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Abstract1

Comprehending scientific texts is crucial for succeeding in education and beyond. However,
individuals who are not experts in a particular scientific field often face difficulties
understanding such documents. This is because scientific articles contain challenging
vocabulary, complicated language, and lengthy structures, which make them difficult to
comprehend without prior knowledge. This working note contains the results for SimpleText
task 2 (identification and explanation of difficult concepts) and SimpleText task 3
(simplification of difficult text passages). Several statistical and AI-based models were used to
solve these tasks. The results of the models were assessed according to the quality of the
results.
In order to solve the tasks mostly autoregressive Large Language Models (LLMs) were used.
In order for BLOOM and BLOOMZ to work effectively prompts with examples were needed
while for GPT-3 simple command prompts were more effective. Apart from LLMs statistical
and graph-based models were also used.
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1. Introduction
Insufficient fundamental knowledge can inhibit reading comprehension and limit access to
information. Simplifying scientific texts can serve as a helpful tool as it aims to enhance the reader’s
comprehension by connecting complex content to fundamental vocabulary. Hence, scientific concepts
become accessible by adjusting the linguistic level. However, traditional methods of text
simplification may eradicate crucial aspects of concepts and structures. Simplification aims to reduce
text complexity while preserving the original information and meaning.
For the CLEF 2023 SimpleText lab competition [2][3], task 2, which seeks to identify difficult
concepts and subsequently explain them, and task 3, which aims to produce a simplified version of a
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scientific text, were dealt with. Different models were used to execute the tasks while taking their
quality of the results into account as a final way of assessment.

Nowadays, the trend for sentence simplification has shifted towards utilizing deep learning
techniques, which is in line with most natural language processing (NLP) tasks. One area of research
involves a so-called sequence-to-sequence-based neural network to forecast explicit edit operations to
create a simplified sentence taken from the original data. Dong et al. [4] proclaim a neural
Programmer-Interpreter approach as an approximation to the human ability of repetitious cognitive
adaption. Later, Cumbicus-Pineda et al. [5] added a graph module that incorporated the syntactic
information of sentences to facilitate detecting complex phrases during the simplification process.
Meanwhile, however, it is common practice to take advantage of existing pre-trained language models
such as BERT [6], RoBERTa [7], or GPT-3 [8].

2. Approach
2.1.1 Task description
The goal of task 2 is to identify up to five difficult terms in a given sentence [2]. For each term an
explanation needs to be provided [2]. Additionally an identified difficult term needs to be rated on a
scale from 0 to 2 where 0 denotes a term where the meaning can be derived and 2 denotes a term
where deep knowledge is needed to comprehend the term.

2.1.2 Data description
The train dataset used for this task consists of different sentences from abstracts from high-ranked
scientific publications [2, 3]. For each sentence a difficult term along with a difficulty rating and a
definition for the term are given. The total amount of rows (i. e. sentences) for the train dataset
consists of 453 rows. For solving this task a subset of 203 rows were used. The subset of the train set
only contains difficulty ratings of 1 (moderately difficult term) and 2 (very difficult term).

For the test set a total amount of 152,072 sentences (i. e. rows) are given. This dataset is denoted as
the large dataset. The medium dataset is a subset of this dataset and consists of 4,797 sentences and
the small dataset is a subset of the medium dataset and consists of 2,234 sentences. Task 2 was solved
using the medium dataset.

2.2 Method description
2.2.1 Identifying difficult terms
For the identification of difficult terms four different models were used. Two AI models which were
used are BLOOM and GPT-3. One statistical model, YAKE, and one graph-based model, TextRank,
was used. No manual interventations were made for the results.

YAKE
YAKE is an unsupervised model which is able to automatically extract keywords in a given text based
on statistical properties of the text [9]. YAKE was used through the PKE package [10]. No special
parameter modification was made when using YAKE since the default parameters for the
implementation via PKE were used.

TextRank
Just like YAKE TextRank also automatically extracts keywords in a given text [10]. In contrast to
YAKE is TextRank a graph-based model [11]. TextRank was also accessed via the PKE package [9]
and the default model parameters were used.

BLOOM



BLOOM is an LLM which is trained to continue text from a prompt [12]. The prompt which was used
can be found in the appendix. The examples which were used in the prompt are a small subset of the
train dataset. BLOOM was used through the Hosted Inference API from Hugging Face [13] and no
changes to the default parameters were made.

GPT-3
GPT-3 is also an LLM and was introduced in 2020 [14]. The prompt which was used is in the
appendix. The model which was used is text-davinci-003. The temperature was set to 0.7. The
maximum amount of tokens is 256. The top probability was set to 1 and the frequence and presence
penalty were set to 0.

2.2.1.1 Rating of difficult terms
For the rating of the identified difficult terms BLOOM was used for the difficult terms generated by
YAKE, TextRank and BLOOM. GPT-3 was used for rating the difficult terms generated by GPT-3.
The prompts for BLOOM and GPT-3 can be found in the appendix. The prompt used for BLOOM is
based on examples from the train dataset. Since the rating only consists of a one-digit integer the
maximum output length parameter was decreased for both GPT-3 and BLOOM to save tokens and
computation time. Other than that the parameters for BLOOM and GPT-3 remained unchanged. Both
prompts can be found in the appendix.

2.2.1.2 Explanation of difficult terms
The best performing dataset of the previous subtask (extraction and rating of difficult terms) was used
for all models of this subtask. In our case it was the dataset where GPT-3 was used for identifying and
rating difficult terms. We evaluated the quality of the results of the different models manually by
looking at a subset of the results for each model. In order to explain difficult terms four different
models were used: Wikipedia, simpleT5, BLOOMZ and GPT-3.

Wikipedia
Wikipedia is a library for Python which retrieves a summarized version of the Wikipedia definition for
a given term [15]. If no entry exists for this term then no output is returned [15]. In our case a missing
Wikipedia entry for a term is characterized by an output of -1.

simpleT5
simpleT5 is an LLM which is based on the Transformer architecture [16]. For solving this task the
pretrained model t5-base was used. The model was also trained using the test dataset. Here the first 40
rows were used for evaluation and the remaining 163 rows were used for training the model. For
training the maximum token length for the input is 128 and the maximum output length is 512. The
batch size was set to 8 and the model was trained for 5 epochs. The precision was set to 32. Out of the
5 generated models the model with the lowest value loss was chosen. The model which was chosen
had a value loss of 2.7969.

BLOOMZ
BLOOMZ is a finetuned variant of BLOOM [17]. For this task the test dataset was split in two parts.
One part consists of difficult terms which are abbreviations and the other part is the remaining dataset.
The regular expression which was used to extract the abbreviations can be found in the appendix. If an
extracted abbreviation already contains the deciphering such as „IoT (Internet of Things)“ then there
was no need to further use any model to get the deciphering of the abbreviation. For abbreviations and
non-abbreviations different prompts were used which can be both found in the appendix. Just like
with BLOOM the Hosted Inference API was used and except for the maximum token length which
was set to 512 all parameters were set to the default values.



GPT-3
For GPT-3 the dataset was also split in abbreviations and non-abbreviations using the same regular
expression. If an extracted abbreviation already contains the deciphering such as „IoT (Internet of
Things)“ then there was no need to further use any model to get the deciphering of the abbreviation.
The prompt for both subsets can be found in the appendix. The model text-davinci-003 was used. The
temperature was set to 0.7 and the maximum token length was set to 256. The top probability was set
to 1 and the frequence and presence penalty were set to 0.

2.3 SimpleText task 3
The goal of task 3 is to simplify a given scientific sentence. [1] For solving this task simpleT5,
BLOOMZ and GPT-3 were used.

2.3.1 Data description
The train data consists of 648 sentences from different scientific domains where there exists a
simplified sentence for a given complex sentence. [1, 2, 3] Just like for task 2 there are three
differently sized datasets for the test dataset which only contain the non-simplified sentences. [1] The
medium-sized dataset was chosen for this task. This dataset consists of 4,797 sentences.

2.3.2 Method description
simpleT5
The first 130 sentences of the train dataset were used to evaluate the training process and the
remaining 518 sentences were used for training the simpleT5 model. For training the maximum token
length of the input complex sentences was set to 512 and the maximum token length for the output
simplified sentences was also set to 512. The batch size was set to 4 and amount of epochs was set to
5. The precision was set to 32. Moreover, the pretrained t5-base model was also loaded.

BLOOMZ
The prompt can be found in the appendix. The prompt constitutes a small subset of the train dataset.
The Hosted Inference API was used and except for the maximum token length which was set to 512
all parameters were set to the default values.

GPT-3
The prompt can be found in the appendix. The model which was used was text-davinci-003. The
temperature was set to 0.7 and the maximum amount of tokens to 512. The top probability was set to
1 and the frequency and presence penalty were set to 0.

3. Results
The performance of each model was assessed in comparison to each other. For this purpose, task 2
and 3 were ranked individually.
The performance assessment was executed manually and subjectively by analysing the data by carried
out spot checks.
The following ranking was established (from highest performance to lowest performance:
Task 2:

1. GPT
2. BLOOMZ
3. ST5
4. WIKI

Task 3:
1. GPT
2. BLOOMZ



3. ST5

Regarding Task 2 of the CLEF 2023 SimpleText lab competition, the most effective models for
identifying difficult concepts and explaining them were GPT, which provided the best definitions that
were easy to understand at a good level, followed by BLOOMZ, which provided good definitions but
were not as good as GPT. ST5 sometimes paraphrased without simplification and also defined
non-complex expressions, while WIKI displayed a lot of gaps in providing definition and
simplification, resulting in a score of -1.

As for Task 3, the top-performing models for producing a simplified version of a scientific text were
GPT, which provided good simplifications of the text, followed by BLOOMZ, which often maintained
the original wording but sometimes provided a simplified version. ST5, on the other hand, often
retained the exact same expression as before and did not provide a simplified version.

4. Conclusion
The SimpleText Subtasks 2 and 3 aim to identify complex expressions and in a next step provide a
simplified version of identified target word and its linguistic surrounding. However, as it became
evident throughout the execution of the task the models at hand displayed a different level of
performative quality. This is precipitated in the lack of precision when outlining difficult terms and
subsequently simplifying them. Future research should aim to focus on the precision with which a
potential AI model circles out the target expression. Along these lines, co-text related aspects that
impact the specific denotation of an expression needs to be considered (e.g., acronyms that can
represent multiple technical expression). Additionally, future models need to have enough explanatory
data at hand that truely simplifies the target expressions without only rephrasing it.
In conclusion, future work should emphasise on precision and recall when analysing and training
models.

5. Appendix
BLOOM prompt for finding difficult terms
prompt = "Text: The proposed algorithm and the results presented in this paper are first step towards
conducting a systematic analysis of real-coded EDAs and towards developing a design theory for
development of scalable and robust real-coded EDAs.\n\
Difficult terms (up to 5): real-coded EDA\n\
\n\
Text: Our results suggest that the hyperplane tiles improve the generalization capabilities of the tile
coding approximator: in the hyperplane tile coding broad generalizations over the problem space
result only in a soft degradation of the performance, whereas in the usual tile coding they might
dramatically affect the performance.\n\
Difficult terms (up to 5): hyperplane tile coding\n\
\n\
Text: Recently, Lu and Cao proposed a new simple three-party key exchange S-3PAKE protocol and
claimed that it is not only very simple and efficient, but also can survive against various known
attacks.\n\
Difficult terms (up to 5): three-party key exchange, S-3PAKE\n\
\n\
Text: A proof-of-concept implementation gathers network management system data and exposes
abstract maps through the Application-Layer Traffic Optimization (ALTO) protocol.\n\
Difficult terms (up to 5): Application-Layer Traffic Optimization\n\
\n\
Text: Therefore, we provide a MATLAB/Simulink benchmark suite for a ROS-based self-driving
system called Autoware.\n\
Difficult terms (up to 5): MATLAB, ROS\n\



\n"

def generate_from_prompt(prompt,snt):
try:

p=prompt+'Text: '+snt+'\nDifficult terms (up to 5): '
output = query({
"inputs": p
})
s=re.split(r'Difficult terms \(up to 5\): ',output[0]\

['generated_text'],re.DOTALL)[-1]
return s

except Exception as e:
return e

GPT-3 prompt for finding difficult terms
def gpt(input):

openai.api_key = "..."

response = openai.Completion.create(
model="text-davinci-003",
prompt="Return difficult terms from the following text:\n" + input +\ "\nDifficult terms: ",
temperature=0.7,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0

)
return response

BLOOMZ prompt for rating difficult terms
prompt = "\
Term: Diffie-Helman key exchange\n\
Difficulty: 2\n\
\n\
Term: Semantic scene classification\n\
Difficulty: 2\n\
\n\
Term: Associative Classification\n\
Difficulty: 1\n\
\n\
Term: logic qubit\n\
Difficulty: 1\n\
\n\
Term: partitioning\n\
Difficulty: 1\n\
\n\
Term: MATLAB\n\
Difficulty: 2\n\
\n\
Term: low-rate DoS attack\n\
Difficulty: 1\n\
\n\



Term: Helly property\n\
Difficulty: 2\n\
\n\
Term: tmss\n\
Difficulty: 1\n\
\n\
Term: sgRNA\n\
Difficulty: 2\n\
\n"

def generate_from_prompt(prompt,term):
try:

p=prompt+'Term: ' + term + "\nDifficulty: "
output = query({
"inputs": p,
"parameters": {"max_new_tokens": 1}
})
s=re.split(r'Difficulty: ',output[0]\

['generated_text'],re.DOTALL)[-1]
return s

except Exception as e:
return e

GPT-3 prompt for rating difficult terms
def gpt(input):

openai.api_key = "..."

response = openai.Completion.create(
model="text-davinci-003",
prompt="Rate how much domain knowledge an ordinary person needs to understand

the meaning of the following term: " + input + "\n\
0 - The meaning can be derived or guessed.\n\
1 - Some domain knowledge is needed.\n\
2 - Deep domain knowledge is needed.\n\
Return only an integer.\n\n",
temperature=0.7,
max_tokens=1,
top_p=1,
frequency_penalty=0,
presence_penalty=0

)
return response

Regular expressions to match abbreviations
r"^\b[\w.-]*[A-Z][\w.]*[A-Z][\w.-]*\b$"

BLOOMZ prompt for explaining abbreviations
def bloomz_abbrevs_with_snt(term, text):

try:
p = "The abbreviation \"" + term + "\" occurs in this text:\n\"" + text +

"\"\nWhat does \"" + term + "\" stand for?"



output = query({
"inputs": p,
"parameters": {"max_new_tokens": 512}
})
s=re.split(r"\" stand for?",output[0]\

['generated_text'],re.DOTALL)[-1][2:]
return s

except Exception as e:
return e

BLOOMZ prompt for explaining non-abbreviations
def bloomz_non_abbrevs_without_text(term):

try:
p = "Explain the following term in one to two sentences: \"" + term + "\"."
output = query({
"inputs": p,
"parameters": {"max_new_tokens": 512}
})
s=output[0]['generated_text'][len(p):]
return s
return output

except Exception as e:
return e

GPT-3 prompt for explaining abbreviations
def gpt(input):

openai.api_key = "..."

response = openai.Completion.create(
model="text-davinci-003",
prompt="What does this abbreviation stand for?\n" + input + "\nReturn only the result.\n\n",
temperature=0.7,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0

)
return response

GPT-3 prompt for explaining non-abbreviations
def gpt(input):

openai.api_key = "..."

response = openai.Completion.create(
model="text-davinci-003",
prompt="Return a short definition of the following term: " + input + "\n\n",
temperature=0.7,
max_tokens=256,
top_p=1,
frequency_penalty=0,



presence_penalty=0
)

return response

BLOOMZ prompt for simplifying sentences
prompt = "\
original text: In an attempt to achieve the above mentioned tasks, we propose an imitation learning
based, data-driven solution to UAV autonomy for navigating through city streets by learning to fly by
imitating an expert pilot.\n\
simplified text: Researchers propose data-driven solutions allowing drones to autonomously navigate
city streets, learning to fly by imitating an expert pilot.\n\
\n\
original text: We introduce Ignition: an end-to-end neural network architecture for training
unconstrained self-driving vehicles in simulated environments.\n\
simplified text: Ignition is a neural network for training unconstrained self-driving vehicles in
simulated environments.\n\
\n\
original text: It is suggested that the analysis of pharmacophore profiles could be used as an additional
tool for the property-based optimization of compound selection and library design processes, thus
improving the odds of success in lead discovery projects.\n\
simplified text: It is suggested that the analysis could be used as an additional tool for the optimization
of compound selection and library design processes.\n\
\n\
original text: We argue that misinformation and disinformation are related yet distinct sub-categories
of information.\n\
simplified text: We argue that misinformation and disinformation are related but distinct
sub-categories of information.\n\
\n\
original text: Given the importance of nutrition in optimizing athletic performance, there is a concern
about the effects of IFast on athletics.\n\
simplified text: Nutrition is important for the optimization of sport performance so there is a concern
about the effects of intermittent fasting on performance.\n\
\n"

def bloomz(prompt, text):
try:

p = prompt + "original text: " + text + "\nsimplified text:"
output = query({
"inputs": p,
"parameters": {"max_new_tokens": 512}
})
s=output[0]['generated_text'][len(p):]
return s

except Exception as e:
return e
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