optimal text simplification may involve an acceptable level
of deviation from the original sentence, if it results in improved readability and comprehension
for the intended audience.



Figure 6: FKGL (Flesch-Kincaid Grade Level) scores for the text simplification models. The FKGL metric
measures the grade level required to understand the text, with lower scores indicating simpler and more
accessible language.



Figure 7: SARI (System-level Automatic Evaluation Metric for Text Simplification) scores for text
simplification models. Higher values indicate better quality simplifications. SARI is a popular metric
that evaluates the overall quality of text simplification by comparing the generated simplified text to
reference simplifications.



Figure 8: BLEU (Bilingual Evaluation Understudy) scores for the text simplification models. BLEU
measures the overlap between the generated simplified text and reference simplifications, with higher
scores indicating better similarity.



Figure 9: Compression ratios for the text simplification models. Compression ratio measures the
reduction in sentence length achieved by the text simplification models, with higher values indicating
more significant simplification.



Figure 10: Number of sentence splits for the text simplification models. Sentence splits measure the
extent to which the original sentences were divided during the simplification process, with lower values
indicating better preservation of sentence structure.



Figure 11: Levenshtein similarity scores for the text simplification models. Levenshtein similarity
measures the similarity between the generated simplified text and the original text, with higher values
indicating better preservation of the original content.



Figure 12: Percentage of exact copies for the text simplification models. This metric measures the
extent to which the generated simplified text is an exact copy of the original text, with lower values
indicating better paraphrasing and simplification.



Figure 13: Proportion of additions for the text simplification models. This metric measures the extent
to which additional information was introduced during the simplification process, with lower values
indicating better adherence to simplicity.



Figure 14: Proportion of deletions for the text simplification models. This metric measures the extent
to which unnecessary or redundant information was removed during the simplification process, with
lower values indicating better conciseness.



Figure 15: Lexical complexity scores for the text simplification models. This metric measures the
complexity of the vocabulary used in the generated simplified text, with lower scores indicating simpler
and more accessible language.
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